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Abstract: The application of fractional calculus to interval analysis is vital for the precise derivation
of integral inequalities on set-valued mappings. The objective of this article is to reformulated the
well-known Hermite-Hadamard inequality into various new variants via fractional integral operator
(Riemann-Liouville) and generalize the various previously published results on set-valued mappings
via center and radius order relations using harmonical /-convex functions. First, using these notions,
we developed the Hermite-Hadamard (H-#) inequality, and then constructed some product form of
these inequalities for harmonically convex functions. Moreover, to demonstrate the correctness of

these results, we constructed some interesting non-trivial examples.
Keywords: Hermite-Hadamard inequality; harmonically convex; Riemann-Liouville; center-radius order

MSC: 26A48; 26A51; 33B10; 39A12; 39B62

1. Introduction

Fractional calculus (FC) focuses on fractional order integrals and derivatives, as
well as their applications, over real and complex domains. To generate more realistic
results with fractional analysis, classical analysis arithmetic is essential. There are a wide
variety of mathematical models that can be solved using fractional differential equations
and integral equations. Mathematical models with fractional order have more broad and
accurate conclusions than classical mathematical models because they are special instances
of fractional order mathematical models. As opposed to integer orders, fractional theory
permits handling of any number of orders, real or integer, so it is a more appropriate method.
Almost no field of nonlinear disciplines or research in contemporary times is uninfluenced
by (FC) methods and instruments. Many fields of engineering have numerous and fruitful
applications, including electrical engineering, control theory, mechanical engineering,
viscoelasticity, rheology, optics, and physics, see Refs. [1,2].

A mathematical technique called interval analysis limits errors caused by rounding
and measurement in mathematical computations. The Japanese scientist Teruo Sunag has
published the most leading paper on interval analysis, see Ref. [3]. There is not only a
systematic investigation of the rules which govern basic operations with intervals in this
publication, but also a mathematical analysis of the rules that govern them. Using only
the terminal points of rational functions over intervals, the range of rational functions can
be determined. The corresponding operations are also discussed for interval vectors as
multidimensional intervals. Using interval arithmetic tools, a pointwise enclosure for the
solution of an initial value problem is computed by enclosing the remainder term and
bounding the value of a definite integral. During the last three decades, a compact interval
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has become an independent object in numerical analysis for verifying or enclosing solutions
to a variety of mathematical problems or proving that such problems cannot be solved
in a given domain. Further, here are some practical applications of interval analysis in
various linear and nonlinear disciplines, see Refs. [4,5]. As we know, Hermite-Hadamard
inequality is the first geometric interpretation of a convex function and it is widely used
in several disciplines that involve convex optimization. We also know that in order to
check the accuracy of various mathematical models based on real life, inequalities must be
included to verify their existence, uniqueness, and stability. To visualize better accuracy of
results, authors often use mathematical models based on nature as fractional forms, so to
handle uncertainty and check the stability of differential models, authors have developed
fractional forms of inequalities.

However, generalized convexity mapping is able to deal with a wide variety of prob-
lems in both applied and pure analysis. A number of well-known inequalities have been
constructed using related classes of convexity, including Simpson, Ostrowski, Opial, Hardy,
and the famous Hermite-Hadamard, which has been extended to interval-valued func-
tions. To construct these inequalities, various authors employ different notions of convex
classes and integral operators, including the standard Riemann integral, Caputo Fabrizo,
Riemann-Liouville, and k-fractional operators. Wang et al. [6] investigated several identi-
ties for a differentiable functions involving Hadamard fractions and Riemann-Liouville
fractions, and proved some inequalities based on s-convex, r-convex, m-convex, (s,m)-
convex, etc. In addition, Iscan [7] utilized the notion of preinvexity to obtain various new
forms of Hermite-Hadamard via fractional operators. Pachpette established the refined
form of Hermite-Hadamard inequalities for the product of two convex mappings using
fractional integral in [8]. Based on Riemann-Liouville fractional integrals, Chan established
various Hermite-Hadamard inequalities for products of convex functions, see Ref. [9].
Using the Riemann-Liouville fractional integral operator, Khan et al. [10] developed (H-H)
inequalities in an expanded form for harmonically convex mappings in the context of
fuzzy interval-valued setting. Shi et al. [11] began by developing Hermite-Hadamard
inequality results using h-convex and harmonically h-convex functions, and extended
their own work to coordinated convex interval-valued functions (Z.V.F.S) through frac-
tional integrals. With the idea of i-convexity, Dragomir developed Hermite-Hadamard
inequalities using Riemann-Liouville fractional integrals, see Ref. [12]. Khan and his col-
leagues created Hermite-Hadamard inequalities using left-right set-valued functions via
Riemann-Liouville integral operators, see Ref. [13]. Recently, Afzal et al. [14] employed
the notions of Riemann integral operator via center-radius order relations to develop a
more generalized form of double inequality for harmonically CR-(h1, h2) convex mappings.
Sharma et al. [15] developed Hermite-Hadamard inequalities based on general s-harmonic
preinvex functions for real-valued stochastic processes. Based on exponentially (1, m)-
preinvexity, Chen et al. [16] developed various variants of Hermite-Hadamard inequality
based on Riemann-Liouville fractional integrals. Awan et al. [17] established several new
Hermite-Hadamard type inequalities by using n-polynomial mappings of harmonically
convex functions. Viloria et al. [18] developed Hermite-Hadamard-type inequalities for
harmonically convex functions based on n-coordinates. Kunt et al. [19] developed new
fractional integral inequalities of Hermite-Hadamard-Fejer type for harmonically convex
functions. Moshin et al. [20] developed different variants of Hermite-Hadamard inequali-
ties with bounds through g-calculus. For some recent developments regarding developed
inequalities, see Refs. [21-26].

Bhunia examined the optimality of multi-objective optimization problems using vari-
ous interval metrics in 2014. He also introduced the concept of center-radius order using
radius and interval midpoints, see Ref. [27]. A recent work by the following authors uses
Bhunia’s notion to construct various types of inequalities more precisely based on different
integral operators, see Refs. [28-31]. According to our literature review, most of these
inequalities are caused by partial order relations. In the case of harmonically h-convex
functions, the main advantage of center-radius order relations is that the inequality term
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can be predicted more accurately. This argument can be proved by valuable examples of
proposed theorems. As a result, it is important to understand how total order relations can
be used to analyze a variety of convex mapping classes.

This study is significant and original because it investigates the center-radius order
relationship in relation to the harmonic convexity and fractional integral for the first time. It
suggests a novel approach to inequalities research that includes set-valued functions. This
order relation’s main benefit is that it has full order, which allows us to compare intervals
while several other interval order relations have significant flaws that prevent us from

doing so in set-valued mappings. Unlike the various partial order relations, this one can

be calculated very differently, e.g.,: J; = ézﬁ and J, = %, are center and interval order

representation of interval, respectively, where interval J= [3, 4.

We are inspired by quality literature and particular articles for our research, see
Refs. [13,14,28-30]. We developed some variants of Hermite-Hadamard inequalities on
set-valued mappings via harmonically h-convex functions in conjunction with fractional
integrals. Additionally, we created some examples to demonstrate their accuracy. To
conclude, the article follows the following format. There is a brief background provided in
Section 2. The main findings are discussed in Section 3. A brief conclusion is provided in
Section 4.

2. Preliminaries

There are a few terms used in the paper without being defined, see Ref. [28]. You
will find it very helpful throughout the paper to be familiar with a few basic arithmetic
principles related to interval analysis. As a result, all the intervals and positive intervals
can be represented as R; and R of set of real R. The following are the definitions for
scalar multiplication and interval addition:

where e € R. -
Letd = [4,0] € Ry, then é. = # and J, = % are the representation of center- radius
form of interval J, respectively. The CR representation of interval § can be defined as:

5+6 6—46
o=(ttr) (370

Definition 1 (See [28]). The CR-order relations for § = [8,8] = (6¢,6), p = [0,P] = (e, pr) €
‘R represented as (Figure 1): B

O < pe, if O # pe;
§2gp=1 .
=er P { o < Or, lf b = Oc.
Theorem 1 (See [28]). Let ¥ : [ay, a0] — Rz be ZV.F defined as ¥ (e) = [¥(e), ¥ (e)] for
every € € [ay,ap] and ¥,'Y are Riemann integrable (IR ) over interval [y, ap). Then, we said that
Y is IR over (a1, ap), and
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|7 eyt = { [ wepe, [ ‘I’(e)de}_

It is most efficient to carry integrals and derivatives to fractional orders or orders other
than integers and natural numbers. We describe the idea of the (R — £) integral operator
to facilitate discussions of fractional integrals.

Definition 2. Let x € L[a1,a2]. The (R — L) integrals J<, x(s) and ]_x(s) of order € > 0 and
1 2
w1 > 0 are defined as:
1 S
€ _ = _ \e—1
Jex(s) = Fgy [ 5= e xle)de, 5> a1,

and
1 x2
]Zz,)g(s) = @/s (e —s)s 1x(e)de, s < ap.

Corollary 1 (See [14]). Let x : [a1, 4] — R be T.V.F given by x = [x, X, with x € IR,
then

a0/

Jex(s) = [Jx(s), J5 x(5)]

and

Jex(s) = I (), JE 7))

Theorem 2 (See [28]). Let ¥, x : [n1, 4] — RF be ZV.F.S given by ¥ = [¥,¥], and
X =[x x| (Figure 2). If ¥, X € TRy, a,), and ¥ (€) Zcr x(€) V € € [ay, az], then

\%) %)
/ Y(e)de <cnr / x(e)de.
251 o7
We will use some interesting examples to demonstrate the above theorem.

Example 1. Consider ¥ = [z,z + 1] and x = [z*> + 1,2z + 1], ¥ z € [0, 1] (Figure 3).

2 2
z 1 z 2z41
Xr:Z—?,‘FrZE/XC:E‘FZ‘Fl and Y. = 5

From Definition 1, one has ¥ (z) <¢r x(z),Vz € [0,1].

Since, )
13
ldz=|=,=]|.
/O[z,z—|— |dz {2,2]

1 4
/ 22 +1,2z +1]dz = {,2]
0 3

and

From Theorem 2, we have
1 1
/ Y(z)dz Z¢cr / x(z)dz.
0 0
Definition 3 ([28]). Let h : [0,1] — R™* and a function ¥ : [ay, 03] — R is said to be a

harmonically h-convex function, or that ¥ € SHX(h, [a1, a2], RT), if V a1, a2 € [, ap] and
€ € 10,1}, one has

T(“l‘"z> < h(e)¥(w) +h(1—e)¥(az). )

en; + (1 —€)ay
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If in (1) < is altered with >, then it is called harmonical h-concave function or ¥ €
SHV(h, [061,062], RJr)

2z+1

z+1

0.2 0.4 0.6 0.8 1.0

Figure 1. The figure illustrates the correctness of CR-order relationships defined in Definition 1.

20 2z

05+

o N

Figure 2. The figure illustrates the validity of Theorem 2.

251 2
—+z+1

20F

2z+1

0.5

0.5

NN

Oé o; Og Oé 15
. _ 22 _ 1 _ 22 _ 2z41
Figure 3. ;= z—%,¥, = 5, xc = %5 +z+1 and ¥, = 5.
The following is the newly introduced class of harmonic-convex (Z.V.F.S) for CR
order relations:

Definition 4 ([22]). Let h: [0,1] — R and a function ¥ : [aq, a2] — R is harmonically CR-
h-convex function, or that ¥ € SHX(CR—h, [a1,a3], RT), if V ay, ap € [, 0] and € € [0,1],
one has

T(M) =er h(e)¥(a1) +h(1—e€)¥(a2). @)

If in (2) < changed with >, it is known as harmonical CR-h-concave function or ¥ €
SHV(CR—h, [0(1, 0(2],7?,+).
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Example 2. Consider [xy,ap] = [1,2],h(€) = eand foralle € [0,1]. If ¥ : [ay, ap] — Ry is
defined as (Figure 4).

-1 1

Then,
7 1 1
Ye(o) = > Yr(o) = 2T

It is obvious Y (z), Yr(z) are harmonically h-convex functions over [1,2].

e €[0,1].

50~
451
4.0
35
3.0

25

1‘2 1.‘4 1‘6 1‘8 2.‘0
Figure 4. In the above figure, ¥ is shown as blue and ¥ as orange, respectively.

Remark 1. ®  Ifh =1, Definition 4 assimilates harmonic C'R-P-function.

e Ifh(e) = %d’ Definition 4 assimilates harmonic C'R-h-Godunova—Levin function.
e Ifh(e) = €°, Definition 4 assimilates harmonic C'R-s-convex function.

e Ifh(e) = %, Definition 4 assimilates harmonic C'R-s-Godunova—Levin function.

3. Main Results

Our goal in this section is to prove some inequalities of Hermite-Hadamard type for
set-valued harmonically C'R-h-convex mappings involving fractional integrals.

Theorem 3. Let ¥ : (a1, a5] — R be (ZV.F) such that ¥ (€) = [¥(€), ¥ (e)], and h : [0,1] —
R* with h(%) #0.If¥ € SHX(CR—h, [n1, 23], R} ), then the following inequality holds:

ZhéfP(

2010 ) on F(ﬁ;l)( a1 )ﬁ

a1+ ap

Ny — Kq

f - Fen (&) HIf, ) e (12)]

a2 a1

=2CRr

[T 1ot - o) e ©

Proof. Since ¥ is a harmonically CR-h-convex function, one has

2f151 ) <1)
Y(—=—) <erhl|l=|¥Y +Y . 4
(758 sen (3 ) 1Y) + ¥ @
Substitute f; = m and ¢ = %f&i“fem in (4); we have
1 ‘F( 2014 ) - ‘I’( K10 )—l—‘f’( 1o ) 5)
h(1/2) "\ a4+ as —CR ex; + (1 —€)ay e+ (1—¢€)ay )’

Multiplying by ef~1 in (5) and integrating over [0, 1], one has
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1 2001 00p /'1 B-1
h(1/2)T(a1+a2) 0 € de

1 1
< By M4 / plg(_ far N\,
~er (IR)/O ¢ T(ezx1+(1—e)zx2 de+ (IR) [ e ( g ) de ©

From Theorem 3, we have

@r) [ Lebly <M) de
= @ [ et (ot e ] o ()

() ) (2B (2 o (20 (2)e

)

&

() (a;"l_"‘;)ﬁff ) (ren (+)
Similarly, one has
= [(R) /01 65_1T<M>de, (R) /01 eﬁ_l‘I’<w2_i_“(11“2_€m> de]
p
STECS PRRE)
Hence, by the inequality (6), we obtain

(2 sesro (2 ) [ oven (2) o, ren(L)]

As a result, first inequality (12) is proven. In order to prove its other side from
definition, we have

T(M) =cr h(€)¥(a2) +h(1—e)¥(a1) )

and

T(M) Zcr h(e)¥(a1) +h(1—€)¥(az). ®)

Adding (7) and (8), we have

a9 a100

Multiplying by ef~! in (9) and integrating over [0, 1], one has
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1 _ LaTA%) 1 _ LaT2%)
(IR)/O ef 1‘{’<€“1+(1_€)a2>de+(IR)/0 ef 1T<ea2+(l—e)a1>d€
1
=cr [¥(w) +¥(w2)] [ b Th(e) +h(1— €)]de, (10)

As a result, the proof has been completed. O

Remark 2. (i) Ifh(e) = eand ¥ = Y with B = 1, then we obtain the following output, see
Ref. [32].

‘F( 20107 ) < ( w100 >/:2 ¥le) < Flo) £ ¥(az), (11)

a1 +ap ap — oq , €2 2
(ii) Ifh(e) = eand ¥ =¥, then we obtain the following output, see Ref. [33].

1’51)4%17)(0}1) +1’Zaﬁ)(won>(0}2)]

< Y(ay) + F(az) :
- 2

‘I’( 2010 ) < (F(,B—i—l)

a1 +ar) ~ (ap—aqp)P

: (12)

Example 3. Let [a1,ap] = [1,2],h(e) =€, f=1andVe € (0,1). IfY : [a,20] — Rz " is
defined as

1 1

then, we have
1 ( 201005 ) [39 73]
‘Y = \|\37r57 |~
2n(1) a1+ 16”16

() Py e () oy eren ()] = [

a2 a1

and

Consequently, Theorem 3 is verified.

39 7B, (2255 11937
16"16| =R |12°12| =R |8’ 8 |’

Theorem 4. Let ¥, x : [a1,a5] — R be (ZV.F.S) such that ¥ (e) = [¥(e), ¥ (e)], x(e) =

(x(€),x(e)],and h : [0,1] — R with h(%) #0.If¥, x € SHX(CR—h, [m, 03], R] ), then
the following inequality holds:

r(ﬁ2+ 1) (a;"l_’"fxl)ﬁ [][Z«ZY(IY o) (;) (xon) (;1) + ]?0}1) (¥ o) (;) (xon) (032)]
M(a1,a2)

<cr [3[2 /01 12 (e) + H2(1 —e)]de—i—N(acl,ocz)/Ol B h(e)h(1 —e)de} (13)

where
M(ay,az) =¥ (ar)x (1) + ¥ (a2) x(a2)
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and
N(ay, 0) =¥ (ar)x(az) +¥(az)x(a1)-

Proof. Since ¥, x € SHX(CR — h, [x1, 2], Rz "), one has

* (M) =er h(e)¥(a1) +h(1—€)¥(a2)

and

X(M) =er h(e)x(en) +h(1 —€)x(az).

Multiplying (14) and (15), we obtain

SL.%] K10
T(etxz +(1—e)n )X<etx2 +(1— e)oq)
<cr W (€)' (ar)x () + W (€)¥ (a2)x (a2) + h(€)h(1 — €)[¥ (1) x (a2) + ¥ (a2) x (1)].

Similarly, we have

K10 LaST%)
qj(eoq +(1- e)tx2>X<ea1 +(1- e)az)
Scr B2 (€)Y (ar)x(ar) + 2 (e)¥ (w2)x(a2) + h(e)h(1 — €)[¥(a1)x (w2) + ¥ (a2) x (a1)]

Adding (16) and (17), we have the following relation

LaT%) K10 L aT%) LST2%)
T(eaz +(1- 6)&1))((60{2 +(1— e)oq) +T(etx1 +(1- 6)0(2))((6061 +(1— e)oc2>
<cr [1P(€) + 1*(1 - €)]|M(a1, a2) + 2h(e)h(1 — €)N(ay, a2).

Multiplying by eP~1in (18) and integrating over (0,1), one has

1
p—1 K12 K1
(IR)/O € II{(eoq—i—(l—e)m)X(eaq—l—(l—e)ocz de

1
B—1 g L X142
+(IR)/0 € 1IJ(eocz—l—(1—6)041>X(6042—5—(1—.s)ocl de

<er M(ay, @) /O " eB12(e) + 121 — €)]de + 2N (ay, 42) /O "B Up(e)h(1 — e)de.

Using Theorem 3 in relation (19), we have

1
p-1 ot 1o a0
(IR)/O © lII<€D¢1+(1—6)062>X(€041Jr(l—e)oéz e

- r(ﬁ)(f"‘;)ﬂf&ycfom(;)<xon><jl)

and

1
p—1 K1 LaTY)
(IR)/O € Y(ezszr(le)w1>x(ea1+(1e)zx2 de

=1 (p) (wflj"il)ﬁf‘&) won () oron (5 ).

Putting (20) and (21) in (19), our desired outcome has been achieved.

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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”52“)(a;"l_“il)ﬁ[]’zé>+(‘1’on)<1)(X n>(1)+1f”> vom (57 e 7’)(;2)]

<cr /s{M("‘;"‘Z) /0 " eB12(e) + 12(1 — €)]de + N(ay, a2) /O eﬂlh(e)h(l—e)de} 22)
O

Example 4. Let [y, a0] = [1,2],h(e) =€, B =1andVe € (0,1). If¥,x : [x1,a2] = Rz ™"
are defined as

Y(e) = {

7

€ €

—1+42€2 1+ 3¢2 —14€ 1+2¢
2 a2 and x(€) = | ——, ——|.

then, we have

M (e Y oren () aen () +f, - ren (3 Jueen ()

~ [0.385,9.885]

and

1 1
B [M(”‘;"‘Z) / P12 (e) + 2(1 — €)]de + N (a1, a2) / P h(e)h(1 - e)de} ~ [0.375,10)
0 0
Consequently, Theorem 4 is verified.
[0.385,9.885] <¢r [0.375,10].

Theorem 5. Let ¥, x : [a1,a2] — R} be (ZV.F.S) such that ¥ () = [¥(e), ¥ (e)], x(e) =

(x(e),x(e)],and h : [0,1] — R with h(%) #0.IfY, x € SHX(CR—h, [n,a2], R} ), then
the following inequality holds:

i (e (e e)
<CRF(/5)(0;1_“;>15[I€£>+(‘I’017)(:1>(X 0 (a) +17, ren (i) e W(;ﬂ

+/5[ (a1, 47) / P12 (e )+h2(17€)]d€+M(%a2)/0 eﬁ—l[h(e)Jrh(le)]de] (23)

Proof. For € € [0,1], one has

2 LS%) N0
201 0p _ T(-e)agtensy (1—€)ag+eny
a1+ oy LS5 L5L5]

(1—€)ay+eay (1—€)ag+ern

Since ¥, x € SHX(CR — I, [a1,22], R ), one has
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1 ¥ 20100 20100
2h2(1/2) o1 + & X ®1 + ap
2 (515 LS 2 LS LS5
_ 1 ¥ (1—€)ag+eny (1—€)ag+eay (1—e)ay+eay (1—€)ag+ean
= th(l/z) ( ) + (1 [S1.%] X [LST.%] + ( [LST%]

1—e€)ag+eay —€)agteay (1—€)aq+eay 1—€)ag+eny

=cr {T ( (1- ea)ltxu;:— etxz) + ( (1-— 60;1:;2—1- €nq )} %
[X ( (1- 60()10‘0;1 6“2) M ( (1- f)lﬂéo;er ey M @
=¥ ( (1- 60311340;2+ etxz)X ( (1- ea)loiz—k ezxz) i ( (1- ealof—i- €nq ) ( (1- “1040;2—1— €y )

7 ( (1- ea)loiva e(x2>x ( (1- eoglrxiz—i— €nq > ¥ ( (1- ealzxo;z—i— eoq) ( 1-— :1:;2—% €1x2>

K1 K1 K1 LET%)
<cr ¥ Y
—CR ((1€)“1+eaz)x<(1€)lxz+ezx1>+ ((1€)0€2+ezx1>x<(1€)0¢2+ea1>

+ [H2(e) + h*(1 — €)]N(ay, a2) + 2h(e)h(1 — €)M(ay, a2).

Multiplying by ef~1 in (24) and integrating over [0, 1], one has

1 1 2000 2010
- B—1 142 142
h2(1/2)(IR)/0 ¢ ‘Y(a1+lxz>x<0€1+lx2)d€

1
~ p—1 K1 K12
er (IR) /0 € Y((l —€)ag + ey X (1—e)ag + ey de

1 o e
+(IR) /0 Py ( (1- e)lrx;—i— €y )X((l — e)loczz—i— eoq)de
+ N(ag,a2) /01 eP1n%(€) + H*(1 — €))de

+2M(aq, o) /01 ePh(e)h(1 — €)de.

Inequality (25) was achieved by changing the integrating variable:
1 20(1062 20(10(2
2h2(1/2)T<“1 +042>X<“1+0¢2>
p
a1u 1 1 1 1
5cnr(ﬁ)(al_i> [Iﬁl A\Pon)(a)(x 77)( )Hﬁ (‘Yon)(a)(xoq)(a )] (25)
) ') D) iy :

+ﬁ[ (21, 22) /Oleﬁ—l[hz(e)+h2(1e)]deJrM(oq,ocz)/Oleﬁ_l[h(e)+h(1G)WG}

Example 5. Let [xq,a3] = [1,2],h(e) =€, B=1andVe € (0,1). If¥Y,x : [a1,a2] = Rz ™
are defined as

—1+42€2 1+ 3¢2 —14€ 1+2¢
‘{’(e):{ 2 2 }and X(G)Z{GIG}

then, we have

1 ¥ 201 0p 2010 23 627
212(1/2)  \ay + a2 )\ oy + o 128" 128 |’
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and
() [ e (@ nen (&) o ren(Een(3)
+ g 2] [ eb1i2(e) 4 121 e))de + Mar,a0) [ P h(e) + (1 - o)l
_ [137 1171}
9% 32 |’

Consequently, Theorem 5 is verified.

23 627 137 1171
s s | 2CR | = = |-
128" 128 96 " 32

Theorem 6. Let ¥, x : [1,a5] — R be (ZV.F.S) such that ¥ () = [¥(€), ¥ (e)], x(e) =

x(e),x(€)],and h : [0,1] — RT with h(%) #0.If¥, x € SHX(CR—h, (w1, 03], RS ), then
the following inequality holds:

1 20100 2010
2h2(1/2)T<(X1+062>X<061+0(2>
T(B+1) [ ama \P| 5 NG B (]
SCR —5iop <a1+0c2) l](%fi?fw ”)(Dq)H(";}g:;)(\F 17)(“2> (26)

+ﬁ{M(zx1,tx2)/01 eﬁ1h<22_e>h(;)de+ M/Ol Pl {h2<22_€) +h2(;>}d€}

Proof. Since ¥, x € SHX(CR — h, [a1, a], R%L), one has

2fi1g1 > €
Y=~ ) =erhl=)[¥Y(f1)+ ¥ . 27
(P28 ) <cn n(§) () + ¥Ge1) @)
2 2 .
For f; = m and g1 = (zieii%,we obtain
1 201 0p 201 0p 20100
b4 < Y({—/—m——= | Z et SaC S 2
h(%) (aq—l—ocz) —CR (ea1+(2—e)a2>+ <€062+(2—€)061) (28)
Similarly, we obtain
1 20(1062 20(10(7_ 20610(2
Y = - s It o )
h(%) (le +¢x2> —CR X(eal + (2—e)a2> +X(eocz—i- (Z—e)ocl) 29)

Multiplying the inequality (28) and (29), we have
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1 ( 20100 ) ( 201000 >
Y X
h2<%) a1+ an a1+
20100 2010
<er ¥
—CR (ele +(2- e)a2> (eoq +(2- e)zx2>
thltxz 20100
Y
+ (eoc2+ )X<etxz+ 2—¢) rx1>
¥ ( 20c1042 )X < 20410(2 >
ex; + (2 ey + (2—€)mg
¥ ( 2041&2 )X < 20(10[2 )
€ny + €nq + —€ az
20(10(2 20610(2
=<er ¥ Y
—CR (ea1+ az)X<eu¢1+ 2—¢€) a2>+
€ e
=55 Pren g e < (55 o) 4 ()]
—€
= (557 re gy en] < (3
200109 20100 20410(2 201 0p
Y
(ele+ ezx2>x(eo¢1+( €0é2)+ <e 2 —¢€)a X eny + (2 —€)my

+2M(w1,a2)h(2;€)h(; { ( —)m2(E } (a1, 0).

Multiplying by ef~! in (30) and integrating over [0, 1], we obtain our desired re-
sult (26). O

20(10(2 2&1062
(ezxz—l— 2—¢) a1>X(ea2+(2—e)a1) (30)

€
x(aq) +h 2 X(“z)}

Example 6. Let [a1,a0] = [1,2],h(e) =€, B=1andVe € (0,1). If¥, x : [x1,a2) = Rz ™"
are defined as

Y(e) =

{1+2€2 1+ 3¢2

—1+4+€ 142
2 a2 }and X(e):[ }

’
€ €

then, we have

1 ¥ 20(10(2 20(1062 - 2 @
22(1/2) \ay +az )\ ag v an ) ~ | 128" 128)"

and

r(flfﬁl) <af1+aiz>ﬁ lﬂ(;g;:‘;) (%”)< 11) Hfgj;;)(%”) (oi)]
+ﬁ{M(a1,a2)/01 eﬁ1h<2;€>h(§)de+ M/; h1 [h2<2;€> +h2(;)}d6}
SER]

Consequently, Theorem 6 is verified.

28 67y |37 ¢
128”128 | =R | 240’




Mathematics 2023, 11, 4041 14 of 21

Theorem 7. Let ¥, x : [a1,a2] — R} be (ZV.F.S) such that ¥(e) = [¥(e), ¥ (e)], x(e) =

(x(e),x(e)],and h : [0,1] — R with h(%) #0.If¥,x € SHX(CR—h, w1, 03], RF ), then
the following inequality holds:

) g0 () oy o )

20109 201 o

=cr B {M(‘gw /01 ef1 {hZ (256) + hz(g)] de + N(a1, ) /01 eﬁlh(§>h<2 . e)de} | -
Proof. Since ¥, x € SHX(CR—Mh, [x1, %3], R} ), one has
20100 2—¢ €
T(Me)txz) Ser h(2>‘1’(“1) + h(g)‘Y(az) (32)
and ) )
N —€ €
X(wl_ze)az) 56’72’1( > )X(M)Jrh(z)x(wz) (33)

Multiplying (32) and (33), we have

- 2x10 20102
(2—€e)ag + ey x (2—e)ag +eny

Sen 1 (255 o)+ 12(5) ¥ontan) + (25 )h(5) ¥ @x(en) + Fodrle)) 69

Similarly, we obtain

¥ 2&1&2 2&1&2
(2—e)ag + ey X (2—e€)aj +eny

<er 12 (255 ) ¥anxte) + 12 () ¥ancton) + (255 )4(5) ¥ atoa) + Yo x(o)l. @9)

Adding (34) and (35), we obtain the following relation:

2&1%2 Zalaz 2&1&2 2&1“2
Y Y
((2—6)041 —0—6&2))(((2—6)0(1 + enr + (2—€)ag +enq x (2 —€)ag + enq

=cr W (22€> [P (1) x (1) + ¥ (az)x(az)]

12 () (EGron) + ¥yan)] + 20 (5 ) 25 (FGan(a) + Flahr(on)

_ [;ﬂ (22_6> + h2<§>] M(ay, a2) + 2h(;>h<2 > €>N(zx1,a2). (36)
Multiplying by ef~! in (36) and integrating over (0, 1), one has
1
(IR) /0 il ( (2—- i‘)";‘l"i €ny > X ( (2 - i;‘cltlf:— €y ) de
+(IR) ./01 ey ( (2 - i{;}c:i— €y )X ( (2-— il;olcjz—i- €aq > de
son wes) [ (557) ()
+2N(a1,o¢2)/01 eﬁlh(g)h<2;€)de. (37)

By using Theorem 3 in relation (37), we obtain our desired inequality. [
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Example 7. Let [x1,a0] = [1,2],h(e) =€, B =1andVe € (0,1). If ¥,y : [ay,a2] = Rz ™"
are defined as

—1+42€2 1+ 3€?

7

Y(e) = { } and 1(e) = {

—1+e€ 1+2€}

€? €? e ' €

then, we have

Hfiﬁl) (“ff;)ﬁ [IQS%iTSj)*(TO") <“11) H?‘;g:;)(%”) (0612)]

= [s6-%]

~ 196" 9%

and

o[ [ b () e @ v e n)n(%5)o] =[5

Consequently, Theorem 7 is verified.

37 949 3
=7 < z .
[96’ 96} —CR [8’10}

Theorem 8. Let ¥ : (a1, ap] — R be (Z.V.F) such that ¥ (€) = [¥(€), ¥ (¢)], and h : [0,1] —
R with h(%) #0.IfY € SHX(CR—h, [a1,x2], RF), then the following inequality holds:

zh(i/z)Tcl;az)

<er M9 g o0 () +1€%)<‘fon>(jz)]

5CR5<W) /01 b1 [h(2;€> —|—h<§)]d€. (38)
Proof. Since ¥ € SHX(CR—h, (1, x2], R), one has

¥ (280 <en (3 ) ¥ 00 + ¥

Ai+&
2010 2010 .
For fi = s, A 81 = =gy, yerys We Obtain
1 a1+ ap 201000 201 0p
Y 2R Y| —————— v —= ). 39
h(%) ( 2 ) —CR (eoc1+(2—e)zx2> + (ea2+(2—e)¢x1 (39)

Multiplying by ef~1 in (39) and integrating over [0, 1], one has

1 a1+ o 1 B—1
71 ‘I’( 5 )/0 eF~ de
2

1 201
=< p—1 142 /
<R (IR)/O ¢ T<ea1+(z—e)a2 de+ (IR) |

1 2010
B—1 142
‘ Y<€0€2+ (2—€)“1>d6 40

Using Theorem 3 in the relation (40), we have
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1 201
B—1 100
(IR)/O ¢ III(.ﬂ:ﬂq—i—(2—(—:)0¢2>d€
= / R ¢ < 2010 >de (R) /1 eﬁl‘I’(zam)de}
en; + (2—€)ag ! 0 ex;+ (2—€)ag

[y w e (22w (-]
p

20y an 20qap

) :(éafizyr(ﬁ Moo (). (S55) T )’fzalaz)d‘fon)(o}l)]

- r<ﬁ>(Di"‘;"ﬂjz)ﬁffm>+<won>(;).

Similarly, we obtain

R [ (e )
(m)ﬁrw@% eeen(y) (m)ﬁrwﬁm )+(‘1’077)<;2>]
:r(ﬁ)(;asz) ][(;D?af?zz) (‘1’077)<“12>.

As a result, the first inequality (38) is proven. In order to prove the second inequality,
since ¥ is a harmonically C’R-h-convex function, one has

2000 2—¢€ €

‘F(amm—em) ~er h(z)‘““l) +h(5)¥(w) (4D)
and ) ,

X100 € —€

T(wzm—e%m) jmh(z)“"‘l)*h(z)q’(“z) (42)
Adding (41) and (42), we obtain
20100 20100 2 —¢€ €

e ooam) Y arasam) e o vl (357) ()] @)

Multiplying by ¢f ! in (43) and integrating over [0, 1], one has

1 1
(IR)/ Py U de+(IR)/ P ly 2k de
Jo €)ay 0

eny + (2 - eny + (2 —¢€)my

=cr (IR) /01 ef1 [h<2;e> +h(§)} [¥ (1) + ¥ (az)]de.

Inequality (38) was achieved by changing the integrating variable. O

Example 8. Let [x1,a0] = [1,2],h(e) =€, =1andVe € (0,1). If ¥,y : [a1,a2] = Rz ™"
are defined as

-1 1 -1 1
Y(e) = [6’2+5,6’2+6] and 1(e) = [e+2’e+3]'

Then, all the assumptions of Theorem (8) are satisfied.
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Theorem 9. Let ¥ : (a1, ap] — R} be (ZV.F) such that ¥ (€) = [¥(€), ¥ (¢)], and h : [0,1] —
R with h(%) #0.IfY € SHX(CR—h, [a1,x2], RF ), then the following inequality holds:

1 % 20611)(2
2h2(1/2) " \ag + a2

<on F(f:—ﬁﬂ( X102 )5[][%1 (‘Yon)( 2000 )+]ﬁ +(‘Yo;7)< Zalocz)

o) () ™ ) ) T e

e (H257) [ (15 o5

Proof. Since ¥ € SHX(CR—h, [a1,a,], RF), one has

T(%) =cr h<;) [¥(f1) +¥(g1)]-

i 20‘1‘%2 _ 211{111(2
For fi = qeaa o, A4 81 = fAraya +(ize)g We have

1 20100 20100 > ( 20100 )
¥ < . (45
n(3) (%) zexn (et tram) P (Tronra—am) @
Multiplying by ef~1 in (45) and integrating over [0, 1], we have
(2 [
h(%) ap+ay ) Jo

1, 201
<om (IR)/O i hy((le)leJlr(21+€)txz>d€+(IR)/o

1 200
p—1 102
€ Y<(1+e)w1+(1e)o¢2)d€ (46)

By using Theorem 3 in the relation (46), we have

L 20
(IR)/O eP 1?((1_€)“1i(21+€)a2>de

: [(R) /01 EﬁlT( (1= e)“zlﬁa(zl - €)“2>d€' (%) /o1 eﬁl‘f< (1- e)aia—lka(zl + e)ﬂéz)de]
_ KM)ﬁ(R) /1(:12) (u L +a2)‘1’(1)du,

Ny — K1 e 20107 o1
2 p ar =1
(222 ) w) ) (1= o2 )
0y — o 21*1&'22 20100 o1

20100 >ﬁ 8 < 2010 )
=T ¥ .
Q <0<2 - ](ﬁ) )
Similarly, we obtain
1 _ 20610(2
IR / b 111/( )d
(IR) 0 € (1+e)a;+ (1—¢)az €
20100 >ﬁ 8 ( 2010 )
=T 4 .
Q <0<2 - ]<$) ay +

As a result, the first inequality (44) is proven. In order to prove the second inequality,
since Y is a harmonically C’R-h-convex function, one has
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(et trram) <en (¥ (¥

N

and

+

(o am) Zer (57 ¥ +n(F57) v

Adding (47) and (48), we obtain

T((l = CENE: e>a2> ”’((1 ot e)ou)
=cr [¥(a1) +¥(a2)] {h(l ;€> +h<1 ;e)}

Multiplying by ef~! in (49) and integrating over [0, 1], one has

bog 2010 Lo 2090
(IR) ./0 e 1‘Y((l—.s)oclj—(21—1-(—,‘)zx2>d€+(IR)/O e 1T<(1+e)a1i(21—e)a2>d€

=cr [¥(a1) + ¥ (a2)] /01 ef1 {h(lge) +h<1§€)]de.

As a result, the proof has been completed. [J

(47)

(48)

(49)

Example 9. Let [a1,a0] = [1,2],h(e) =€, B=1andVe € (0,1). If ¥,y : [ay,a2] = Rz ™"

are defined as

-1 1 -1 1
¥(e) = [62 +2,€2+3] and n(e) = [6—1—1,6—1—2].

Then, all the assumptions of Theorem (9) are satisfied.

Theorem 10. Let ¥, x : (a1, a5] — R be (ZV.F.S) such that ¥ (e) = [¥(€), ¥ (¢)], x(€) =
[x(e), x(e)], and I : [0,1] — R+ with h(%) #0.If¥, x € SHX(CR—h, [a1,a0], R ), then

the following inequality holds:
[(B+1) [ mar 5 20100 (xon) 2010
21-8 \ap —my o + xen a1+ an

B ¥ Y] > < 2“1“2 >
+]($)+( 077)<W1+0C2 2

M(aq, o —€ 1+e€
g2 o (55 ()
1+e
B—1
—l—N(al,ocz)/o € h( 7 ) ( > ]

Proof. Since ¥, x € SHX(CR—Hh, [a1, az], R}'), one has

(et fram) 2o (7 ) v +n(5°) vie

X((l — e);zﬂ:lfc(zl +€)061) =cr h(lze)x(m) +h<1 ;e)x(“ﬂ

Multiplying (51) and (52), we have

and

(50)
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¥ ( (1- e)oczzaj—a(zl +€)ay >X<(1 - e)oiaj—a(Zl + e)oq)
Ser 12 (155 ) Hannton) + 12155 ) ¥t

h(F3)n(F55 ) ¥ ta) + (o) &3

Similarly, we obtain

2010 2010
‘F(ue>«2i<1+e>a1>"(<1e)aziuw)al)

<en 12 (135 ) Hannon) + 1715 ) ¥t

(25 (55 ) (et + Flar(on) 64

Adding (53) and (54), one has

20100 20100
III<(1+e)oczi(1 e)al)x<(1+e)w241r(1 e)uq)

2010 2010
+‘Y((1+€)txzi(1—e)a1>x((1+€)azi(1—€)w1)

<er (750 ) (FGwnton) + ¥lohon)] + 2 (15 ) [Fn(an) + Flahn(oa)]

+2h<1;€>h(12e)[‘Y(ocl)X(wl)vL‘Y(“z)X(“Z)]' )

Multiplying by ef~! in (53) and integrating over [0, 1], one has

(IR) /01 e < i e)azzﬁa(i Fom >X ( i e)azzﬁa(i T om > de
+(IR) /01 Y ( iz e)azﬁaé Fom )X ( i e)azﬁaé Tom ) de
<er M(a,a2) /01 eh1 [h2 (ie) 2 (1 ‘ZL e)}de
+2N((x1,«x2)/01 eﬁlh(l—;e>h(1 ;€>de. (56)

By using Theorem 3 in relation (56), we obtain the desired output. [J

4. Conclusions

In this work, we construct some Hermite-Hadamard inequalities in a novel manner
using harmonical convex functions via Riemann-Liouville integral operator. We do this
by using the set-valued mappings for center and radius order. We can evaluate Hermite—
Hadamard inequalities from a new angle by combining these ideas. Since it is well known
that this fractional integral generalizes the conventional Riemann integral, in this study
we generalize various previous findings. A few striking examples are also provided to
demonstrate the validity of the conclusions that have been proven. More investigation
into equivalent inequalities using different integral operators and convexity types will
be fascinating. Additionally, readers will have to construct these findings using fuzzy
environments, time scale calculus, and coordinates.
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