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1. Introduction

An arrival process where the interarrival intervals X1, X2, . . . are independent and
identically distributed (i.i.d.), nonnegative random variables is called a renewal process
because it probabilistically starts over at each arrival time; that is, the nth arrival occurs at
Sn = ∑n

i=1 Xi, and the jth subsequent arrival occurs at Sn+j − Sn = ∑
j
i=1 Xn+i.

Denote for all t > 0, N(t) = sup{n ≥ 0, Sn ≤ t} the renewal counting process with
interarrival time {Xn:n ≥ 1} and define its renewal function by H(t) = E

(
N(t)

)
.

Set F(t) = P(X ≤ t) and F∗k(t) = P(Sk ≤ t) for k ≥ 1. It is well known that the
renewal function is given for all t > 0 by

H(t) =
∞

∑
k=1

F∗k(t).

The estimation of the function H(t) is studied in the literature (see, e.g., [1–4]).
Ref. [1] introduced a nonparametric estimator of H(t) given by

Hn(t) =
m(n)

∑
k=1

F(k)
n (t), (1)

where

F(k)
n (t) =

(
n
k

)−1

∑
(n,k)

I
(
Xi1 + . . . + Xik ≤ t

)
,

and ∑(n,k) denotes the sum over all
(

n
k

)
distinct combinations of {i1, . . . , ik} ⊂ {1, . . . , n},

and m(n) ≤ n is an integer sequence fulfilling m(n) ↑ ∞ as n ↑ ∞. He studied the almost
sure convergence and the asymptotic normality of this estimator by using a method of
reversed martingales for i.i.d. random variables,
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Considering a slightly different estimator, ref. [5] showed some results on consistency,
asymptotic normality, and asymptotic validity of bootstrap confidence regions. Then, using
a linearization of the process, ref. [2] studied the weak convergence of this estimator on the
Skorohod topology.

Generalization to multivariate and/or multidimensional renewal processes may be of
a practical interest. For example, the case of customers arriving at a single-server service
station. A customer is immediately served if the server is idle, and he or she waits if
the server is busy. The process is bivariate and bidimensional because the distribution
function of the interarrival times and that of the service times of successive customers are
generally different.

Since ref. [6], the studies of higher dimensional renewal processes, more particulary
in dimension two, have known some developments. For example, ref. [7] constructed a
bivariate renewal model and explained its inclusion in basic and preventive maintenance.
Ref. [8] investigated several decision models estimating the expected total cost incurred
under various types of two-attribute warranty policies. Ref. [9] studied two-dimensional
failure modeling for a system where degradation is due to age and usage.

Ref. [3] generalized the results of ref. [2] by introducing the multidimensional–
multivariate renewal function and its estimator with an appropriate Skorohod topology.

The expansion of applications using random fields instead of random variables can be
performed in spaces of dimensions greater than two. This will be the case, for example,
in the number of people affected by a contagious disease before a time t, for which the
geographical distance of two people affected simultaneously, will be considered. The first
index is that of a region and the second one is the order of contamination in the region. The
greater the difference between the numbers of the first index, the further the regions are.
The random fields are considered in many papers and the major literature is studied (see,
e.g., [10–12]).

The renewal function based on random fields was never investigated in the literature,
and that is why we study the asymptotic normality of the estimator of the renewal function
based on the two-dimensional nonnegative random fields. In this paper, we use a sequence
of i.i.d. absolutely continuous positive random fields, and we also use an estimator of
the renewal function as a sum of empirical function. We study the asymptotic behavior
of this estimator. A renewal process is a set of arrival processes in which the associated
arrival intervals are nonnegative random fields (Xi)i∈N∗2 . General assumptions, including
some notations and definitions, are given in Section 2. A concrete application is detailed in
Section 3. In Section 4, we examine the asymptotic normality of the empirical distribution
function, and in Section 5, we investigate the asymptotic normality of the estimator of the
renewal function. We give in Section 6 the motivation for future research.

2. General Assumptions

Let (Xi)i∈N∗2 be a sequence of i.i.d. absolutely continuous positive random fields. Let
n be a positive integer, and we describe the summation path of Xi illustrated by Figure 1,
according to an order relation which will be defined as in the following:

(i1, i2) < (i′1, i′2) ⇐⇒ i1 + i2 < i′1 + i′2 or i1 + i2 = i′1 + i′2 and





i1 < i′1 and i1 + i2 ≡ 1[2]
or else

i2 < i′2 and i1 + i2 ≡ 0[2]



.

Knowing that the random fields are independent, our order was chosen only to
facilitate the proofs and the obtained results of convergences will remain true whatever the
order defined.
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Figure 1. represents the order of summation of the random fields (Xi)i∈N∗2 on the two-dimensional
Euclidian space N2.

According to this order, we define the triangulary domain În of the summation-path 67

as follow: 68

În = {(i1, i2) such that i1 + i2 ≤ n + 1, i1 = 1, ..., n, i2 = 1, ..., n}.

Denote by Sk the sum of k first random fields according to the order established above. 69

Define 70

N(t) = sup{n, Sn ≤ t}.
N(t) is the number of events by time t and called the counting process. 71

Let 72

H(t) = E
(

N(t)
)

,

H is called renewal function. 73

Given a sequence of random fields (Xi)i∈N∗2 , for all i ∈ N∗2, Xi has a cumulative 74

distribution function Fi with density function fi. 75

Put F(k) the distribution function defined as follow 76

F(k)(t) = P(Sk ≤ t).

Figure 1. Represents the order of summation of the random fields (Xi)i∈N∗2 on the two-dimensional
Euclidian space N2.

According to this order, we define the triangular domain În of the summation path as
follows:

În = {(i1, i2) such that i1 + i2 ≤ n + 1, i1 = 1, . . . , n, i2 = 1, . . . , n}.

Denote by Sk the sum of k first random fields according to the order established above.
Define

N(t) = sup{n, Sn ≤ t}.
N(t) is the number of events by time t and called the counting process.

Let

H(t) = E
(

N(t)
)

,

H is called renewal function.
Given a sequence of random fields (Xi)i∈N∗2 , for all i ∈ N∗2, Xi has a cumulative

distribution function Fi with density function fi.
Put F(k) as the distribution function defined as follows:

F(k)(t) = P(Sk ≤ t).

Since N(t) is a process with integer value, then the renewal function can be also
defined by

H(t) =
∞

∑
k=1

F(k)(t).
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Denote by I∗k the set of the k first indices {i1, i2, . . . , ik} according to the order. A
sequence Ik of k indices is called equivalent to I∗k if for each subset consisting of all indices
which have the same first component; the second components starting from 1 are consecu-
tive, which we note Ik ∼ I∗k . Denote by Ik = {Ik; Ik ∼ I∗k} the set of k indices equivalent to
I∗k . The random fields being i.i.d., we deduce that

P

(
∑
i∈Ik

Xi ≤ t

)
= P


∑

i∈I∗k

Xi ≤ t


, for any Ik ∈ Ik.

Denote by ωn the number of random fields inclued in the triangular domain În
such that

ωn =
n(n + 1)

2

and ŵn(k) the number of independent block of k random fields such that

ŵn(k) =
⌊ωn

k

⌋
,

where bxc stands for the integer part of x.
Denote by

{
I(l)k,n

}
1≤l≤ŵn(k)

the set of the ŵn(k) sequences of k indices {il
1, . . . , il

k} such

that il
1 < il

2 < . . . < il
k , il

k < il+1
k and i1

1 = (1, 1). iŵn(k)
k is the kŵn(k)-th index in the set În

with respect to the order defined above.
Now, put

Y(k)
l,n = ∑

i∈I(l)k,n

Xi, for 1 ≤ l ≤ ŵn(k).

Note that the sequence Y(k)
l,n is an independent and identically distributed random

variable.
Let {i1, i2, . . . , ik} and {j1, j2, . . . , jk′} be two subsets of N∗2 that have u ≤ min(k, k′)

elements in common; we define

F(k,k′)
u (t) = P

(
(Xi1 + Xi2 + . . . + Xik ≤ t) ∩ (Xj1 + Xj2 + . . . + Xjk′ ≤ t)

)
.

Let m = m(n) be an integer sequence fulfilling m(n) ↑ ∞, as n ↑ ∞ and m(n) ≤ n; it
seems natural to estimate H for a finite sum by an estimator Ĥn defined by

Ĥn(t) =
m(n)

∑
k=1

F̂(k)
n (t),

where F̂(k)
n is the unbiased estimator of the distribution function F(k) defined as

F̂(k)
n (t) =

1
ŵn(k)

ŵn(k)

∑
l=1

I
(

∑
i∈I(l)k,n

Xi ≤ t
)

, (2)

where I(.) is the indicator function.

3. Concrete Application

Consider a contagious disease propagation in France whose penetration is between the
departments. Suppose that the disease is already spreading in another country; the time to
infect the first person in France follows a law of random field X(1,1). The first component 1
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of the index is that of the infected person’s department and the second component indicates
the first infected person. The infection time from the first infected person to the second
person in the same department is the law of the random field X(1,2). Or else, if the person is
in another department, the first component will be 2, and the infection time of the second
person is the law of the random field X(2,1). The index of the infection time of the law
of random fields will be assigned to the same process as for the first two people. The
contamination time of k persons follows a law of the sum of k random fields such that
∑i∈Ik

Xi where Ik ∈ Ik. N(t), the number of infected people by time t, will be defined by

N(t) = sup

{
k, ∑

i∈Ik

Xi ≤ t

}
,

where the set Ik of the k indices of the path of the Xi belongs to Ik. The renewal function
H(t), expectation of N(t), can be estimated by our results in Section 5.

Moreover, we can estimate the renewal function restricted to different regions from an
adapted counting process Nj1,j2,. . . ,jm where j1, j2, . . . , jm are the indices of the departments
of the region and m is the number of departments in the region.

4. Asymptotic Normality of F̂(k)
n (t)

The first main result on the central limit theorem of the empirical estimator F̂(k)
n is

a generalization of that of ref.[13] for random variables. Our proofs are based on the
convergence of the characteristic function, and we show that its second-order moments of
Taylor expansion converge to a characteristic function of a normal random variable and the
fourth-order converges to zero.

Theorem 1. Suppose that the sequence of random fields (Xi)i∈N∗2 is i.i.d. and absolutely con-
tinuous positive and the summation path of Xi illustrated in Figure 1 holds; then, the process
n
(

F̂(k)
n (t)− F(k)(t)

)
, t > 0 , converges in distribution to N (0, σ2

k ) where N is the centered

normal random variable with variance defined by σ2
k = F(k)(t)

(
1− F(k)(t)

)
.

Proof. Our first stage is to show that the empirical function F̂(k)
n is an unbiased estimator

of the distribution function F(k); one has

E
(

F̂(k)
n (t)

)
= E


 1

ŵn(k)

ŵn(k)

∑
l=1

I
(

∑
i∈I(l)k,n

Xi ≤ t
)



=
1

ŵn(k)

ŵn(k)

∑
l=1

E

(
I
(

∑
i∈I(l)k,n

Xi ≤ t
))

=
1

ŵn(k)

ŵn(k)

∑
l=1

E
(
I
(

Y(k)
l,n ≤ t

))

=
ŵn(k)
ŵn(k)

E
(
I
(

Y(k)
1,n ≤ t

))

= F(k)(t).

Now, we prove the asymptotic normality. From (2), one has

n
(

F̂(k)
n (t)− F(k)(t)

)
= n

(
1

ŵn(k)

ŵn(k)

∑
l=1

I
(

∑
i∈I(l)k,n

Xi ≤ t
)
− F(k)(t)

)
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=
n

ŵn(k)

ŵn(k)

∑
l=1

(
I
(

∑
i∈I(l)k,n

Xi ≤ t
)
− F(k)(t)

)

=
n

ŵn(k)

ŵn(k)

∑
l=1

(
I
(

Y(k)
l,n ≤ t

)
− F(k)(t)

)
. (3)

Put {A(k)
l,n } as the sequence of i.i.d. random variables defined as

A(k)
l,n = I

(
Y(k)

l,n ≤ t
)
− F(k)(t), for all 1 ≤ l ≤ ŵn(k). (4)

Denote by φn the characteristic function of the process n
(

F̂(k)
n (t)− F(k)(t)

)
such that

φn(u) = E


exp


iun

(
1

ŵn(k)

ŵn(k)

∑
l=1

I
(

∑
i∈I(l)k,n

Xi ≤ t
)
− F(k)(t)

)



, u ∈ R,

where i is the complex number unity.
Using the Taylor expansion neighborhood of zero,

E
(

eiuA(k)
l,n

)
= 1 + (iu)E(A(k)

l,n ) +
(iu)2E

(
A(k)

l,n

)2

2!
+ . . . +

(iu)nE
(

A(k)
l,n

)n

n!
+ o(|u|n), (5)

and

ln(1− u) = −u− u2

2
+ o(|u|2), (6)

one has

exp
[

ln
(

φn(u)
)]

= exp


ln


E


exp

(
iun

ŵn(k)

ŵn(k)

∑
l=1

(
I
(

∑
i∈I(l)k,n

Xi ≤ t
)
− F(k)(t)

))









= exp

[
ln

(
E

(
exp

(
iun

ŵn(k)

ŵn(k)

∑
l=1

A(k)
l,n

)))]

= exp

[
ln
(

E
(

exp
( iun

ŵn(k)
(

A(k)
l,n
))))ŵn(k)

]

= exp
[

ŵn(k) ln
(

E
(

exp
( iun

ŵn(k)
A(k)

l,n

)))]
(7)

= exp


ŵn(k) ln


1− u2n2

2
(

ŵn(k)
)2 E

(
A(k)

l,n

)2


+ o

(∣∣∣∣
u2

ŵn(k)

∣∣∣∣
)



= exp

[
− u2n2ŵn(k)

2
(

ŵn(k)
)2 E

(
A(k)

l,n

)2
−

u4n4
(

ŵn(k)
)

8
(

ŵn(k)
)4

(
E
(

A(k)
l,n

)2
)2

+ o

(∣∣∣∣
u

ŵn(k)

∣∣∣∣
4
)]

.
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Indeed, the fourth-order terms
u4n4

(
ŵn(k)

)

8
(

ŵn(k)
)4

(
E
(

A(k)
l,n

)2
)2

+ o
(∣∣∣ u

ŵn(k)

∣∣∣
4
)

converge to

zero as n→ ∞ because O
(

ŵn(k)
)
= n2.

From (4), one has

E
(

A(k)
l,n

)2
= E

(
I
(

Y(k)
l,n ≤ t

)
− F(k)(t)

)2

= E



(
I
(

Y(k)
l,n ≤ t

))2

− 2

(
I
(

Y(k)
l,n ≤ t

))
F(k)(t) +

(
F(k)(t)

)2



= E

(
I
(

Y(k)
l,n ≤ t

))
− 2E

(
I
(

Y(k)
l,n ≤ t

))
F(k)(t) +

(
F(k)(t)

)2

= F(k)(t)−
(

F(k)(t)
)2

= F(k)(t)
(

1− F(k)(t)
)

= σ2
k .

As the characteristic function φn converges to a Gaussian characteristic function φ, we
deduce that the process n

(
F̂(k)

n (t)− F(k)(t)
)

, t > 0 converges in distribution to a centered

normal random variable N (0, σ2
k ).

5. Asymptotic Normality of Ĥn(t)

The second main result relating to the central limit theorem of the empirical estimator
Ĥn is also a generalization of that of ref. [13] for random variables.

For each k ≥ 1, define

m−1(k) = inf{n : m(n) ≥ k}.

Define

ξkk′(c) = Cov
(

F(k−c)(t− (Xi1 + . . . + Xic)
)
, F(k′−c)(t− (Xj1 + . . . + Xjc)

))
.

The central limit theorem is stated in the following theorem.

Theorem 2. Suppose that the sequence of random fields (Xi)i∈N∗2 is i.i.d. and absolutely contin-
uous positive and the summation path of Xi illustrated in Figure 1 holds; suppose that either for
r > 4,

E|Xi|r < ∞ and n = O
(

m
r−4

2

)
(8)

then, the process n
(

Ĥn(t)− H(t)
)

, t > 0, converges in distribution to N (0, ς2) where N is the
centered normal random variable with variance defined as

ς2 =
∞

∑
k=1

∞

∑
k′=1

ξkk′(c).
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Proof. We start by studying the bias between the renewal function and its estimator.

lim
n→∞

E
(

Ĥn(t)
)

= lim
n→∞

E




m

∑
k=1

(
1

ŵn(k)

ŵn(k)

∑
l=1

I
(

∑
i∈I(l)k,n

Xi ≤ t
))



= lim
n→∞

m

∑
k=1


 1

ŵn(k)

ŵn(k)

∑
l=1

E

(
I
(

∑
i∈I(l)k,n

Xi ≤ t
))



= lim
n→∞

m

∑
k=1

(
1

ŵn(k)

ŵn(k)

∑
l=1

E
(
I
(

Y(k)
l,n ≤ t

)))

= lim
n→∞

m

∑
k=1

F(k)(t)

= H(t).

From this computation, we can deduce that Ĥn is an asymptotically unbiased estimator
of H.

Proceeding as in the proof of Theorem 1, let Φn be the characteristic function of the
process n̂

(
Ĥn(t)− H(t)

)
.

From Condition (7), one has

n
(

Ĥn(t)− H(t)
)

= n

(
m

∑
k=1

1
ŵn(k)

ŵn(k)

∑
l=1

I
(

∑
i∈I(l)k,n

Xi ≤ t
)
− F(k)(t)

)
− n ∑

k>m
F(k)(t)

=
m(n)

∑
k=1

(
n

ŵn(k)

ŵn(k)

∑
l=1

(
I
(

Y(k)
l,n ≤ t

)
− F(k)(t)

))
− n ∑

k>m
F(k)(t)

=
m

∑
k=1

n
ŵn(k)

ŵn(k)

∑
l=1

A(k)
l,n − n ∑

k>m
F(k)(t),

where {A(k)
l,n }1≤l≤ŵn(k) is the sequence of random variables defined in (4).

For the continuation of our proof, we will proceed in two steps.
Our first step is to show that n ∑k>m F(k)(t) is negligible and to do this we need the

following lemmas.

Lemma 1. Let (Xi)i∈N∗2 be a sequence of random fields such that E|Xi|r < ∞, r > 4, E(Xi) > 0
for each i ∈ N∗2; denote by Sk the sum of k random fields, and we have

P(Sk ≤ t) ≤ O
(

k
− r

2
)

, f or t > 0.

Proof. Put E(Xi) = µ and choose ε sufficiently small such that ε < µ and t ≤ (µ− ε)k, by
using Markov’s inequality; one has

P{|Sk − kµ| ≥ kε} = P
{
|Sk − kµ|r ≥ (kε)r}

≤ 1
(kε)r E

(
|Sk − kµ|r

)
.

Put X∗i = Xi − µ; we have

P{|Sk − kµ| ≥ kε} ≤ 1
(kε)r

(
E|S∗k |r

)
.
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Since (X∗i )i∈N∗2 is a sequence of centered random fields, from the moment inequality
of ref. [14], we deduce that there exists a positive constant C such that

E|S∗k |r < Ck
r
2 . (9)

Then,

P{|Sk − kµ| ≥ kε} ≤ C
(kε)r k

r
2

=
C
εr k−

r
2 .

As

|Sk − kµ| ≥ kε⇔
{

Sk − kµ ≥ kε

Sk − kµ ≤ −kε.

By using the particular inequality Sk − kµ ≤ −kε, one has

P(Sk ≤ (µ− ε)k) ≤ C
εr k−

r
2 .

For k sufficiently large,

F(k)(t) = P(Sk ≤ t)
≤ P(Sk ≤ (µ− ε)k)

≤ O
(

k−
r
2

)
.

It achieves the proof of Lemma 1.

Lemma 2. Under Condition (8), one has

lim
n→∞

n ∑
k>m

F(k)(t) = 0.

Proof. From the definition of m(n), the condition n = O
(

m
r−4

2

)
implies m−1(n) =

O
(

n
r−4

2

)
; using (8)

n ∑
k>m

F(k)(t) = O
(

∑
k>m

k
r−4

2 F(k)(t)

)
.

Using Lemma 1, one has

lim
n→∞

n ∑
k>m

F(k)(t) = lim
n→∞

O
(

∑
k>m

k
r−4

2 F(k)(t)

)

≤ lim
n→∞

O
(

∑
k>m

k
r−4

2 − r
2

)

≤ lim
n→∞

O
(

∑
k>m

k−2

)

≤ lim
n→∞

O
(

∑
k>m

1
k2

)

= 0.
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Therefore,

lim
n→∞

n ∑
k>m

F(k)(t) = 0.

It achieves the proof of Lemma 2.

Our second step consists of studying the characteristic function of ∑m
k=1

n
ŵn(k) ∑

ŵn(k)
l=1 A(k)

l,n .
From (9) and Lemma 2, one has

Φn(u) = exp
[

ln
(

Φn(u)
)]

= exp

[
ln

(
E
(

exp
(

iun
(

Ĥn(t)− H(t)
))))]

= exp

[
ln

(
E

(
exp

( m

∑
k=1

iu
ŵn(k)

ŵn(k)

∑
l=1

A(k)
l,n

)))]

= exp

[
ln

(
E

(
exp

( m

∑
k=1

iun
ŵn(k)

A(k)
1,n + . . . +

m

∑
k=1

iun
ŵn(k)

A(k)
ŵn(k),n

)))]

= exp

[
ln

(
E

(
exp

( m

∑
k=1

iun
ŵn(k)

A(k)
1,n

))
× . . . × E

(
exp

( m

∑
k=1

iun
ŵn(k)

A(k)
ŵn(k),n

)))]

= exp


ln

(
E

(
exp

( m

∑
k=1

iun
ŵn(k)

A(k)
1,n

)))ŵn(k)



= exp

[
ŵn(k) ln

(
E

(
exp

( m

∑
k=1

iun
ŵn(k)

A(k)
1,n

)))]
.

Using successively the expansion Formula (5) and (6) , one has

E

(
exp

( m

∑
k=1

iun
ŵn(k)

A(k)
1,n

))
= 1− 1

2
E

(
m

∑
k=1

un
ŵn(k)

(
A(k)

1,n

))2

+ o



∣∣∣∣∣

m

∑
k=1

u
ŵn(k)

∣∣∣∣∣

2

.

Then,

exp
[

ln
(

φn(u)
)]

= exp

[
ŵn(k) ln


1− 1

2
E

(
m

∑
k=1

un
ŵn(k)

(
A(k)

1,n

))2



+ o



∣∣∣∣∣

m

∑
k=1

u
ŵn(k)

∣∣∣∣∣

2


]

= exp

[
− 1

2
ŵn(k)E

(
m

∑
k=1

un
ŵn(k)

(
A(k)

1,n

))2

− 1
8

ŵn(k)E

(
m

∑
k=1

un
ŵn(k)

(
A(k)

1,n

))4

+ ŵn(k)× o



∣∣∣∣∣

m

∑
k=1

un
ŵn(k)

∣∣∣∣∣

4


]

= exp


−u2

2
Qn(k)−

u4

8
Kn(k) + o


ŵn(k)

∣∣∣∣∣
m

∑
k=1

un
ŵn(k)

∣∣∣∣∣

4



.
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where

Qn(k) = ŵn(k)E

(
m

∑
k=1

n
ŵn(k)

(
A(k)

l,n

))2

,

and

Kn(k) = ŵn(k)E

(
m

∑
k=1

n
ŵn(k)

(
A(k)

l,n

))4

.

We have to show that lim
n→∞

Qn(k) is finite and Kn(k) converges to zero.

For n sufficiently large, using the approximation

O
(

ŵn(k)
)
' n2, (10)

thus,

n
ŵn(k)

' 1
n

. (11)

One has

lim
n→∞

Qn(k) = lim
n→∞

ŵn(k)E

(
m

∑
k=1

n
ŵn(k)

(
A(k)

l,n

))2

' lim
n→∞

n2E

(
m

∑
k=1

1
n

(
A(k)

l,n

))2

= lim
n→∞

E

(
m

∑
k=1

(
A(k)

l,n

))2

.

To calculate E
(

∑m
k=1

(
A(k)

l,n
))2

, we first examine the covariance between A(k)
l,n and

A(k′)
l,n . Let {i1, i2, . . . , ik} and {j1, j2, . . . , jk′} be two subsets of N∗2 that have c ≤ min(k, k′)

elements in common.

Cov
(

A(k)
l,n , A(k′)

l,n

)
= E

(
I(Xi1 + Xi2 + . . . + Xik ≤ t)I(Xj1 + Xj2 + . . . + Xjk′ ≤ t)

)

− F(k)(t)F(k′)(t)

= F(k,k′)
c (t)− F(k)(t)F(k′)(t)

= ξkk′(c).

Then,

E

(
m

∑
k=1

(
A(k)

l,n

))2

=
m

∑
k=1

m

∑
k′=1

ξkk′(c).

Thus,

lim
n→∞

Qn(k) =
∞

∑
k=1

∞

∑
k′=1

ξkk′(c).

Since

F(k,k′)
c (t) ≤ min

(
F(k)(t), F(k′)(t)

)
,
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and

∞

∑
k=1

∞

∑
k′=1

F(k)(t)F(k′)(t) =
∞

∑
k=1

∞

∑
k=1
O
(

k−
r
2 k′−

r
2
)

=
∞

∑
k1=1

∞

∑
k′=1

1

k
r
2

1

k′
r
2

< ∞,

because ∑∞
k=1 ∑∞

k′=1
1

k
r
2

1
k′

r
2

is a convergent Riemann’s series for r > 4, we deduce that the

variance ∑∞
k=1 ∑∞

k′=1 ξkk′(c) is finite.
To achieve the proof, we show that Kn(k) converges to zero. Using Conditions (10)

and (11), one has

lim
n→∞

Kn(k) = lim
n→∞

ŵn(k)E

(
m

∑
k=1

n
ŵn(k)

(
A(k)

l,n

))4

' lim
n→∞

n2E

(
m

∑
k=1

1
n

(
A(k)

l,n

))4

' lim
n→∞

1
n2 E

(
m

∑
k=1

(
A(k)

l,n

))4

.

Using Inequality (9), there exists a positive constant C such that

E

(
m

∑
k=1

(
A(k)

l,n

))4

≤ Cm2.

Then,

lim
n→∞

Kn(k) ≤ lim
n→∞

Cm2

n2

= lim
n→∞

C
mr−4

= 0.

Finally,

lim
n→∞

exp
[

ln
(

φn(u)
)]

= exp

(
−u2

2

∞

∑
k=1

∞

∑
k′=1

ξkk′(c)

)2

.

It achieves the proof of Theorem 2.

6. Conclusions

The present paper suggests some ideas that can be worth exploring in the future:

• Extend the results for dependent random fields. In the case of contagious disease, the
time for one person to be affected will depend of his or her distance from the other
person already affected.

• Extend the results for nonstationary random fields. Always in the case of contagious
disease, the law of a person’s infection time may change depending on the period.

• Extend the results for multi-dimensional random fields with dimensions strictly more
than two.
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