
Citation: Shah, K.; Jadav, N.K.;

Tanwar, S.; Singh, A.; Ples, can, C.;

Alqahtani, F.; Tolba, A. AI and

Blockchain-Assisted Secure

Data-Exchange Framework for Smart

Home Systems. Mathematics 2023, 11,

4062. https://doi.org/10.3390/

math11194062

Academic Editor: Jan Lansky

Received: 26 August 2023

Revised: 19 September 2023

Accepted: 21 September 2023

Published: 25 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

AI and Blockchain-Assisted Secure Data-Exchange Framework
for Smart Home Systems
Khush Shah 1 , Nilesh Kumar Jadav 1 , Sudeep Tanwar 1,* , Anupam Singh 2 , Costel Ples, can 3 ,
Fayez Alqahtani 4 and Amr Tolba 5

1 Department of Computer Science and Engineering, Institute of Technology, Nirma University,
Ahmedabad 382481, Gujarat, India; 19bec120@nirmauni.ac.in (K.S.); 21ftphde53@nirmauni.ac.in (N.K.J.)

2 Department of Computer Science and Engineering, Graphic Era Hill University,
Dehradun 248002, Uttarakhand, India; anupamsingh@gehu.ac.in

3 Department of Civil Engineering, Transilvania University of Braşov, 00036 Bras, ov, Romania;
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Abstract: The rapid expansion of the Internet of Things (IoT) on a global scale has facilitated
the convergence of revolutionary technologies such as artificial intelligence (AI), blockchain, and
cloud computing. The integration of these technologies has paved the way for the development of
intricate infrastructures, such as smart homes, smart cities, and smart industries, that are capable of
delivering advanced solutions and enhancing human living standards. Nevertheless, IoT devices,
while providing effective connectivity and convenience, often rely on traditional network interfaces
that can be vulnerable to exploitation by adversaries. If not properly secured and updated, these
legacy communication protocols and interfaces can expose potential vulnerabilities that attackers
may exploit to gain unauthorized access, disrupt operations, or compromise sensitive data. To
overcome the security challenges associated with smart home systems, we have devised a robust
framework that leverages the capabilities of both AI and blockchain technology. The proposed
framework employs a standard dataset for smart home systems, from which we first eliminated the
anomalies using an isolation forest (IF) algorithm using random partitioning, path length, anomaly
score calculation, and thresholding stages. Next, the dataset is utilized for training classification
algorithms, such as K-nearest neighbors (KNN), support vector machine (SVM), linear discriminate
analysis (LDA), and quadratic discriminant analysis (QDA) to classify the attack and non-attack
data of the smart home system. Further, an interplanetary file system (IPFS) is utilized to store
classified data (non-attack data) from classification algorithms to confront data-manipulation attacks.
The IPFS acts as an onsite storage system, securely storing non-attack data, and its computed hash
is forwarded to the blockchain’s immutable ledger. We evaluated the proposed framework with
different performance parameters. These include training accuracy (99.53%) by the KNN classification
algorithm and 99.27% by IF for anomaly detection. Further, we used the validation curve, lift curve,
execution cost of blockchain transactions, and scalability (86.23%) to showcase the effectiveness of
the proposed framework.

Keywords: blockchain; smart contract; smart home systems; Internet of Things; artificial intelligence;
anomaly detection
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1. Introduction

The involvement of modern technology, such as the Internet of Things (IoT), blockchain,
and artificial intelligence (AI), transforms the legacy Internet into the next-generation Inter-
net, where everything is interconnected. The unprecedented proliferation of IoT recently
has made every technology come closer and connect to improve the quality of life. Applica-
tions such as smart cities, smart grids, smart vehicles, and smart industries have potentially
impacted the nation’s economy. Through IoT applications, the devices connected to the
Internet can be monitored and controlled from remote locations, enabling users to access
the systems from any location. It enables system automation with better connectivity and
communication, which results in efficiency in the system operations and better productivity.
However, IoT has a severe security flaw because it utilizes lightweight protocols (e.g.,
message queue telemetry transport (MQTT), wireless fidelity (Wi-Fi), and constrained
application protocol (CoAP)) and error-prone communication channels to relay sensitive
data [1–3]. For example, IoT sensors deployed in the smart home system can be maneu-
vered by attackers, resulting in significant damage to the home and the living beings
residing in it. Therefore, there is a stringent requirement for some ideal solution that can
confront the security and privacy issues of IoT applications [4–6].

Security enthusiasts and researchers across the globe have proposed several secu-
rity solutions to overcome the aforementioned security issues of IoT applications (e.g.,
smart home systems). For example, the authors of [7] proposed lightweight cryptography,
which includes features like robustness, long-range data transfer, and an acceptable level
of security. The lightweight algorithms are applied on intelligent IoT devices and analyze
their performance on an open standard system called a long-range wide area network
(LoRaWAN), which defines the communication protocol for low-power wide area network
(LPWAN) technology. Similarly, the authors of [8] proposed another lightweight algo-
rithm called “elliptic curve cryptography” for securing the data communication between
the nodes in an IoT infrastructure. The proposed technique has been analyzed with the
conventional lightweight algorithms to determine which algorithm has the most efficient
technique to secure data. In [9], the authors proposed a Java-based encryption system
to provide a more efficient security framework for the data stored on the cloud storage.
The proposed approach combines the Rivest–Shamir–Adleman (RSA) and the data en-
cryption standard (DES) algorithm to develop a synergized combination of the mentioned
algorithms, thus strengthening the security of the data before storing them on the cloud.
However, the cryptography algorithms do not provide the scope of automation and data
immutability; moreover, with recent computing power, it is easier to break off the crypto
cipher, thus degrading the performance of the smart home system. Further, the work
proposed by [10–12] used a conventional signature-based intrusion-detection system that
minimizes the security issues of smart home systems. Nevertheless, the intrusion-detection
system has to rely on a high volume of data, which is a significant challenge as the system
has to handle data efficiently without introducing latency. Moreover, it has to strike a
balance between the detection of correct intrusions and minimizing false alarms [13,14]

The sensors associated with the IoT application show data readings from the sur-
rounding environment (e.g., the sensor of a water treatment plant collects data readings
of chlorine levels), which is essential for each sensor to accomplish a shared task [15,16].
However, it has been observed from the literature that these readings are manipulated by
adversaries or are mistakenly errored by the legitimate personnel of the IoT application.
Such data are formally known as anomalies, and it is essential to detect and remove them to
enhance the performance of the IoT application. Recently, the advent of AI algorithms has
shown a remarkable improvement in detecting anomalies and enhancing the security issues
of IoT applications. For example, Emmanuel et al. in [17] present an AI-based solution
comprising extreme machine learning techniques for classification tasks. In addition, a
regression-based solution is also examined for anomaly detection in smart home systems.
The authors have primarily focused on intrusion and anomaly detection on the Mozilla
Gateway installed in their sensor network infrastructure. With modifications in the afore-
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mentioned hybrid model, the authors achieved significant accuracy in anomaly detection.
Similarly, Sihai et al. in [18] used ensemble techniques for anomaly detection in the smart
home infrastructure. To overcome the issue of AI model overfitting, the authors combined
the synthetic minority over-sampling technique (SMOTE) with ensemble machine learning
models for better efficiency when the model was working with an unbalanced dataset.

Nevertheless, the AI algorithms are not secured from data integrity issues, where the
attacker can target the IoT data to jeopardize AI learning. To resolve this issue, blockchain
is a prominent solution that offers secure data storage. Researchers have explored multi-
ple techniques to integrate blockchain technology into the smart home infrastructure to
preserve data privacy [19]. For example, to preserve the privacy of traditional smart home
systems, the authors of [20] proposed a homomorphic consortium blockchain framework to
strengthen the security of the sensitive data in the infrastructure; the framework comprises
an algorithm where the verification nodes are required to verify working nodes and transac-
tions occurring in the network. The authors also introduce a new block data structure based
on homomorphic encryption. They evaluated their proposed work using data availability,
security, and robustness, in which it outperforms other existing state-of-the-art works.
Similarly, the authors of [21] introduced a private blockchain network using the received
signal strength’s indicator-based trilateration to secure data privacy in the smart home
infrastructure. The authors have proposed a three-layer intrusion detection system (IDS) to
detect cyber-attacks in IoT networks. To track the sources of attack, the Kalman filtering
method has been incorporated into the trilateration. The proposed system was tested on a
physical setup to evaluate it with the existing systems.

However, the aforementioned approaches are lacking in terms of showing the amalgama-
tion between AI and blockchain to strengthen the security of smart home systems. Motivated
by the above-mentioned papers on anomaly detection and blockchain implementation in
smart home systems, we propose a robust solution and framework where both the important
components required for the security of the smart home systems from external threats have
been incorporated and synergized. The proposed framework, in the case of any abnormal
activity, generates an alert and simultaneously examines the threshold levels of the nominal
data to prevent the system from any kind of failure. Further, the data are stored in a blockchain
network for immutability, which records data in a method safe from any further attack.

1.1. Research Contributions

We proposed an AI- and BC-enabled secure framework to tackle network-related
attacks on smart home systems. Since the IoT sensors deployed in the smart home systems
use weak network interfaces and protocols, the attackers leverage this situation and exploit
the sensor data exchange. Consequently, the susceptibility of these systems to cyber threats
and unauthorized access is significantly heightened, posing serious security risks and
underscoring the need for robust protective measures and advanced security solutions.
To approach this challenge, the proposed work utilizes the standard smart home system
dataset to train AI classifiers (such as K-nearest neighbor (KNN), support vector machine
(SVM), linear discriminant analysis (LDA), and quadratic discriminate analysis (QDA))
to classify attack and non-attack data. Nevertheless, prior to classification, we employ
anomaly-detection algorithms, such as local outlier factor (LOF) and isolation forest (IF),
to remove falsified data from the original smart home system dataset. The rationale behind
this is that if the AI classifiers are trained on falsified data, it deteriorates the AI training,
which jeopardizes the operational performance of the smart home systems.

Further, we adopted the interplanetary file system (IPFS)-based Ethereum blockchain
to confront data integrity issues. Here, the non-attack data from AI classifiers are allowed
for secure data storage. For that purpose, a smart contract is designed, where different
user-defined functions are utilized to validate the non-attack data. Incorporating IPFS
improves the response time and the scalability of the blockchain network. The proposed
framework is evaluated using different performance metrics, such as accuracy, lift curve,
validation curve, and the blockchain’s transaction and execution cost. A training accuracy
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of 99.27% is achieved while finding the anomalies and 99.53% while classifying the attack
and non-attack data. Further, due to the incorporation of IPFS, we achieved a scalability of
86.23% compared to the conventional blockchain.

1.2. Organization

The article is divided into sections, where Section 2 showcases the literature review;
Section 3 introduces the main aim of the proposed work; Section 4 presents the proposed
framework comprised of cognitive, AI, blockchain, and application layers to achieve the
aim specified in Section 3; and the results and discussion are presented in Section 5. Finally,
in Section 6, we conclude the article by providing the main insights of the proposed work.

2. Related Works

Various researchers worldwide have published the application of IoT in several do-
mains, including smart home systems. However, these studies do not explore the possibili-
ties of integrating AI and blockchain in resolving the security issues of smart home systems.
For example, Cultice et al. in [22] proposed an autoencoder-based system to detect anoma-
lies in smart home systems. They primarily focus on applying neural network algorithms in
smart home systems and implementing them to prevent hazards in the environment where
they are installed. Further, Lee et al. [23] present a blockchain-enabled secure solution to
overcome security threats, such as device vulnerabilities and data integrity for the home
gateway network. Their solution offers decentralization, immutability, and transparency to
overcome the challenges associated with centralized systems. The framework proposed
implements the developed blockchain network on the Ethereum platform. They assess
their smart contracts using security response time and accuracy, where the results revealed
that their designed smart contracts are more effective than the existing works.

Further, Hamed et al. in [24] proposed a detailed, layered system architecture for the
IoT infrastructure called “AI4SAFE-IoT”. The developed architecture comprises security
protocols and machine learning in its different layers to confront various IoT-related at-
tacks. Their proposed system successfully detects attributes and also identifies the stage
of an attack life cycle based on the “Cyber Kill Chain” model. The authors evaluated the
proposed architecture based on the “IoT service management” score, where they achieved
considerable results. Then, Prarthi et al. in [25] developed an anomaly-detection algorithm
called “PiForest ’. They first surveyed the implementation of various anomaly-detection
algorithms in several cases and calculated the accuracy of the implemented algorithms.
The authors further proposed their own anomaly-detection algorithm and implemented it
in a real-time scenario. The accuracy of the “PiForest” algorithm was also compared with
the accuracy of other algorithms to determine the performance of the developed algorithm.

Similarly, Subhi et al. [26] proposed an AI- and blockchain-based architecture to secure
various IoT applications in the smart city. Their solution can automate certain tasks, such
as environment monitoring, data aggregation, and data analysis. The analyzed data are
forwarded to the AI expert engine for offering predictive services. Their experimental
results show that the employed AI models achieved 95% accuracy. Further, they utilized
blockchain to store the actual data after the classification task. Further, in [27], blockchain
was adopted for a secure natural gas transaction framework. In their framework, buyers
and sellers interact with each other to purchase the gas contract and maximize their profit.
However, the solution did not utilize intelligence and automation to classify the attack
and non-attack data. Next, the authors of [28] use the amalgamation of AI and blockchain
to promote sustainable IoT by enhancing the security and privacy issues of the smart
city. Alternatively, the work proposed by [29] uses a learning engine for a smart home
communication network that uses blockchain and cloud-based data evaluation to improve
security. The proposed algorithm outperforms existing methods in terms of computation
complexity, false authentication rate, and qualitative parameters.

It is also observed from the literature that most existing solutions do not amalga-
mate both AI and blockchain to strengthen the performance of smart home systems [30].



Mathematics 2023, 11, 4062 5 of 23

For instance, they did not consider anomaly detection with classification. Further, their
blockchain-based solutions are computationally expensive because blockchain has to pro-
cess both attack and non-attack data. Further, the work proposed by [31] uses differential
privacy and the indispensable properties of blockchain to enhance security in smart home
systems. Their results show outperformance regarding scalability, confidentiality, and re-
silience against data tampering. To analyze the feasibility of blockchain technology in the
smart home system, Arif, Yiyang et al. in [32,33] examine the adaptability of blockchain by
developing a consortium blockchain-based testbed. Only a few papers have shown an amal-
gamation of blockchain and AI specifically for smart home systems. For example, Ref. [34]
proposed a private-blockchain-based smart home network architecture that integrates an
AI model for intrusion detection. Similarly, the authors in [35] use AI and blockchain to
propose a secure monitoring system for the COVID-19 outbreak. The aforementioned
papers incorporate AI and blockchain for different applications and are not considered
smart home systems. Moreover, most researchers have shown their significance in terms of
survey or review papers [36]. From that viewpoint, we propose a secure and intelligent
framework for secure data exchange in the smart home environment by incorporating AI
and blockchain technology.

In this context, Table 1 displays the comparative analysis between the state-of-the-art
works and the proposed work. Therefore, the proposed work offers a secure pipeline where
the first anomalous data points are detected and eradicated from the smart home system
dataset. Further, the employed AI models bifurcate attack and non-attack data, and only
non-attack data are forwarded to the blockchain network for secure storage.

Table 1. Comparison between the existing works and the proposed work.

Author Year Objective Pros Cons

The proposed work 2023 Detects fraudulent behavior in
the smart home system through
the amalgamation of blockchain
and AI for improved security
with automation.

Utilizes state-of-the-art AI
algorithms for anomaly
detection and blockchain,
assuring security.

Due to high mining costs,
the blockchain network gets
computationally expensive.

Nilupulee A. et al. [7] 2019 The research proposes a frame-
work to secure long-range data
communication for IoT systems.

Employed LoRaWAN com-
munication for effective com-
munication.

Amalgamation of AI and
blockchain is missing.

M. Ayub et al. [8] 2020 The framework comprises a de-
veloped security algorithm to se-
cure the internal communication
between the IoT nodes.

Utilized lightweight
cryptography—elliptic
curve.

Does not explore the scope
of integrating automation
in the framework to detect
malicious activities.

A. Kumar et al. [9] 2020 A Java-based cryptography sys-
tem has been proposed to secure
cloud computing systems from ex-
ternal attacks.

Integration of DES and RSA
algorithms to secure the data
before it gets deployed on
cloud systems.

Cryptography can be deci-
phered using modern com-
puting processors.

E.D. Alalade et al. [17] 2020 Proposes an ML framework to
detect anomalies in smart sys-
tems through classification and
regression-based methods.

Detects anomalies in a
Mozilla Gateway installation
and uses AI algorithms.

Anomaly detection is
not performed.

S. Tang et al. [18] 2019 Proposes an ensemble-based ML
approach to identify the anoma-
lous behavior of the data present
in the smart systems.

Integrates SMOTE with
ensemble ML algorithms
to detect anomalies in
IoT networks.

Does not integrate AI and
blockchain technology.

W. She et al. [20] 2019 Proposes a homomorphic consor-
tium blockchain framework to
strengthen the data security in
smart systems.

Uses lightweight encryption–
homomorphic to verify
the data transaction in the
blockchain network.

The scope of ML integration
for breaches or data manip-
ulation is not explored.
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Table 1. Cont.

Author Year Objective Pros Cons

M. Jayson et al. [21] 2021 The framework proposes a multi-
layer IDS to detect cyber-attacks
in IoT networks.

Private-blockchain network
based on IDS to secure
smart home systems through
Kalman filtering.

Did not employ the ad-
vantage of automation
and intelligence.

T. Cultice et al. 2020 Proposes real-time anomaly de-
tection system in smart home
and smart grid infrastructures
using autoencoders.

Implements autoencoders
that detect the sensor drift
quicker and more accurately.

Did not explore the
data security after
anomaly detection.

Y. Lee et al. [23] 2020 Proposes an Ethereum blockchain-
based smart home gateway, a net-
work that secures the gateway of
smart homes.

The proposed Ethereum-
based framework outper-
forms the standard models in
the comparative analysis.

Did not explore the scope
of machine learning for
data classification.

H. Haddadpajouh
et al. [24]

2020 Proposes an ML-based framework
to secure the smart systems called
“AI4SAFE-IoT”, which is based on
the “Cyber-Kill Chain” model.

High accuracy in the detec-
tion of security threats

The framework is not se-
cured from data manipula-
tion attacks.

P. Jain et al. [25] 2022 Developed an anomaly-detection
algorithm called “Pi-Forest” to de-
tect the anomalies in the data col-
lected from the smart systems.

Detects anomalies with
higher accuracies compared
to the standard algorithms.

Did not integrate AI and
blockchain technology.

S. M. Alrubei et al. [26] 2022 Provides a framework that
integrates both ML and BT
attributes to secure and auto-
mate COVID-19 prediction with
considerable accuracy.

Implemented on low-power
and low-cost RPi systems to
detect and secure the COVID-
19 data using AI algorithms.

Didnotexamine the
need for IPFS in the
blockchain network.

W. Xiao et al. [27] 2021 The framework proposes a
blockchain network to secure gas
transactions to maximize profits.

Efficient blockchain-based
framework for securing
gas transactions.

Computational cost is high.

3. System Model and Problem Formulation

This section elaborates the system model for the proposed framework, which consists
of different homes represented by {h1, h2, h3, . . . , hn} ∈ H, and each hi is equipped with
various smart sensors, represented as {s1, s2, s3, . . . , sm} ∈ S. Each smart home (hi) has at
least one (si) or a group of multiple sensors {s2, s4, . . . , sl} deployed at various locations to
offer smart home services.

si or {s2, s4, . . . , sl} ∈ hi (1)

Each (si) has a sensing capability, such as tracking the air quality, controlling the
temperature of the freezer pipe, and sensing the motion. These sensing capabilities are the
data readings of sensors denoted as D, such that {d1, d2, . . . , dl} ∈ D. A source sensor si
sends the aforementioned data reading (di) to the receiver sensor sj to take essential action
A. For example, if the freezer temperature rises to a certain threshold, an immediate alert
is generated to lower the temperature. Moreover, to offer such services, each sensor has to
exchange data with other sensors, wherein lowering the temperature is the specific action
taken (A).

si
sends−−−−→

∑l
i=1(di)

sj
take−−→ A (2)

i f , di ≤ or ≥ T (3)

where T is some specific threshold that the sensor’s data reading has to maintain; other-
wise, a necessary action A is triggered in the smart home system. Moreover, the (si) uses a
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network interface (e.g., public internet, Wi-Fi, etc.) to relay di to the receiver sensor (sj).
The Wi-Fi network is open to various network-related attacks, such as session hijacking,
data integrity attacks, malware, and DDoS, that can deteriorate the performance of smart
home systems. An attacker (Ψ) can exploit the communication channel (C) and manip-
ulate the data exchange (di) between the source sensor (si) and the receiver sensor (sj).
In addition, Ψ can also deploy a rogue sensor node (sk) in the smart home system that acts
as a man in the middle to maneuver the data exchange (di) of smart home systems.

Ψ
exploit−−−→ C

manipulates−−−−−−→
di

d
′
i (4)

Ψ(sk)
manipulates−−−−−−→ di → d

′
i (5)

where d
′
i is the manipulated data exchange between si and sj. Therefore, there is a need

for an automated and intelligent mechanism that can detect such malicious activity and
resolve the security and privacy issues of the smart home system.

The main aim of the proposed work is to secure the data exchange between the source
and the receiver sensor. For that purpose, an objective function O f is formulated, which is
defined as

O f = max
secure

l

∑
i=0

(di) (6)

where di is the data reading relayed between si and sj.

4. Proposed Framework

This section presents the proposed framework for the IoT-based smart home system.
The proposed framework has multiple layers, i.e., cognitive, AI, blockchain, and application
layers, that provide a sequential flow, i.e., data acquisition from sensors, classifying the data
(malicious or non-malicious), and securing them in the blockchain. Figure 1 depicts the
proposed framework with its associated entities. A summarized explanation of Figure 1 is
as follows.

Dataset
preprocessing

Dataset

Anomaly detection

anomaly point

Training
dataset

Testing
dataset

AI classifiers Classifiers
validation

Smart contract with
threshold checking

On-site storage

Blockchain network

Cognitive layer AI Layer (with anomaly detection and classification) Blockchain layer Application layer

Dataset
splitting

Figure 1. The proposed framework.
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4.1. Cognitive Layer

The cognitive layer consists of an IoT-based smart home system that comprises several
smart sensors, such as thermostats, motion sensors, light, water leak, and smoke sensors.
These sensors are capable of capturing the surrounding data (d) to trigger a specific action
associated with the event. For instance, if a water leak sensor detects any water leak in a
sewage pipe, it triggers an alarm system.

S = {s1, s2, . . . , sm} (7)

where s1, s2, and sm are the temperature, humidity, carbon monoxide, and butane sensors,
respectively belonging to S installed in the smart home system. The sensor (si) has a
multitude of data points that pertain to its operational aspects, including sensor readings,
updates, and maintenance records, which are expressed as {d1, d2, . . . , dl}, where each di
represents a specific piece of information in smart home systems. Further, si transmits di to
another sensor sj to accomplish a collaborative task (e.g., turn on the light, detect an open
window, and many more).

{d1, d2, . . . , dl} ∈ si (8)

Each si
sends−−−→

di
sj (9)

The data collected by these sensors are vital and need to be secure from adversaries
that try to manipulate it to degrade the performance of the smart home system. Moreover,
an adversary k can use a malicious sensor sk that impersonates a legitimate sensor and
jeopardizes the efficiency of different sensors deployed on the smart home system.

Ψ(sk)
sends−−−→

d′i

sj (10)

where Ψ(sk) is the adversary that uses a malicious sensor sk that sends the malicious data
(payload d

′
i) to sj. Moreover, the smart home system utilizes the public network, which

is open to several attacks, such as sniffing the network traffic, session hijacking, and data
integrity attacks [37,38]. The attacker can easily lure such open networks to thwart the data
dissemination of the sensors attached to the smart home system.

si
d
′
i−−−−−−−−→

Public network
sj (11)

Moreover, conventional solutions are not automated or intelligent enough to detect
such malicious activities in the smart home system. Therefore, there is a need for a proactive
mechanism that efficiently detects malicious activities in the smart home system.

4.2. AI Layer

In this section, we present the working mechanism of the AI layer by adopting dif-
ferent AI algorithms, such as KNN, SVM, LDA, and QDA. This subsection is divided into
two parts, i.e., Dataset Description and Adoption of AI algorithms. A detailed explanation
of each subsection is as follows.

4.2.1. Dataset Description

The cognitive layer collects malicious and non-malicious data from the smart home
system. For this purpose, we used a standard smart home system dataset, i.e., the TON
IoT dataset [39], which comprises different IoT sensors, such as garage doors, refrigeration,
weather, and motion sensors. The entire dataset is bifurcated into different service profiles,
i.e., IoT fridge activity, IoT garage door activity, location tracker activity, thermostat activity,
and many others. The dataset of the services describes the features of the activity, such
as “fridge temperature” in the fridge activity, “latitude”, and ”longitude” in the location
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tracker activity, and many other relevant features in the other service profiles. From [39],
we acquired multiple datasets of smart home systems. For instance, a dataset of garage
door (D1), fridge activity (D2), GPS tracker (D3), motion activity (D4), and weather (D5).
Therefore, a smart home system dataset is represented as D ∈ {D1, D2, . . . , D5}. Each
dataset (Di) ∈ D comprises the number of rows (w) and columns (q), as represented in
Equation (12).

Dw×q
i = D6401×5

i (12)

4.2.2. Dataset Preprocessing

In this phase, the dataset (Di) ∈ D is preprocessed using data preprocessing steps [40,41].
In Di, there are inconsistencies, such as missing values, not a number (NaN), infinity values,
not a normalized column, and datatype casting. Consider the dimension of Di, expressed as

Dw×q
i =


d1,1 d1,2 · · · d1,q
d2,1 d2,2 · · · d2,q

...
...

. . .
...

dw,1 dw,2 · · · dw,q

 contains−−−−→ {”− ”, inf(∞), NaN} (13)

where {”− ”, inf(∞), NaN} are the missing values, ∞ is infinity values and NaN is the
value that is filled using the central tendency value, i.e., mean (ν).

d1,1 −− · · · d1,q

d2,1 d2,2 · · · NaN

...
...

. . .
...

−in f dw,2 · · · dw,q


filled−−−→

with ν


d1,1 ν · · · d1,q
d2,1 d2,2 · · · ν

...
...

. . .
...

ν dw,2 · · · dw,q

 (14)

Further, we analyzed the normalization of the dataset Di, where the values of the ith
column of Di are not scaled up properly, for example, the value of d1,1 � d2,1 or d1,1 � d2,1.
Therefore, normalization has to be performed on all columns of the dataset Di. From that
viewpoint, we utilized the min–max scalar, which is expressed as

ϑ =
di − dmin

i
dmax

i − dmin
i

(15)

where ϑ is the rescaled output for Di, which is in the range [0,1]. di is the input value, and
dmin

i and dmax
i are the minimum and maximum values of the ith column of Di. Further,

the Di has columns that are incompatible with AI models due to their datatype. For example,
a conditional probability-based AI algorithm cannot adopt the column with an object
datatype. Hence, a suitable datatype conversion has to be performed on Di.

int di︸ ︷︷ ︸
same datatype

= (int) di︸ ︷︷ ︸
same datatype

(16)

Here, in Equation (16), an explicit datatype casting has been performed so that the AI
algorithms can train on the dataset Di. The final preprocessed dataset is represented as D

′
i .
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4.2.3. Anomaly Detection and Classification Task

Once the dataset is preprocessed, it is forwarded to the AI layer, where different AI
models are employed for anomaly detection and classification purposes [42,43]. Here,
the preprocessed dataset D

′
i is split into the training and the testing datasets to validate the

parameters of the trained model.

∀ D
′
i =

{
D′train
D′test

(17)

The terms (D′train and D′test represent the training and testing parts of the preprocessed
dataset (D

′
i). The dataset is split into a fraction of 0.8 (80%) and 0.2 (20%) for the training

and testing, respectively, using the train_test_split() method. The validation of the model
includes the multiple parameters through which its performance is analyzed. The model
accuracy has been verified by re-iterating the model on the test data. Before classification
on the (D

′
i) dataset is performed, it is verified for anomaly detection, i.e., whether the

attacker has manipulated the dataset or not. If an attacker has forged the dataset values,
the AI models are trained on manipulated data and provide false results. As a result, it
jeopardizes the performance of the entire smart home system.

In the AI layer, first, the anomaly-detection algorithms are iterated on the dataset (D
′
i)

to detect the behavior of the data, i.e., whether the data are anomalous or not. The algorithm
detects the outliers or anomalies in the data and classifies them in the categories of anomaly
and nominal data. Through model performance analysis, we found that IF is the best
algorithm amongst other anomaly-detection algorithms that can efficiently detect outliers
as an anomaly.

The algorithmic flow of IF is similar to the algorithmic flow of the random forest
algorithm. The point of the tuple that is processed at the given point of time of model
iteration will be segregated to find its behavior (anomaly or nominal). The number of
divisions required to determine the location of that particular point or tuple is called an
estimator. IF operates by constructing an ensemble of isolation trees. Each isolation tree
is built by randomly selecting a feature and a random split value within the range of that
feature. The feature and split value are used to partition the data into two subsets, which is
known as random partitioning. This process is repeated recursively until each data point is
isolated in its own leaf node. Once the tree is formed, as discussed above, the anomaly score
of the feature value is calculated to determine the nature of that instance. The anomaly
scores Z can be formulated as

Z(o) = 2
−E(h(o))

c(s) (18)

where o represents the data point for which the anomaly score is being calculated. The term
(E(h(o)) is the average path length of the data point o across all trees in the ensemble.
Further, c(s) is the normalization factor, i.e., the average path length along the isolation
trees, where s represents the total number of data points in the dataset. The term c(s) is
defined through the formula.

c(s) =


2h(s− 1)− 2 s−1

n , f or s > 2
1, f or s = 2
0, otherwise

(19)

The structure of an isolation tree is the same as that of a binary tree. Thus, the c(s) has
been defined similarly to that of a binary tree, where each parent node has exactly two child
nodes. The value obtained of the anomaly score Z determines the behavior of the point.
If the score is found near 1, it is classified as anomalous. If it is near 0.5, it is classified as a
nominal point. The updated dataset Da is the anomaly-free dataset, with only nominal data.
However, it is to be noted that the Da still has attack and non-attack data, where the attackers
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have performed various network-related attacks to maneuver the performance of the smart
home system. Therefore, classification algorithms are needed to classify the data (attack
or non-attack) in Da. Supervised learning algorithms are implemented and tested using
various performance metrics to classify the data. From the result analysis, we can know that
the KNN algorithm performs well compared to other existing AI models. The performance
metrics of the iterated models are briefly discussed in Section 5. The algorithm classifies
the data point through the distance metric and the number of neighbors defined in the
algorithm. There are multiple available distance metrics, including Euclidean, Manhattan,
and Minkowski. The Euclidean distance metric is implemented here for the classification
in the iterated KNN model. The Euclidean distance between two data points can be
formulated as

d(p, q) =

√
n

∑
i=1

(qi − pi)
2 (20)

where d is the calculated distance between two data points p and q in the dataset. The Eu-
clidean distance of the data point selected and the number of its neighbors is determined.
The nearest neighbor n is selected, and on the basis of the highest behavior found of the
selected number of neighbors, the behavior of the selected data point or tuple is determined.
The algorithmic flow of the KNN model is shown in Algorithm 1.

Algorithm 1 Working mechanism of the KNN algorithm
Input: Da
Output: Classification of anomalous and nominal data

1: procedure CLASSIFICATION(C)
2: Dataset Da ← KNN
3: Select number of neighbors n.
4: Select the distance metric.
5: Calculate the distance through distance metric.
6: Find the nearest neighbors.
7: if Pa > Pn then
8: Classify as an attack.
9: else

10: Classify as non-attack.
11: end if
12: end procedure

The terms Pa and Pn play a crucial role in our analysis, as they define the probability
of encountering attack and non-attack data, respectively, in the vicinity of the selected
point. These probabilities, denoted as Pa and Pn, are determined through the KNN model.
Pa represents the likelihood of encountering attack-related data points near the selected
location, while Pn signifies the probability of finding non-attack data points in the same
vicinity. In essence, these probabilities are derived from the KNN model, which, based
on its training data and distance metrics, estimates the chances of a given point being
associated with either an attack or non-attack scenario. By utilizing the KNN model’s
predictive capabilities, we can assess the risk associated with a specific location or data
point, helping us make informed decisions in the context of security or anomaly detection.
In post-classification, the behavior of the model is inspected, where if it is found to be an
attack, the proposed system generates an alert. Otherwise, if the behavior is found to be
non-attack, the data is stored in the blockchain network described in the blockchain layer.
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4.3. Blockchain Layer

In this layer, the non-attack data from the AI layer is forwarded for secure storage.
Formally, the non-attack data of a smart home system will be stored in a buffer space or web
storage, where an attacker can perform several security attacks, such as data manipulation
and data injection. For that reason, secure storage is required, which is transparent and
can tackle data integrity issues. Blockchain technology is a prominent solution to this
issue, where we designed a smart contract that validates the incoming non-attack data.
For that purpose, we designed a smart contract in the Remix development environment,
comprising functions such as addauthorized(), changedevicestate(), removeauthorization(),
and currentdevicestate(). The incoming non-attack data from the AI classifier are validated
using these smart contract functions. The smart contract is attached with an on-site file
system storage, i.e., IPFS, which allows the data to be stored in their secure storage systems.
For that purpose, a Filebase application programming interface (API) is used that program-
matically interacts with IPFS. The aforementioned smart contract functions take the data as
a parameter and forward them to the IPFS. Once the validated data from the smart contract
are uploaded to IPFS via Filebase, a unique content identifier (CID) is received to retrieve
the content later.

Additionally, the IPFS computes the hash of the original data and forwards the hash to
an immutable blockchain ledger. Here, we used an Ethereum-based public blockchain to ob-
tain benefits such as transparency, decentralization, and immutability. As all entities of the
smart home system have to register with the blockchain network, it makes the blockchain
network transparent. Due to the blockchain’s transparency property, one can find the entity
that has performed the data manipulation, hence improving the security and privacy of
the smart home system. Further, the data can be fetched from the IPFS node by computing
its hash. If the computed and stored hash are the same, we can infer that the data are not
manipulated; otherwise, we can simply discard that data and find the adversary behind
this act. The entire smart contract and IPFS are deployed in a Sepolia-based test network to
analyze the performance of the blockchain network.

4.4. Application Layer

The application layer receives the data from the blockchain layer, which is given as
input to the other sensors available in the smart home system of that particular home in the
cluster. If the nominal value stored in the network is found to be close to the predefined
threshold values, the actuators present in the smart sensors will perform necessary actions
to control the environment, preventing it from any possible hazardous scenarios in the
system. Through the seamless coordination of sensor data and responsive actuation,
the smart home sensors act as intelligent custodians, ensuring the safety and stability of the
smart home system while minimizing risks and promoting operational efficiency. Figure 2
shows a sequential flow of the proposed framework.
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Figure 2. Sequential flow of the proposed framework.

5. Analysis of Results

This section discusses the analysis of the results of the proposed architecture using
different performance parameters, such as statistical measures (e.g., accuracy, precision,
recall, lift curve, and validation curve). Additionally, we present the experimental setup
and tools showing the tools, libraries, and software platforms used to develop the pro-
posed architecture.

5.1. Experimental Setup and Tools

The proposed architecture is developed using sophisticated tools, recent AI libraries,
and open-source development platforms to write source code, train the AI algorithms,
and visualize its performance. For that purpose, the anaconda distribution of version
6.3.0 is utilized, wherein the Jupyter Notebook is used to write the source code for data
preprocessing, data modeling and training, and visualization. Further, different AI-based
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libraries, such as Python 3.8.8, Pandas, Numpy, Matplotlib, Plotly, and Pycaret, are utilized
in the proposed work. The Pandas library is used for data manipulation and preprocessing
using functions such as readcsv(), isna(), and value− counts(). Next, the Numpy library
is used for data computation, where the dataset is transformed into arrays for easy com-
putation. We used the Pycaret library with user-defined functions for data modeling and
training. Further, Plotly and Matplotlib were used for data visualization. For creating smart
contracts, we utilize the Remix development environment with version 0.33.2. In Remix, we
used solidity language with version 0.8.0 to design the smart contract. The smart contract
comprises different user-defined functions—addAuthorizedDevice(), removeAuthorized-
Device(), changeDeviceState(), deviceState(), and authorizedDevices—that validate the
non-attack data of the smart home system. These functions are compiled using a solidity
compiler with version 0.8.18+commit.87f61d96. The proposed architecture is implemented
on a system comprising 11th generation Intel(R) Core(TM) (i5-1135G7), 12 GB of random
access memory (RAM), and an Intel Iris Xe graphic card. The system specification helps
other readers to boost the training time and minimizes the processing time.

5.2. Discussion of Anomaly-Based Results

This section presents the results obtained for anomaly detection in smart home sys-
tems. Algorithms like LOF and IF are quite effective in detecting anomalies from real-world
applications. For instance, LOF is a density and distance-based algorithm similar to the
KNN algorithm, while IF is an ensemble method similar to random forests. The advan-
tage of tree algorithms is that they offer essential benefits in finding anomalies in smart
home systems.

Figure 3 illustrates the performance of the proposed framework in terms of the accu-
racy of detecting anomalies from the smart home system. The x-axis and y-axis represent
the detection accuracy and the adopted anomaly-detection algorithms (i.e., IF and LOF)
for the proposed framework. We used two different libraries to evaluate the performance
of the detection algorithm: the IF algorithm from the SKlearn library (IF_SKL) and the IF
algorithm from the Pycaret library (IF_Pycaret). From the graph, it is clear that IF (from
IF_SKL) transcends the LOF, whereby IF (from IF_SKL) and LOF achieve 99.95% and
74.34%, respectively. Furthermore, the IF_Pycaret achieves 92.12% accuracy, which is better
than the LOF. The hyperparameters play an essential role in lifting the model’s performance;
in that view, LOF uses the "number of neighbors" parameter to achieve 74.34% accuracy.
However, as the number of neighbors increases, the computational complexity of the model
increases. LOF has a high computational complexity, i.e., O(n), where n depends on the
number of data sizes. Moreover, we used hyperparameters (e.g., number of neighbors)
that were to be used in each iteration, resulting in increasing the computation complexity
from O(n) to O(k× n), where k is the number of neighbors. Contrary, the computational
complexity of IF is O(nlogn) (without any hyperparameters), which is less than the LOF.

Figure 3. Accuracy of anomaly-detection algorithms.
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Figure 4 illustrates the number of anomalous and non-anomalous points detected
by the anomaly-detection algorithms. The blue-colored bars in Figure 4 represent the
nominal points in the dataset. In contrast, the orange-colored bars in the graph represent
the anomalous points in the dataset detected by the anomaly-detection algorithm. The IF
algorithm gives the outcomes that are most accurate with respect to the results obtained
from the dataset. The algorithm “IF” differed by three tuples in terms of anomalies from
the original dataset, which resulted in a high accuracy. For the comparison of the tuples to
determine the accuracy, the where() function of numpy is used, which displays the number
of tuples between the outcomes of two algorithms that differ with the selected attribute.
The attribute chosen for the comparison is the additional column of behavior 7 of the
instance or the “Anomaly” column.

Figure 4. Nominal and Anomalous points.

5.3. Classification-Based Result Discussion

This subsection presents the results obtained through implementing different AI
classifiers, such as NB, KNN, SVM, LDA, and QDA. Here, the classification algorithms
are used to detect the behavior of the input value on every instance. We want to remark
that the anomaly-detection algorithms are semi-supervised learning algorithms that are
not preferred for the classification task. Thus, in such cases, AI-based classifiers prove
to be more efficient for classification tasks as they lie in the supervised learning category.
Figure 5 illustrates the comparison of the accuracy obtained for the classification algorithms
implemented on the dataset, which includes the class labels, i.e., Anomaly and nominal,
which are depicted as “1” and “0”. The accuracy of an AI classifier is formulated as follows.

Accuracy =
µ + γ

µ + γ + θ + $
(21)

where µ, γ, θ, and $ represent the true positive, true negative, false positive, and false
negative, respectively. The x-axis of the graph represents the algorithm applied, and the
y-axis represents the accuracy of the applied AI algorithms. The train–test split function is
applied to the dataset to evaluate and enhance detection performance. The model is trained
on the training dataset and is tested on the remaining section of the dataset (i.e., the testing
dataset). From the graph, it can be seen that the KNN algorithm gives the highest accuracy,
which is 99.53%, compared to the other AI algorithms. This is because KNN is simple and
relatively easy to implement; moreover, it does not need an explicit training phase, so the
prediction for new data points is adjusted without retraining the model.
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Figure 5. Accuracy of AI classifiers.

Figures 6–8 illustrate other result parameters used to analyze the performance of the
KNN algorithm. Figure 6 shows the confusion matrix of the KNN algorithm. A confusion
matrix is a statistical, matrix-based performance parameter used to summarize the perfor-
mance of a classifier. The confusion matrix is built up using four features. These features
are the evaluation parameters used to evaluate a classifier. The parameters integrated into
the confusion matrix are as follows.

1. True Positive (µ): The true positive parameter represents the total number of positive
outcomes that are correctly classified as positive with reference to the data.

2. False Positive (θ): The total number of negative outcomes that are incorrectly iterated
as positive outcomes by the algorithm is the false positive category.

3. True Negative (γ): The number of correct negative classified outcomes falls under the
true negative category.

4. False Negative ($): The false negative parameter refers to the total number of incor-
rectly predicted negative outcomes that are supposedly positive outcomes.

Figure 6. Confusion matrix.
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Figure 7. Lift Curve.

Figure 8. Validation Curve.

The true positive, false positive, true negative, and false negative values were found
to be 203, 13, 0, and 1705, respectively. Through these features, the accuracy, precision,
and recall of the model can be calculated. Figure 7 illustrates the lift curve of the KNN
algorithm. It is observed that the x-axis represents the fraction of the sample of the data
iterated data that corresponds to the lift, represented on the y-axis of the plot. The lift is
calculated as the ratio of positive outcomes on the selected sample point, divided by the
ratio of positive outcomes present in the whole iterated dataset. When the data available
are ordered, the algorithm with the highest probability will appear on the left of the graph,
along with the highest lift scores. A lift curve for a model can be defined as ideal when
there are several real positive labels in a fraction of the number that has a very high
probability of being positive. The model with the maximum lift is preferably considered as
the better-iterated model. The lift curve for the model represented in Figure 7 is near the
ideal condition given the parameters for the analysis of the lift curve.

Figure 8 illustrates the validation curve for the KNN algorithm. A validation curve is a
graphical performance metric to evaluate an iterated model based on the hyperparameters
defined in the model. The validation curve and the training curve look similar to each other
in an ideal condition. If both scores of the curves are established to be low, the iterated
model is determined to be underfitting for the situation. The underfitting condition arises
when too much regularization occurs or the model is informed by a few features in the
condition. When the training curve reaches a higher score quickly in comparison to the
validation curve, the model is established as overfitting for the condition. Further, the model
can be evaluated for the overfitting conditions, i.e., if the lift curve shows a significant lift
for anomalous instances compared to the baseline, it suggests that the model incorrectly
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captures or classifies anomalous data as nominal. This indicates overfitting and a lack
of generalization to unseen anomalous patterns. The closer the nominal and anomalous
curves are, the better the model’s performance.

The curve in Figure 8 can be said to be the ideal condition, as both the curves are near
to each other and present no overfitting or underfitting conditions. The non-attack data of
the smart home systems are stored on different storage platforms for offering varied ser-
vices to the smart home systems. However, it can be tampered with via data injection and
manipulation attacks. Therefore, the proposed work adopts the indispensable characteris-
tics of blockchain technology, where a smart contract is deployed on an Ethereum-based
public blockchain.

5.4. Discussion of Blockchain-Based Results

The designed smart contract has various user-defined functions, such as
addauthorizeddevice(), changedevicestate(), removeauthorizeddevice(), and devicestate()
that act as a data validator that validates the non-attack data. In particular, the
authorizeddevice() function includes a threshold-checking parameter. This parameter al-
lows the smart contract to enforce a predefined threshold for authorized devices. The thresh-
old could be a numerical value or a specific condition that needs to be met before a device
is considered authorized. For example, the temperature sensor reading must lie within the
threshold set by the regulatory bodies. If the sensor reading is out of the range, we invoke
the removeauthorizeddevice() function to generate an alert and eliminate that particular
device from the smart home system.

The purpose of this function is to ensure that only devices meeting the specified criteria
can perform certain actions or access specific resources within the smart home system.
By incorporating this threshold checking parameter into the authorizeddevice() function,
the smart contract can enforce a more robust and secure authorization mechanism. This
mechanism prevents unauthorized or potentially malicious devices from accessing sensitive
data or performing unauthorized actions within the blockchain network. On successful
validation, the non-attack data are forwarded to the IPFS-based secure storage. Figure 9
shows the deployed smart contract and its different user-defined functions. For deployment,
we used an injected provider–metamask environment that offers different test networks
for smart contract deployment. We utilized the Sepolia test network to deploy the smart
contract shown in Figure 9.

When deploying a smart contract, there are two main costs to consider, i.e., transaction
costs and execution costs. Transaction costs refer to the fees associated with interacting
with the blockchain network to deploy a smart contract. These costs can vary depending
on the blockchain platform being used and are typically paid in the native cryptocurrency
of that platform, for example, Ethers in the Ethereum blockchain. Moreover, execution
costs pertain to the computational resources required to execute the smart contract code
once it is deployed on the blockchain. Here, we used an event log and struct to store the
IPFS hash that has significant advantages in terms of gas consumption. Event logs are used
to see the logged data that are not frequently retrieved. On the contrary, struct is used
to enhance data retrieval; it organizes and stores data directly within the contract’s state,
making it accessible for on-chain operations. Figure 10 shows the transaction and execution
cost incurred while deploying the smart contract in the Ethereum blockchain.

Further, we evaluated the performance of IPFS using scalability parameters. Since IPFS
computes the hash of the legitimate non-attack smart home system data and forwards them
to the Ethereum-based public blockchain, it improves the response time of the blockchain
network. Response time is inversely proportional to the scalability parameter. Therefore,
the lower the response time, the higher the scalability. Figure 11 shows the scalability
improvement when IPFS is employed in the blockchain network. As the response time
improves, more transactions can be granted, increasing the blockchain network’s scalability.
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Figure 9. Blockchain’s smart contract functions.
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Figure 10. Blockchain’s transaction and execution cost.
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6. Conclusions

The paper proposed a secure and intelligent framework to handle security threats
associated with smart home systems. It is observed from the literature that due to the
openness of the network interface, adopting weak protocols and lightweight encryption,
the attacker can leverage these benefits and maneuver the performance of the smart home
system. The proposed framework employs the automation and intelligent property of
the AI algorithms, which are first trained to eradicate anomalous data from smart home
systems. This is accomplished by training an IF algorithm that uses an ensemble approach
to pinpoint and eliminate anomalous data points within the dataset with exceptional
accuracy (99.27%). Once the anomalous data are eliminated, the AI classifiers are trained
to classify attack and non-attack data. The proposed framework discards the attack data
and only allows non-attack data to assist in enhancing the performance of the smart home
system. Furthermore, to strengthen the security of the smart home system, the non-attack
data are forwarded to the immutable blockchain nodes. For that purpose, we designed a
smart contract in the Remix development environment that validates the non-attack smart
home system data and deploys them on the Ethereum-based public blockchain. The smart
contract is connected to the IPFS that stores the non-attack data. The IPFS computes the
hash of the original non-attack data and forwards them to the blockchain’s immutable
ledger. Storing the non-attack data of smart homes in blockchain nodes reduces the chance
of data manipulation. The results show that the performance of the proposed framework is
better than the existing state-of-the-art work. Here, the IF and KNN algorithms offer 99.53%
and 99.27% accuracy in detecting anomalous and attack data, respectively. Moreover,
the incorporation of the IPFS with the blockchain network improves the response time and
scalability of smart home systems.

Adopting blockchain technology can degrade the latency and increase the mining
cost. To respond to this challenge, we utilized IPFS and event logs to minimize the mining
cost. However, we want to remark that the mining cost is still a persistent challenge and a
significant limitation that necessitates careful consideration. In future work, we will utilize
the proof-of-stake (PoS) and hybrid approaches, which aim to reduce energy consumption
and lower the barriers to entry for participants. These innovations seek to strike a balance
between security, decentralization, and cost-effectiveness, thereby making proposed work
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more sustainable and accessible. In addition, we will also incorporate the essential benefits
of a 5G network interface to enhance the latency of the proposed framework.
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