Advancing Fractional Riesz Derivatives through Dunkl Operators
Abstract
:1. Introduction
2. Preliminaries
- (i)
- For all ,
- (ii)
- For all and ,
- (iii)
- For all and ,
- (iv)
- For all and , the operator can be extended to all functions f in and the following holds
3. Main Results
- (i)
- and there exists such that:
- (ii)
- as ;
- (iii)
4. Proof of Main Results
4.1. Proof of Theorem 1
4.2. Proof of Theorem 2
- (i)
- ,
- (ii)
- ,
- (iii)
5. Concluding Remark
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dunkl, C.F. Differentiel difference operators associated to reflection groups. Trans. Amer. Soc. 1989, 311, 167–183. [Google Scholar] [CrossRef]
- Amri, B.; Anker, J.F.; Sifi, M. Three results in Dunkl analysis. Colloq. Math. 2010, 118, 299–312. [Google Scholar] [CrossRef]
- Abdelkefi, C.; Rachdi, M. Some properties of the Riesz potentials in Dunkl analysis. Ric. Mat. 2015, 4, 195–215. [Google Scholar] [CrossRef]
- Belkina, E.S.; Platonov, S.S. Equivalence of K-functionals and modulus of smoothness constructed by generalized Dunkl translations. Russ. Math. 2008, 52, 1–11. [Google Scholar] [CrossRef]
- Dai, F.; Xu, Y. Approximation Theory and Harmonic Analysis on Spheres and Balls; Springer: New York, NY, USA, 2013. [Google Scholar]
- Dunkl, C.F. Hankel transforms associated to finite reflection groups. In Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications, Proceedings of an AMS Special Session Held in Tampa, FL, USA, 22–23 March 1992; Amer Mathematical Society: Providence, RI, USA, 1992. [Google Scholar]
- Soltani, F. Sonine Transform Associated to the Dunkl Kernel on the Real Line. SIGMA Symmetry Integr. Geom. Methods Appl. 2008, 4, 92. [Google Scholar] [CrossRef]
- Rösler, M. Bessel-type signed hypergroups on In Probability Measures on Groups and Related Structures XI, Proceedings, Oberwolfach 1994; Heyer, H., Mukherjea, A., Eds.; World Scientific: Singapore, 1995; pp. 292–304. [Google Scholar]
- Trimeche, K. Paley–Wiener theorems for the Dunkl transform and Dunkl translation operators. Integral Transform. Spec. Funct. 2002, 13, 17–38. [Google Scholar] [CrossRef]
- Thangavelu, S.; Xu, Y. Riesz transform and Riesz potentials for Dunkl transform. J. Comput. Appl. Math. 2007, 199, 181–195. [Google Scholar] [CrossRef]
- Bucur, C.; Valdinoci, E. Nonlocal Diffusion and Applications; Lecture Notes of the Unione Matematica Italiana; Springer: Cham, Switzerland, 2016; Volume 20. [Google Scholar]
- Lischke, A.; Pang, G.; Gulian, M.; Song, F.; Glusa, C.; Zheng, X.; Mao, Z.; Cai, W.; Meerschaert, M.M.; Ainsworth, M.; et al. What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 2020, 404, 109009. [Google Scholar] [CrossRef]
- Cai, M.; Li, C.P. On Riesz derivative. Fract. Calc. Appl. Anal. 2019, 22, 287–301. [Google Scholar] [CrossRef]
- Feller, W. On a generalization of Marcel Riesz’ potentials and the semi-groups generated by them. In Meddelanden Lunds Universitets Matematiska Seminarium (Comm. Sém. Mathém. Université de Lund); Tome suppl. dédié à M. Riesz.: Lund, Swiden, 1952; pp. 73–81. [Google Scholar]
- Mainardi, F.; Luchko, Y.; Pagnini, G. The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 2001, 4, 153–192. [Google Scholar]
- Bouzeffour, F.; Garayev, M. On the fractional Bessel operator. Integral Transform. Spec. Funct. 2022, 33, 230–246. [Google Scholar] [CrossRef]
- Butzer, P.L.; Schmeisser, G.; Stens, R.L. Sobolev spaces of fractional order, Lipschitz spaces, readapted modulation spaces and their interrelations; applications. J. Approx. Theory 2016, 212, 1–40. [Google Scholar] [CrossRef]
- Triméche, K. Generalized Wavelets and Hypergroups; Gordon & Breach: New York, NY, USA, 1997. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouzeffour, F. Advancing Fractional Riesz Derivatives through Dunkl Operators. Mathematics 2023, 11, 4073. https://doi.org/10.3390/math11194073
Bouzeffour F. Advancing Fractional Riesz Derivatives through Dunkl Operators. Mathematics. 2023; 11(19):4073. https://doi.org/10.3390/math11194073
Chicago/Turabian StyleBouzeffour, Fethi. 2023. "Advancing Fractional Riesz Derivatives through Dunkl Operators" Mathematics 11, no. 19: 4073. https://doi.org/10.3390/math11194073
APA StyleBouzeffour, F. (2023). Advancing Fractional Riesz Derivatives through Dunkl Operators. Mathematics, 11(19), 4073. https://doi.org/10.3390/math11194073