
Citation: Bouzeffour, F. Advancing

Fractional Riesz Derivatives through

Dunkl Operators. Mathematics 2023,

11, 4073. https://doi.org/

10.3390/math11194073

Academic Editors: Yiming Chen,

Aimin Yang, Jiaquan Xie and

Yanqiao Wei

Received: 1 September 2023

Revised: 23 September 2023

Accepted: 24 September 2023

Published: 25 September 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Advancing Fractional Riesz Derivatives through Dunkl Operators
Fethi Bouzeffour

Department of Mathematics, College of Sciences, King Saud University, P.O. Box 2455,
Riyadh 11451, Saudi Arabia; fbouzaffour@ksu.edu.sa

Abstract: The aim of this work is to introduce a novel concept, Riesz–Dunkl fractional derivatives,
within the context of Dunkl-type operators. A particularly noteworthy revelation is that when a
specific parameter κ equals zero, the Riesz–Dunkl fractional derivative smoothly reduces to both the
well-known Riesz fractional derivative and the fractional second-order derivative. Furthermore, we
introduce a new concept: the fractional Sobolev space. This space is defined and characterized using
the versatile framework of the Dunkl transform.
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1. Introduction

In the real line, the Dunkl operator Dκ is formed by combining the standard derivative
with a term involving the parameter κ (κ ∈ R) and the reflection operator [1]. Specifically,
it takes the form:

Dκ :=
d

dx
+

κ

x
(1− s),

where the reflection operator s acts on a real variable function f (x) as follows:

(s f )(x) := f (−x).

The term given by κ
x (1− s) captures the interplay between the derivative and the reflection

operation. This extension finds significant applications in areas such as mathematical
physics, harmonic analysis, and approximation theory [1–10]. One of the remarkable
consequences of the Dunkl operator is the Dunkl transform [1,6,9]. Analogous to the
Fourier transform, the Dunkl transform functions as an isometry that maps functions in
the L2

κ space onto themselves, preserving their inner product structure. Moreover, the
introduction of the generalized translation operator τy by Trimeche [9] expands the notion
of standard translation into the context of Dunkl operators. Particularly valuable when
dealing with functions in the L2

κ(R) space, this operator facilitates meaningful operations
in line with the deformations introduced by the Dunkl operator.

When considering the one-dimensional case, the fractional Laplacian [11,12] is com-
monly referred to as the Riesz fractional derivative. For our purposes, we will use the
notation Dα to represent this operator [13]. Interestingly, the symbols associated with
both the fractional Laplacian and the Riesz fractional derivative appear identical. This
relationship is captured by the following equation [14]:

Dα = F−1|x|αF = −(− d2

dx2 )
α/2.
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Building upon S. Bochner’s investigations into the generalization of standard diffusion to
encompass generalized diffusion equations for L’evy stable densities. Explicit expressions
can be written in a regularized integral form valid for α ∈ (0, 2) [15]:

Dα f (x) = −(− d2

dx2 )
α/2 f (x)

=
Γ(1 + α)

π
sin
(απ

2

) ∫ ∞

0

2 f (x)− f (x + y) + f (x− y)
yα+1 dy. (1)

Furthermore, the operator− d2

dx2 is widely recognized as an unbounded self-adjoint operator
with its spectrum spanning the continuous interval [0, ∞). It plays a pivotal role in the
expansion of the cosine function. Intriguingly, a noteworthy result in [16] demonstrates
that the fractional second-order derivative can also be interpreted as a pseudo-differential
operator via the Fourier cosine transform. This equivalence holds when considering
even functions, resulting in the same representation as provided in Equation (1). As a
consequence, the Riesz fractional derivative is inherently a symmetric property, aligning
seamlessly with the requirement of even functions.

The main objective of this work is to extend the representation (1) for the Riesz frac-
tional derivative by introducing a one-parameter extension. Our methodology is inspired
by the Dunkl transform and the generalized translation operator, drawing parallels with the
approach presented by Butzer et al. [17]. We initiate our exploration by establishing a point-
wise formula for the Riesz–Dunkl fractional derivative. Notably, this formulation remains
valid even for Schwartz functions. This foundational formula serves as the cornerstone
of our subsequent analysis and results, underscoring its pivotal role in our investigation.
Our work unveils a compelling alignment between the Riesz–Dunkl fractional derivative,
the conventional Riesz fractional derivative, and the fractional second-order derivative.
This equivalence holds true beyond the realm of even functions, extending the applicability
of our findings within the Schwartz space. Moreover, our examination of even functions
reveals a fascinating parallel between the Riesz–Dunkl fractional derivative and the Bessel
fractional derivative. Furthermore, we introduce a characterization of the fractional Sobolev
space associated with the Dunkl operator. This characterization not only sheds light on
the behavior of the Dunkl operator within fractional Sobolev spaces but also deepens our
understanding of its intrinsic properties.

The rest of the paper is structured as follows:
In Section 2, we lay the foundation by introducing key concepts. We delve into

the realm of the Dunkl transform and the generalized translation operator. Section 3
presents the primary outcomes of our research. This section offers a concise summary of
the significant findings we have achieved. Section 4 offers a comprehensive proof of the
main results. A detailed derivation and explanation establish the validity of our findings,
aiming to provide readers with a comprehensive understanding of the mathematical
underpinnings.

2. Preliminaries

Before unveiling our main findings, it is crucial to lay the foundation by introducing
essential notations and gathering relevant information about the Bessel operator. This
section functions as a primer, shedding light on the importance of the Fourier–Bessel
transform and the Delsarte translation. These concepts will play a pivotal role in our
subsequent analysis.

Let κ ≥ 0, and f be a differentiable function R. The Dunkl derivative Dκ f (x) is defined
by [6]

Dκ f (x) =


f ′(x) + κ

f (x)− f (−x)
x , if x 6= 0,

(2κ + 1) f ′(0) if x = 0.
(2)
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For each λ ∈ C, the following problem [1,6] Dκu(x) = −iλu(x),

u(0) = 1.

admits a unique C∞ solution on R, denoted by Eκ(x) given by [6] (§4)

Eκ(x) := Jκ−1/2(ix) +
x

2κ + 1
Jκ+1/2(ix). (3)

where Jκ , the normalized Bessel function, is defined by [9]

Jκ(x) :=
∞

∑
n=0

(−1)n

n!Γ(κ + n + 1)
(

x
2
)2n, κ > −1.

We denote by Lp
κ (R) (1 ≤ p) the Lebesgue space associated with the measure

σκ(dx) =
|x|2κ

2κ+1/2Γ(κ + 1/2)
dx (4)

and by ‖ f ‖p,κ the usual norm given by

‖ f ‖p,κ =
( ∫

R
| f (ξ)|p σκ(dξ)

)1/p
. (5)

The Dunkl transform is defined by [1,9]

Fκ{ f (x), ξ} = Fκ( f )(ξ) :=
∫
R

f (x) Eκ(−iξx)σκ(dx). (6)

The Dunkl transform can be extended to an isometry of L2
κ(R), that is [1]∫

R
| f (x)|2 σκ(dx) =

∫
R
| f̂κ(λ)|2 σκ(dλ). (7)

For any f ∈ L1
κ(R) ∩ L2

κ(R), the inverse is given by

f (x) =
∫
R

f̂κ(λ) Eκ(iλx) σκ(dλ). (8)

It is noteworthy that for κ = 0, the Dunkl kernel simplifies to an exponential function and
the Dunkl transform itself reduces to the conventional Fourier transform:

F0 f (x) = F f (x) :=
1√
2π

∫
R

e−ixt f (t) dt. (9)

As in the classical case, a generalized translation operator is defined in the Dunkl setting
side on L2

κ(R) by Trimèche [9]

Fκτy f (ξ) := Eκ(iξy)Fκ f (ξ), y, ξ ∈ R. (10)

Explicitly, the generalized translation τx f (y) takes the explicit form [8]

τx f (y) :=
1
2

∫ 1

−1
f (
√

x2 + y2 − 2xyt)(1 +
x− y√

x2 + y2 − 2xyt
)hk(t)dt (11)

+
1
2

∫ 1

−1
f (−

√
x2 + y2 − 2xyt)(1− x− y√

x2 + y2 − 2xyt
) hk(t) dt,
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where

hκ(t) =
Γ(κ + 1/2)
22κ
√

πΓ(κ)
(1 + t)(1− t2)κ−1.

It can be stated that:

(i) For all x, y ∈ R,
τx f (y) = τy f (x). (12)

(ii) For all x, ξ ∈ R and f ∈ S(R),

Dκτx f = τxDκ f . (13)

(iii) For all x ∈ R and f , g ∈ L2
κ(R),∫

R
τx f (y)g(y)σκ(dy) =

∫
R

f (y)τ−xg(y)σκ(dy). (14)

(iv) For all x ∈ R and 1 ≤ p ≤ 2, the operator τx can be extended to all functions f in
Lp

κ (R) and the following holds

||τx f ||p,κ ≤ 4|| f ||p,κ . (15)

3. Main Results

In this section, we present the main results of this paper. We start by defining the
fractional Dunkl derivative (−D2

κ )
α/2 for 0 < α < 2 as a nonlocal operator on a suitable

function space. To facilitate this, we choose to work with a modified space. Specifically, we
consider the spaces

H α
κ (R) =

{
f ∈ L2

κ(R) :
∫
R
|x|α|Fκ( f )(x)|2σκ(dx) < ∞

}
. (16)

When κ = 0, the Dunkl transform reduces to the classical Fourier transform. In this case,
the space H α

κ (R) will turn out to be the fractional Sobolev space, also called the Bessel
potential space or Liouville space, of order α [17].

Definition 1. Let κ ≥ 0 and 0 < α ≤ 2. For f ∈H α
κ (R), the fractional Riesz–Dunkl derivative

(−D2
κ )

α/2 is defined by

Fκ

(
(−D2

κ )
α/2 f

)
(x) = |x|αFκ f (x).

The following theorem constitutes the first main result of this paper. We provide a
pointwise formula for the fractional Riesz–Dunkl derivative that is valid for the Schwartz
space S(R).

Theorem 1. Let α ∈ (0, 2). For a function f ∈ S(R), the fractional Riesz–Dunkl derivative
(−D2

κ )
α/2 f (x) can be represented as follows:

(−D2
κ )

α/2 f (x) =
1

γκ(α)
lim
ε→0

∫ ∞

|h|≥ε

f (x)− τh f (x)
h1+α

dh

where the normalized constant γκ(α) is given by

γκ(α) =
2αΓ(κ + 1+α

2 )

Γ(κ + 1
2 )|Γ(−

α
2 )|

. (17)

Building upon Theorem 1 with κ = 0, we derive the ensuing corollary. Notably, this
corollary pertains to the Riesz fractional derivative Dα (1) and the fractional second order
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derivative−(− d2

dx2 )
α, which remains valid within the Schwartz space without any necessity

to confine the considerations solely to even functions.

Corollary 1. For α ∈ (0, 2) and f ∈ S(R), the Riesz fractional derivative Dα and the fractional
second-order derivative (− d2

dx2 )
α/2 f share the same representation:

Dα f (x) = −(− d2

dx2 )
α/2 f (x)

=
Γ(1 + α)

π
sin
(απ

2

) ∫ ∞

0

2 f (x)− f (x + y) + f (x− y)
yα+1 dy.

Drawing on the insights from Theorem 1 and focusing on the scenario of even func-
tions, we can derive the following corollary. This corollary underscores the equivalence
between the Riesz–Dunkl fractional derivative Dα

κ and the Bessel fractional derivative.
The proof of this equivalence can be found in [16] (Theorem 3.5), coupled with our earlier
established Theorem 1.

Corollary 2. For an even function f in S(R), the Riesz–Dunkl fractional derivative (−D2
κ )

α/2 f (x)
with α ∈ (0, 2) is also an even function and coincides with the fractional Bessel operator (− d2

dx2 −
2κ
x

d
dx )

α/2. More precisely:

(−D2
κ )

α/2 f (x) = (− d2

dx2 −
2κ

x
d

dx
)α/2 f (x)

=
2α+1Γ(µ + α+1

2 )

Γ(κ + 1
2 )|Γ(−

α
2 )|

∫ ∞

0

f (x)− τx
κ,0 f (y)

yα+1 dy.

where τx
κ,0 f (y) is the generalized translation operator associated with the Bessel operator [18],

given by

τx
κ,0 f (y) =


∫ π

0 f (
√

x2 + y2 + 2xy cos θ) sin2κ−1 θ dθ, if κ > 0,

1
2 ( f (x + y) + f (x− y)), if κ = 0.

(18)

For α ∈ (0, 2) we set

B
(α)
ε f (x) =

1
γκ(α)

∫
h≥ε

∆h f (x)
h1+α

dh.

Here γκ(α) is the normalized constant defined in (17) and ∆h represents the generalized
difference operator, which is defined for f ∈ L2

κ(R) as:

∆h f = 2 f − τh f − τ−h f , h ∈ R.

The following theorem constitutes a second key result, wherein we aim to characterize the
fractional Sobolev space H α

κ for arbitrary α ∈ (0, 2).

Theorem 2. Let α ∈ (0, 2). The following statements are equivalent:

(i) f ∈ L2
κ(R) and there exists g ∈ L2

κ(R) such that:

‖B(α)
ε f − g‖2,κ = o(1) as ε ↓ 0;

(ii) ‖B(α)
ε f ‖2,κ = O(1) as ε ↓ 0;

(iii) f ∈H α
κ (R).
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Theorem 3. Let α ∈ (0, 2). For f ∈H α
κ (R) it holds

Fκ((−Dκ)
(α)) f (x) = |x|αFκ( f )(x) a.e. (19)

4. Proof of Main Results
4.1. Proof of Theorem 1

We denote by S(R), the Schwartz space, which consists of C∞-functions on R that
rapidly decrease along with their derivatives. This space is equipped with a topology
defined by the semi-norms

‖ f ‖n,m = sup
x∈R, j≤m

(1 + x2)nD
j
κ ϕ(x), n, m ∈ N.

It can be verified that

Dκ f (x) = f ′(x) + κ
∫ 1

−1
f ′(xt)dt.

From this representation, it is evident that the operator Dκ preserves the space S(R).

Lemma 1. For a function f ∈ S(R), the generalized difference operator can be expressed as:

∆h f (x) = −
∫ |h|
−|h|

sgn(u)τuDκ f (x) du.

Proof. Let f ∈ S(R) and define g(h) = τh f (x). We proceed with the proof as follows:

∫ h

−h
sgn(u)Dκ g(u) du =

∫ h

−h
sgn(u)

(
g′(u) + κ

g(u)− g(−u)
u

)
du.

Note that the term sgn(u) g(u)−g(−u)
u in the above integral is an odd function, and thus, the

integral of this term vanishes. Therefore, we have:

∆h,κ f (x) = −
∫ h

−h
sign(u)Dκτu f (x) du.

This concludes the proof of Lemma 1.

We shall now establish Theorem 1

Proof. We begin by combining Lemma 1 and Equation (15) while considering h, x ∈ R.
This combination yields:

|∆h f (x)| ≤ 2|h|‖Dκ f ‖∞. (20)

This inequality lays the foundation for subsequent analysis, leading to the following
evaluations: ∫ ∞

0

|∆h f (x)|
h1+α

dh ≤ 2‖Dκ f (x)‖∞

∫ 1

0
h−α

+ 4‖ f (x)‖∞

∫ ∞

1

dh
h1+α

< ∞.
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Consequently, we deduce:∫ ∞

0

∆h f (x)
|h|d+α

dh =
1
2

lim
ε→0+

∫
|h|≥ε

∆h f (x)
h1+α

dh

=
1
2

lim
ε→0+

∫
|h|≥ε

f (x)− τh f (x)
|h|1+α

dh

+
1
2

lim
ε→0+

∫
|h|≥ε

f (x)− τ−h f (x)
|h|1+α

dh

= lim
ε→0+

∫
|h|≥ε

f (x)− τh f (x)
|h|1+α

dh.

Thus
1

γκ(α)

∫ ∞

0

∆h f (x)
hd+α

dh = lim
ε→0+

1
γκ(α)

∫
|h|≥ε

f (x)− τh f (x)
|h|1+α

dh. (21)

Since both the Dunkl transform and the generalized translation maintain the invariance of
the Schwartz space S(R), we find it advantageous to reformulate (13):

τh f (x) = F−1
κ

(
Eκ(iξh)Fκ f

)
(ξ), y, ξ ∈ R. (22)

Building on this, we can now express the generalized difference operator (3) as:

∆h f (x) = 2
∫
R
(1−Jκ−1/2(ξh))Eκ(iξx)Fκ f (ξ)σκ(dξ). (23)

Inserting this expression into the integrand of Equation (21), we derive:

1
γκ(α)

∫ ∞

0

∆h f (x)
h1+α

dh =
1

γκ(α)

∫ ∞

0

∫
R

1−Jκ−1/2(ξh)
h1+α

Eκ(iξx)Fκ f (ξ)σκ(dξ) dh. (24)

Upon transforming
h→ h|ξ|,

the right-hand side of (24) takes on a different form:

1
γκ(α)

∫ ∞

0

∫
R

1−Jκ−1/2(h)
h1+α

|ξ|αEκ(iξx)Fκ f (ξ)σκ(dξ) dh.

By invoking Tonelli’s Theorem and ([16], Lemma 3.4) we proceed:

1
γκ(α)

∫ ∞

0

∣∣∣ ∫
R

1−Jκ−1/2(h)
h1+α

|ξ|αEκ(iξx)Fκ f (ξ)
∣∣∣σκ(dξ) dh

≤
∫
R
|ξ|α|Fκ f (ξ)|σκ(dξ) < ∞.

Consequently, applying Fubini’s Theorem, ([16], Lemma 3.4), Definition 1, and the
inversion formula for the Dunkl transform (8) leads to:

1
γκ(α)

∫ ∞

0

∆h f (x)
h1+α

dh =
1

γκ(α)

∫ ∞

0

1−Jκ−1/2(h)
h1+α

dh
∫
R
|ξ|αEκ(iξx)Fκ f (ξ)σκ(dξ)

=
∫
R
Eκ(iξx)|ξ|αFκ f (ξ)σκ(dξ)

=
∫
R

Fκ

(
(−D2

κ )
α/2 f

)
(ξ)Eκ(iξx)σκ(dξ)

= (−D2
κ )

α/2 f )(x).

This concludes the proof.
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4.2. Proof of Theorem 2

Proposition 1. For 0 < α < 2, B
(α)
ε is a bounded operator from L2

κ(R) into itself satisfying

‖B(α)
ε f ‖2,κ ≤ C ‖ f ‖2,κ (C =

4
αεα|γκ(α)|

). (25)

Proof. By Holder–Minkowski inequality and inequality (15), it follows that

‖∆h f ‖2,κ ≤ 4‖ f ‖2,κ . (26)

Then

‖B(α)
ε f ‖2,κ ≤

4‖ f ‖2,κ

|γκ(α)|

∫
h≥ε

1
h1+α

dh =
4

αεα|γκ(α)|
‖ f ‖2,κ .

We introduce the function

λα,ε(x) =
2

γκ(α)

∫ ∞

ε

1−Jκ−1/2(xh)
h1+α

dh. (27)

In the following, we establish some elementary properties of λα,ε(x), and their proofs
are straightforward.

Lemma 2. For the function λα,ε(x), the following hold:

(i) |λα,ε(x)| ≤ 2,
(ii) |λα,ε(x)| ≤ |x|α,
(iii) limε↓0 λα,ε(x) = |x|α.

Proposition 2. Furthermore, the Dunkl transform of B
(α)
ε f is given by

Fκ(B
(α)
ε f )(x) = λα,ε(x)Fκ( f )(x) a.e. (28)

Proof. Let f ∈ L2
κ(R). Since L1

κ(R) ∩ L2
κ(R) is dense in L2

κ(R), we choose a sequence
fn ∈ L1

κ(R) ∩ L2
κ(R) with limn→∞ ‖ fn − f ‖2,κ = 0. By Fubini’s theorem, we easily obtain

Fκ(B
(α)
ε fn)(x) = λα,ε(x)Fκ( fn)(x). (29)

Then by Lemma 2 and the isometry property of the Dunkl transform,

‖Fκ(B
(α)
ε f )− λα,ε(x)Fκ( f )‖2,κ ≤ ‖Fκ(B

(α)
ε f )−Fκ(B

(α)
ε fn)‖2,κ

+ ‖λα,ε
{
Fκ( fn)−Fκ( f )

}
‖2,κ

≤ C‖ f − fn‖p,κ + 2‖ fn − f ‖p,κ .

Thus proves the assertion.

Now to the proof of the Theorem 2.

Proof. We will prove the implications (i)⇒ (ii), (ii)⇒ (iii), and (iii)⇒ (i).
(i)⇒ (ii): This implication is straightforward.
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(ii) ⇒ (iii): Assume that condition (ii) holds. By employing Fatou’s Lemma, we
deduce that

‖|. |αFκ( f )‖2,κ ≤ lim inf
ε↓0

‖λα,εFκ( f )‖2,κ

= lim inf
ε↓0

‖Fκ(B
(α)
ε f )‖2,κ

= lim inf
ε↓0

‖(α)ε f ‖2,κ .

As the last term is finite due to the assumed condition, we thus establish (iii).
(iii)⇒ (i): We assume that f ∈H α

κ (R). Since the Dunkl transform is an isomorphism
of L2

κ(R), there exists g ∈ L2
κ(R) such that Fκ(g)(x) = |x|αFκ( f )(x). Consequently, we

have

‖B(α)
ε f (x)− g(x)‖2,κ = ‖Fκ(B

(α)
ε f )−Fκ(g)‖2,κ

= ‖
(
λα,ε(x)− |x|α

)
Fκ( f )‖2,κ .

Additionally, we find(
λα,ε(x)− |x|α

)2|Fκ( f )|2 ≤ 4|x|2α|Fκ( f )|2 = 4|Fκ(g)|2.

By employing the Lebesgue Dominated Convergence Theorem, we conclude that

lim
ε↓0
‖
(
λα,ε(x)− |x|α

)2
Fκ( f )‖2

2,κ = 0.

This completes the proof of (i).
Hence, we have established all three implications, leading to the conclusion of the

proof.

5. Concluding Remark

In summary, this study has navigated the intricate landscape of fractional calculus
within the realm of differential-difference operators. The objective was to establish a con-
nection between the well-established Riesz fractional derivatives and Dunkl type operators,
leading to the emergence of Riesz–Dunkl fractional derivatives. Through rigorous analysis,
we have showcased the versatility and utility of these new derivatives.

Our discoveries unveil the compelling alignment between the Riesz–Dunkl fractional
derivative and both the conventional Riesz fractional derivative and the fractional second-
order derivative. This equivalence extends beyond even functions, broadening its appli-
cability within the Schwartz space. Furthermore, by focusing on even functions, we have
revealed the intriguing parallel between the Riesz–Dunkl fractional derivative and the
Bessel fractional derivative.

Beyond these equivalences, we have introduced a novel fractional Sobolev space utilizing
the Fractional Riesz–Dunkl derivative framework. This advancement deepens our compre-
hension of fractional calculus and opens avenues for further exploration and application.
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