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Abstract: In certain problems in model building and Bayesian analysis, the results end up in forms
connected with generalized zeta functions. This necessitates the introduction of an extended form of
the generalized zeta function. Such an extended form of the zeta function is introduced in this paper.
In model building situations and in various types of applications in physical, biological and social
sciences and engineering, a basic model taken is the Gaussian model in the univariate, multivariate
and matrix-variate situations. A real scalar variable logistic model behaves like a Gaussian model
but with a thicker tail. Hence, for many of industrial applications, a logistic model is preferred to a
Gaussian model. When we study the properties of a logistic model in the multivariate and matrix-
variate cases, in the real and complex domains, invariably the problem ends up in the extended
zeta function defined in this paper. Several such extended logistic models are considered. It is also
found that certain Bayesian considerations also end up in the extended zeta function introduced in
this paper. Several such Bayesian models in the multivariate and matrix-variate cases in the real
and complex domains are discussed. It is stated in a recent paper that “Quantum Mechanics is just
the Bayesian theory generalized to the complex Hilbert space”. Hence, the models developed in
this paper are expected to have applications in quantum mechanics, communication theory, physics,
statistics and related areas.

Keywords: extended zeta functions; multivariate functions; matrix-variate functions; model building;
Bayesian analysis; statistical distributions
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1. Introduction

Since we will be dealing with scalar, vector and matrix variables in the real and
complex domains; both mathematical and random variables; and real scalar, vector and
matrix parameters in the real and complex domains, we will need a multiplicity of symbols.
In order to simplify matters, we will be using the following simplified notations: Real scalar
mathematical as well as random variables will be denoted by the same lower-case letters,
such as x1, x2. Real mathematical as well as random vector/matrix variables, whether
square or rectangular matrices, will be denoted by capital letters such as X1, X2. a, b, etc.,
and A, B, etc., will be used to denote scalar and vector/matrix constants, respectively.
Variables, whether scalar vector or matrix in the complex domain will be denoted with
a tilde placed over them. No tilde will be used on constants. When symbols or Greek
letters are used, the notation will be explained then and there. Let X = (xij) be a p× q
matrix, where the elements, xijs, are functionally independent (distinct) real scalar variables.
Then, the wedge product of differentials will be denoted by dX = ∧i,jdxij = dx11 ∧ . . . ∧
dxpq. A p × q matrix in the complex domain can be written as X̃ = X1 + iX2, where
i =

√
(−1), X1, X2 real p× q matrices. Then, dX̃ = dX1 ∧dX2. X′ will denote the transpose

of X and X̃∗ will denote the conjugate transpose of X̃. When a p× p matrix X̃ = X̃∗, then
X̃ is Hermitian. When X̃ is Hermitian and if X̃ = X1 + iX2, i =

√
(−1), X1, X2 real, then
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X1 = X′1 (symmetric) and X2 = −X′2 ( skew symmetric). The determinant of a p× p matrix
X will be denoted as |X| or det(X) and the absolute value of the determinant of a square

matrix in the complex domain will be denoted as |det(X̃)| =
√
|det(X̃X̃∗)|, |X̃| = a + ib⇒

|X̃X̃∗| = a2 + b2, and|det(X̃)| =
√
(a2 + b2).

The need for introducing an extended zeta function will be illustrated by considering
a simple model building situation [1]. Let x be a real scalar variable. A popular model
in the real scalar variable case in different fields, such as mathematical sciences, physical
sciences, biological and social sciences and related fields, is the Gaussian model. But a real
scalar variable logistic model behaves like a Gaussian model but with a thicker tail and,
hence, a logistic model is preferred in many industrial applications. A generalized logistic
model was introduced in [2] as an exponentiation of a basic type-2 beta model. A basic
type-2 beta model is the following:

f (x)dx = c xα−1(1 + x)−(α+β)dx, 0 ≤ x < ∞ (1)

and f (x) = 0 elsewhere. Let x = e−y, 0 ≤ x < ∞⇒ −∞ < y < ∞. Then,

f (x)dx = c xα−1(1 + x)−(α+β)dx = c
e−αy

(1 + e−y)α+β
dy

where

c =
Γ(α + β)

Γ(α)Γ(β)
(2)

and then the function corresponding to y, denoted by g(y), is the following:

g(y)dy = c
e−αy

(1 + e−y)α+β
dy,<(α) > 0,<(β) > 0,−∞ < y < ∞, (3)

where <(·) denotes the real part of (·). It may be observed that

e−αy

(1 + e−y)α+β
=

eβy

(1 + ey)α+β
,−∞ < y < ∞ (4)

and when α = β = 1, then (4) reduces to

e−y

(1 + e−y)2 =
ey

(1 + ey)2 = g1(y),−∞ < y < ∞,<(α) > 0,<(β) > 0

and g1(y) is the basic logistic model, which is the most important model in industrial
applications as a replacement for the standard Gaussian model.

Let us look into some extensions of the logistic model in (3) to vector/matrix cases
in the real and complex domains. Consider a p× 1 real vector X, X′ = [x1, . . . , xp], where
xj, j = 1, . . . , p are distinct real scalar variables. Then, X′X = x2

1 + . . . + x2
p. If X̃ is in

the complex domain, then X̃∗X̃ = |x̃1|2 + . . . + |x̃p|2 = (x2
11 + x2

12) + . . . + (x2
p1 + x2

p2),

x̃j = xj1 + ixj2, i =
√
(−1), xj1, xj2, j = 1, . . . , p real. Consider the evaluation of the follow-

ing integral in the real domain:

∫
X

e−αX′X

(1 + ae−X′X)α+β
dX =

∞

∑
k=0

(α + β)k
(−a)k

k!

∫
X

e−(α+k)X′XdX

= π
p
2

∞

∑
k=0

(α + β)k
(−a)k

k!
1

(α + k)
p
2

, 0 < a < 1, (5)

for <(α) > 0 and <(β) > 0, where, for example, (a)k = a(a + 1) . . . (a + k− 1), a 6= 0, and
(a)0 = 1 is the Pochhammer symbol. The binomial expansion is valid here since 0 < a < 1,
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0 < ae−(X′X) < 1, X′X > 0. Note that the basic zeta function ζ(ρ) and the generalized zeta
function ζ(ρ, α) are the following [3]:

ζ(ρ) =
∞

∑
k=1

1
kρ ,<(ρ) > 1; ζ(ρ, α) =

∞

∑
k=0

1
(α + k)ρ ,<(ρ) > 1,<(α) 6= 0,−1,−2, . . . ;

ζ(2) = ζ(2, 1) =
π2

6
, ζ(4) =

π4

90
. (6)

Note that (5) is connected to a generalized zeta series but it is not a zeta series. Hence,
we need to have an extension of the generalized zeta series. In the above integral, if X′X
is replaced by [X′X]δ, δ > 0 and if there is another multiplicative factor [X′X]γ, then the
integral becomes complicated, but it can be evaluated by using some results of Jacobians of
matrix transformation. For the discussions in Sections 2 and 3, we will need some Jacobians
of matrix transformations.

The organization of this paper is as follows. In Section 2, an extended zeta function
is introduced and then several extended logistic models are considered. All these models
end up in extended zeta functions. In Section 3, some Bayesian procedures are considered,
some of which will also end up in extended zeta functions.

2. An Extension of the Logistic Model

We will introduce several models here; each one eventually will end up with the
extended zeta function introduced here.

Definition 1 (Extended zeta function). Let αj 6= 0,−1, . . . , j = 1, . . . , r and bj 6= 0,−1, . . . ,
j = 1, . . . , q. An extended zeta function will be defined by the following series, denoted by

ζr
p,q(x) = ζ[{(m1, α1), . . . , (mr, αr)} : a1, . . . , ap; b1, . . . , bq; x]

=
∞

∑
k=0

[
1

(αj + k)m1 . . . (αr + k)mr

(a1)k . . . (ap)k

(b1)k . . . (bq)k

xk

k!
] (7)

where (α + β)k is the Pochhammer symbol and it is assumed that ∑r
j=1 mj > 1, q ≥ p or

p = q + 1, |x| < 1.

Now, we examine the evaluations of a number of integrals. Let u = (X− µ)′A(X− µ),
where X is a p × 1 real vector; X′ = [x1, . . . , xp]; −∞ < xj < ∞; j = 1, . . . , p, with the
expected value or mean value E[X] = µ, where E[·] denotes the expected value and A is
a constant p× p real positive definite matrix; A > O; and µ is a p× 1 parameter vector.
Consider the evaluation of the following integral:

f1(X)dX = c1[u]γ
e−αu

(1 + ae−u)α+β
dX,<(α) > 0,<(β) > 0, 0 < a < 1,<(γ) ≥ 0 (8)

where c1 is a constant. Note that u = (X− µ)′A(X− µ) > 0 since A > O is positive definite.
In order to bring this to a sum of squares, one can make a transformation Y = A

1
2 (X− µ),

then u = Y′Y = y2
1 + . . . + y2

p, where A
1
2 is the positive definite square root of the positive

definite matrix A > O. Then, we can convert dX into du. This will enable us to evaluate the
integral in (8). Two results of Jacobians of matrix transformations are needed here. These
will be listed here as lemmas without proofs. For the proofs and for other Jacobians, see [4].

Lemma 1. Let the p× q matrix X = (xij) be in the real domain, where the pq elements, xijs, are
functionally independent real scalar variables, and let A be a p× p and B be a q× q nonsingular
constant matrices. Then,

Y = AXB, |A| 6= 0, |B| 6= 0⇒ dY = |A|q|B|pdX. (9)
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Let the p× q matrix Ỹ be in the complex domain and, where A and B are p× p and q× q
nonsingular constant matrices, respectively, in the real or complex domain, then

Z̃ = AỸB, |A| 6= 0, |B| 6= 0⇒
dZ̃ = |det(A)|2q|det(B)|2pdỸ = |det(AA∗)|q|det(B∗B)|pdỸ (10)

where |det(·)| denotes the absolute value of the determinant of (·).

Lemma 2. Let the p× q, p ≤ q matrix X of rank p be in the real domain with pq distinct elements
xijs. Let the p× p matrix S = XX′, which is positive definite. Then, going through a transformation
involving a lower triangular matrix with positive diagonal elements and a semi-orthonormal matrix
and after integrating out the differential element corresponding to the semi-orthonormal matrix, we
will have the following connection between dX and dS. See the details from [4]:

dX =
π

pq
2

Γp(
q
2 )
|S|

q
2−

p+1
2 dS (11)

where, for example, Γp(α) is the real matrix-variate gamma function given by

Γp(α) = π
p(p−1)

4 Γ(α)Γ(α− 1
2
) . . . Γ(α− p− 1

2
),<(α) > p− 1

2

=
∫

Y>O
|Y|α−

p+1
2 e−tr(Y)dY,<(α) > p− 1

2
(12)

where tr(·) means the trace of the square matrix (·), and <(·) is the real part of (·). Since
Γp(α) is associated with a real matrix-variate gamma integral of (12), we call Γp(α) a real matrix-
variate gamma function. This Γp(α) is also known by different names in the literature. When the
p × q, p ≤ q matrix Z̃ of rank p, with distinct elements, is in the complex domain and letting
S̃ = Z̃Z̃∗, which is p× p and Hermitian positive definite, then, going through a transformation
involving a lower triangular matrix with real and positive diagonal elements and a semi-unitary
matrix, we can establish the following connection between dZ̃ and dS̃:

dZ̃ =
πpq

Γ̃p(q)
|det(S̃)|q−pdS̃ (13)

where, for example, Γ̃p(α) is the complex matrix-variate gamma function given by

Γ̃p(α) = π
p(p−1)

2 Γ(α)Γ(α− 1) . . . Γ(α− p + 1),<(α) > p− 1

=
∫

T̃>O
|det(T̃)|α−pe−tr(T̃)dT̃,<(α) > p− 1. (14)

We call Γ̃p(α) the complex matrix-variate gamma because it is associated with a matrix-variate
gamma integral in the complex domain.

Now, we can evaluate the integral in (8). Make the transformation

Y = A
1
2 (X − µ ⇒ dY = |A| 12 dX from Lemma 1. Let u = Y′Y ⇒ dY = π

p
2

Γ( p
2 )

u
p
2−1du from

Lemma 2, observing that Y′ here is a 1× p matrix. Note that since 0 < ae−u < 1, u > 0,

one can expand (1 + ae−u)−(α+β) by using a binomial expansion as ∑∞
k=0(α + β)k

(−a)k

k! e−ku.
Then,
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∫
X

f1(X)dX = c1|A|−
1
2

π
p
2

Γ( p
2 )

∞

∑
k=0

(α + β)k
(−a)k

k!

∫ ∞

u=0
uγ+

p
2−1e−(α+k)udu

= c1|A|−
1
2

π
p
2

Γ( p
2 )

Γ(γ +
p
2

∞

∑
k=0

(α + β)k
(−a)k

k!
(α + k)−(γ+

p
2 ))

= c1|A|−
1
2

π
p
2

Γ( p
2 )

Γ(γ +
p
2
)ζ[{(γ +

p
2

, α)} : α + β; ;−a] (15)

where ζ[{(γ + p
2 , α)} : α + β; ;−a] is the case for p = 1, q = 0 and r = 1 of (7) for | − a| < 1.

Hence, when f1(X) is a statistical density of X, then c1 will be the normalizing constant
there and

c−1
1 = |A|−

1
2

π
p
2

Γ( p
2 )

Γ(γ +
p
2
)ζ[{(γ +

p
2

, α)} : α + β; ;−a] (16)

for <(γ) + p
2 > 1,<(α) > 0,<(β) > 0, 0 < a < 1 and ζ(·) is defined in (7). We will be

constructing our models as non-negative integrable functions with normalizing constants
so that they can also be used as statistical densities. Then, we have the first extended
logistic model as the following, which is also a statistical density.

2.1. Extended Logistic Model 1 in the Real Domain

f1(X)dX = |A|
1
2

Γ( p
2 )

π
p
2 Γ(γ + p

2 )
[ζ[{(γ +

p
2

, α)} : α + β; ;−a]]−1

× [(X− µ)′A(X− µ)]γ
e−α(X−µ)′A(X−µ)

(1 + ae−(X−µ)′A(X−µ))α+β
dX (17)

where X is a p × 1 vector in the real domain, <(α) > 0,<(β) > 0, 0 < a < 1,
p ≥ 1,<(γ) + p

2 > 1 and A = A′ > O. The results in the complex domain, corre-
sponding to the results in the real domain, will be denoted with a letter a in the sub-
script as well as in the section number of the equation numbers. For example, the re-
sult in the complex domain corresponding to f1(X) will be denoted as f1a(X̃) and the
equation number will be denoted by (18) so as to avoid the occurrence of too many
equation numbers. Let X̃ be a p × 1 vector in the complex domain with distinct ele-
ments. Then, the j-th element in X̃ is x̃j = xj1 + ixj2, where i =

√
(−1), xj1, xj2 real

and j = 1, . . . , p. Let X̃∗ denote the conjugate transpose of X̃. Then, the model in the
complex domain, corresponding to f1(X), is available by replacing (X − µ)′A(X − µ)

with (X̃ − µ̃)∗A(X̃ − µ̃), µ̃ = E[X̃] and Ỹ = A
1
2 (X̃ − µ̃) ⇒ dỸ = |det(A)|dX̃, Ỹ∗Ỹ =

|ỹ1|2 + . . . + |ỹp|2 = (y2
11 + y2

12) + . . . + (y2
p1 + y2

p2), ỹj = yj1 + iyj2, i =
√
(−1), j = 1, . . . , p.

Let ũ = Ỹ∗Ỹ. Note that, here, ũ is real. Hence, we can apply Lemma 2 in the real case
for 2p real variables or p complex variables. Both will lead to the same results. For 2p

real variables, we have dỸ = π
2p
2

Γ( 2p
2 )

u
2p
2 −1du = πp

Γ(p)up−1du, which is the same result when

applying the complex version of the lemma. Then, we have the equation for the density in
the complex domain, shown in Section 2.2.

2.2. Extended Logistic Model 1 in the Complex Domain

f1a(X̃)dX̃ = |det(A)| Γ(p)
πpΓ(γ + p)ζ[{(γ + p, α)} : α + β; ;−a]

× [(X̃− µ̃)∗A(X̃− µ̃)]γ
e−α(X̃−µ̃)∗A(X̃−µ̃)

(1 + ae−(X̃−µ̃)∗A(X̃−µ̃))α+β
dX̃ (18)
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for 0 < a < 1,<(α) > 0,<(β) > 0, A = A∗ > O,<(γ) + p > 1 and p ≥ 1, |det(A)| is the
absolute value of the determinant of A and ζ(·) is the extended zeta function defined in (7).

Note 1. In logistic model 1, we have taken u = (X − µ)′A(X − µ) in the real case, where X is
p× 1 with distinct real scalar variables as elements and µ = E[X], A > O is a real positive definite
constant matrix. Particular cases herein are (1): µ = O; (2): A = I, where I is the identity matrix;
and (3): µ = O, A = I, both in the real and complex domains. In the complex domain, µ is denoted
as µ̃. One can consider a generalization of model 1 by taking uδ, δ > 0 in the exponent in the real
case and ũδ, δ > 0 in the exponent in the complex case. Then, in the real and complex cases, the
exponential parts will be the following, respectively:

e−[(X−µ)′A(X−µ)]δ

(1 + ae−[(X−µ)′A(X−µ)]δ)α+β
,

e−[(X̃−µ̃)∗A(X̃−µ̃)]δ

(1 + ae−[(X̃−µ̃)∗A(X̃−µ̃)]δ)α+β

and the first factor will be the same, that is, [(X − µ)′A(X − µ)]γ and [(X̃ − µ̃)∗A(X̃ − µ̃)]γ,
respectively, in the real and complex domains. In this case, the normalizing constants will be
multiplied by δ, both in the real and complex cases. In the real case, γ + p

2 is to be replaced by
1
δ (γ + p

2 ). In the complex case, γ + p is to be replaced by 1
δ (γ + p). These will be the changes and,

hence, this generalization of model 1 will not be listed here.

Note 2. In the PhD thesis written by [5], details of the applications of various types of statistical
models, especially in the complex domain, are given. Most of the models are Gaussian- and Wishart-
based. Ref. [5] is mainly concerned with the analysis of PolSAR (Polarimetric Synthetic Aperture
Radar) data on single-look and multi-look radar return signals. It is found that non-Gaussian models
give better representations in certain regions such as forests, sea surface, urban areas, etc.; see, for
example, Refs. [6–9]. In the real scalar case, it is found that in many of the industrial applications a
logistic model is better than a Gaussian model. A logistic model behaves like a standard Gaussian
model but with thicker tail. This is the main reason why a logistic model became very popular in
industrial applications. Hence, in modeling multi-look return data from radar and sonar and in other
communication problems, logistic-based multivariate and matrix-variate models in the complex
domain are likely to give better representations where, currently, Gaussian- and Wishart-based
models are used. Hence, it is hoped that the results obtained in this paper and the various models
presented here will be highly useful in physics, engineering, communication theory, statistics and
related areas.

Note that the h-th moment of (X − µ)′A(X − µ) and (X̃ − µ̃)∗A(X̃ − µ̃), for an ar-
bitrary h, are available from the normalizing constants in extended logistic model 1 by
replacing γ with γ + h and then taking the ratios of the respective normalizing constants.

The next model will involve a positive definite matrix variable. Let X = (xij) = X′ >
O be a p× p symmetric positive definite matrix in the real domain. Due to symmetry, there
are only p(p + 1)/2 distinct real scalar variable xijs in X > O. When symmetric matrices
are involved, the transformations will not be based on Lemmas 1 and 2. We need one more
result on Jacobians involving a symmetric matrix. This will be listed here as Lemma 3. For
the proof and other details, see [4].

Lemma 3. Let the p× p matrix X be real symmetric, X = X′, with p(p + 1)/2 distinct real
scalar variable xijs, and let A be a p× p nonsingular matrix. Then,

Y = AXA′, |A| 6= 0⇒ dY = |A|p+1dX. (19)

Let the p × p matrix X̃ = X̃∗ in the complex domain be Hermitian. Let A be a p × p
nonsingular constant matrix in the real or complex domain. Then,

Ỹ = AX̃A∗, |A| 6= 0,⇒ dỸ = |det(A)|2pdX̃ = |det(A∗A)|pdX̃. (20)
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For 0 < a < 1,<(α) > 0,<(β) > 0,<(γ) > p−1
2 , consider the following integral:

∫
X>O

f2(X)dX = c2

∫
X>O
|X|γ−

p+1
2

e−αtr(X)

(1 + ae−tr(X))α+β
dX

= c2

∞

∑
k=0

(α + β)k
(−a)k

k!

∫
X>O
|X|γ−

p+1
2 e−(α+k)tr(X)dX

= c2

∞

∑
k=0

(α + β)k
(−a)k

k!
(α + k)−pγΓp(γ)

= c2Γp(γ)ζ[{(pγ, α)} : α + β; ;−a]

for <(γ) > 1, p ≥ 1 and ζ(·) are defined in (7). Hence, we have the model that begins
Section 2.3.

2.3. Extended Logistic Model 2 in the Real Domain

For X > O, a p× p real positive definite matrix, <(γ) > p−1
2 ,<(α) > 0,<(β) > 0, 0 <

a < 1,

f2(X)dX = [Γp(γ)ζ[{(pγ, α)} : α + β; ;−a]]−1|X|γ−
p+1

2
e−αtr(X)

(1 + ae−tr(X))α+β
dX. (21)

If the p× p matrix X̃ > O is Hermitian positive definite, then |X|γ−
p+1

2 is to be replaced
with |det(X̃)|γ−p, the rest of the procedure in the real case goes through and the model will
be as follows in Section 2.4.

2.4. Extended Logistic Model 2 in the Complex Domain

For the p × p Hermitian positive definite matrix X̃ = X̃∗ > O,<(α) > 0,<(β) > 0,
<(γ) > p− 1, 0 < a < 1, 2p<(γ) > 1 and Γ̃P(γ), as defined in Lemma 2. The model in the
complex domain is the following:

f2a(X̃)dX̃ = [Γ̃p(γ)ζ[{(2pγ, α)} : α + β; : −a]]−1|det(X̃)|γ−p e−αtr(X̃)

(1 + ae−tr(X̃))α+β
dX̃. (22)

Note that one can generalize model 2 by replacing tr(X) in the exponent with [tr(X)]δ,
δ > 0 or with [tr(X)]δ1 , δ1 > 0 in the numerator and [tr(X)]δ2 , δ2 > 0, X with X − µ,
µ = E[X] in the denominator. Such generalized integrals can be evaluated, but the process
will be very lengthy and, hence, such generalizations involving a determinant and power of
trace in the exponent will not be considered here. Now, we will look into a model involving
a rectangular matrix in the real and complex domains.

Consider a real p× q, p ≤ q matrix X of rank p. Then, we know that S = XX′ > O (real

symmetric positive definite). From Lemma 2, dX = π
pq
2

Γp(
q
2 )
|S|

q
2−

p+1
2 dS. Now, we examine

the evaluation of the following integral:

∫
X

f3(X)dX = c3|XX′|γ−
p+1

2
e−αtr(XX′)

(1 + ae−tr(XX′))α+β
dX

= c3

∞

∑
k=0

(α + β)k
(−a)k

k!
π

pq
2

Γp(
q
2 )

∫
S>O
|S|γ+

q
2−

p+1
2 e−(α+k)tr(S)dS

= c3

∞

∑
k=0

(α + β)k
(−a)k

k!
π

pq
2

Γp(
q
2 )

Γp(γ +
q
2
)(α + k)−p(γ+ q

2 )

= c3
π

pq
2 Γp(γ + p

2 )

Γp(
q
2 )

ζ[{(p(γ +
q
2
), α)} : α + β; ;−a]
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for p(<(γ) + q
2 ) > 1,<(α) > 0,<(β) > 0, 0 < a < 1 nd ζ(·) is defined in (7). The binomial

expansion is valid since tr(XX′) > 0, 0 < ae−tr(XX′) < 1. The integral is evaluated by
making use of the real matrix-variate gamma integral of Lemma 2. Therefore, we have the
model shown in Section 2.5.

2.5. Extended Logistic Model 3 in the Real Domain

For <(γ + q
2 ) >

p−1
2 ,<(α) > 0,<(β) > 0, 0 < a < 1,<(p(γ + q

2 )) > 1, X a p× q real
matrix of rank p, p ≤ q and then the p× p matrix XX′ = S > O,

f3(X)dX =
Γp(

q
2 )

π
pq
2 Γp(γ + q

2 )
[ζ[{(p(γ +

q
2
), α)} : α + β; ;−a]]−1

× |XX′|γ−
p+1

2
e−αtr(XX′)

(1 + ae−tr(XX′))α+β
dX (23)

for p(<γ) + q
2 ) > 1, p ≥ 1, q ≥ 1,<(α) > 0,<(β) > 0, 0 < a < 1 and XX′ = S > O. ζ(·) is

defined in (7).
Now, we look at the complex domain. Let the p× q matrix X̃ in the complex domain be

of rank p, p ≤ q. Then, the following are the replacement to obtain model 3 corresponding to

model 3 in the real domain: Replace |XX′|γ−
p+1

2 with |det(X̃X̃∗)|γ−p. In the transformation
S̃ = X̃X̃∗, we have dX̃ = πpq

Γ̃p(q)
|det(S̃)|q−pdS̃, where Γ̃p(q) is defined in Lemma 2. The rest

of the procedure is parallel to that in the real case. Hence, model 3 in the complex domain
is shown in Section 2.6.

2.6. Extended Logistic Model 3 in the Complex Domain

f3a(X̃)dX̃ =
Γ̃p(q)

πpqΓ̃p(γ + q)
[ζ[{(2p(γ + q), α)} : α + β; ;−a]]−1

× |det(X̃X̃∗)|γ−p e−αtr(X̃X̃∗)

(1 + ae−tr(X̃X̃∗))α+β
dX̃ (24)

for 2p(<(γ) + q) > 1, p ≥ 1, q ≥ 1,<(α) > 0,<(β) > 0, 0 < a < 1,<(γ) > −q + p− 1 and
X̃X̃∗ = S̃ > O.

Note 3. We can generalize model 3 in the real case by replacing XX′ with A
1
2 (X −M)B(X −

M)′A
1
2 , where M = E[X] is a p× q constant matrix; A > O and B > O are p× p and q× q

constant positive definite matrices, respectively; and A
1
2 and B

1
2 are, respectively, the positive

definite square roots of A > O and B. Then, the normalizing constant c3 is to be multiplied
by |A|

q
2 |B|

p
2 in the real case and in the complex case the normalizing constant is multiplied by

|det(A)|q|det(B)|p, that is, the absolute values of the determinants raised to q and p, respectively.
(X − M)′ in the real case is replaced by (X̃ − M̃)∗, A = A∗ > O and B = B∗ > O in the
complex domain. Therefore, no separate listing will be there for this generalization. Another
generalization of model 3 in the real domain is to replace tr(A

1
2 (X − M)B(X − M)′A

1
2 ) with

[tr(A
1
2 (X −M)B(X −M)′A

1
2 )]δ, δ > 0, that is, an arbitrary power is taken for the trace in the

exponent, either the same δ > 0 for both the numerator and denominator exponents or different
δ1 and δ2 and the corresponding replacements in the complex domain. Even with the same δ > 0,
the evaluation of the integral will become very lengthy and when the δ’s are different; it will be
more difficult also. The same procedures will also work for δ < 0, δ1 < 0, δ2 < 0. These types of
generalizations will not be considered here.

Now, we consider a case where the multiplicative factor determinant is replaced by a
trace and the exponential trace is given an arbitrary power. Let the p× q real matrix X be
of rank p, p ≤ q. Consider [tr(XX′)]δ, δ > 0. Since tr(XX′) is the sum of squares of pq real
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scalar variables, one can apply Lemma 2 by taking a row vector of pq real scalar variables.

Let u = tr(XX′)⇒ dX = π
pq
2

Γ( pq
2 )

u
pq
2 −1du, u > 0. Then, let us evaluate the following integral:

∫
X

f4(X)dX = c4

∫
X
[tr(XX′)]γ

e−α[tr(XX′)]δ

(1 + ae−[tr(XX′)]δ)α+β
dX

= c4

∞

∑
k=0

(α + β)k
(−a)k

k!
π

pq
2

Γ( pq
2 )

∫ ∞

u=0
uγ+

pq
2 −1e−(α+k)uδ

du

= c4
π

pq
2

Γ( pq
2 )

∞

∑
k=0

(α + β)k
(−a)k

k!
1
δ

Γ(
1
δ
(γ +

pq
2
))(α + k)−

1
δ (γ+

pq
2 )

= c4
π

pq
2 Γ( 1

δ (γ + pq
2 ))

Γ( pq
2 )

1
δ

ζ[{(1
δ
(γ +

pq
2
), α)} : α + β; ;−a]

for <(γ) + pq
2 > δ, δ > 0,<(α) > 0,<(β) > 0 and 0 < a < 1; ζ(·) is defined in (7). From this

integral, we can construct the model in Section 2.7.

2.7. Extended Logistic Model 4 in the Real Domain

f4(X)dX =
δΓ( pq

2 )

π
pq
2 Γ( 1

δ (γ + pq
2 ))

[ζ[{(1
δ
(γ +

pq
2
), α)}; α + β; ;−a]]−1

× [tr(XX′)]γ
e−α[tr(XX′)]δ

(1 + ae−[tr(XX′)]δ)α+β
dX (25)

for <(α) > 0,<(β) > 0,<(γ) + pq
2 > δ, δ > 0 and 0 < a < 1. The following are the

replacements to obtain model 4 in the complex domain. Replace XX′ with X̃X̃∗. Then,
tr(X̃X̃∗) is the sum of squares of the absolute values of pq complex variables or the sum of
squares of 2pq real scalar variables. Therefore, pq

2 in the real case will go to pq. Then, using
steps parallel to those in the real case, one has model 4 in the complex domain, shown in
Section 2.8.

2.8. Extended Logistic Model 4 in the Complex Domain

For <(α) > 0,<(β) > 0,<(γ) + pq > δ, δ > 0, p ≥ 1, q ≥ 1, X̃X̃∗ = S̃ > O and
0 < a < 1. ζ(·) is given in (7),

f4a(X̃)dX̃ =
δΓ(pq)

πpqΓ( 1
δ (γ + pq))

[ζ[{(1
δ
(γ + pq), α)}; α + β; ;−a]]−1

× [tr(X̃X̃∗)]γ
e−α[tr(X̃X̃∗)]δ

(1 + ae−[tr(X̃X̃∗)]δ)α+β
dX̃. (26)

Note 4. One can generalize model 4 as follows: Take the δ in the numerator exponent as δ1 and
that in the denominator exponent as δ2 6= δ1. In this case, the evaluation of the integral becomes
very complicated. One can introduce a factor containing a determinant such as |XX′|ρ,<(ρ) > 0
as an additional factor into model 4 in the real case and |det(X̃X̃∗)|ρ,<(ρ) > 0 in the complex case.
Then, the evaluation of the integral will become very lengthy; see [10] and the references therein.
Hence, these cases will not be discussed here. Another generalization possible is to replace XX′

with A
1
2 (X −M)B(X −M)′A

1
2 , where the p× p constant matrix A > O, the q× q constant

matrix B > O, M = E[X] and A
1
2 is the positive definite square root of A > O in the real case and

the corresponding replacements in the complex domain with A = A∗ > O, B = B∗ > O. This
generalization brings only minor changes. In the real case, the normalizing constant is multiplied by
|A|

q
2 |B|

p
2 , and in the complex case, the normalizing constant is multiplied by |det(A)|q|det(B)|p.
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The particular cases here will be (1): M = O; (2) M = O, A = Ip or B = Iq; (3): M = O, A = Ip
and B = Iq. This generalized model will not be listed as a different model here.

3. Some Bayesian Models

Our aim here will be to look into a few Bayesian procedures which will end up in
the extended zeta function. Bayesian models are very important in many applied areas.
According to [1] “Quantum Mechanics is just the Bayesian theory generalised to the complex
Hilbert space”. The models that we construct in this section will hold in multivariate and
matrix-variate complex domains, and will hold in complex Hilbert spaces as well; hence,
the models are expected to be highly useful in many areas, especially in Quantum Physics.

Consider the standard Gaussian function Z ∼ Nm(O, I) in the real case and Z̃ ∼
Ñm(O, I) in the complex case, where Z is m × 1, Z′ = [z1, . . . , zm] and Z̃ is m × 1,
Z̃′ = [z̃1, . . . , z̃m], and the functions are the following, denoted by f (Z) in the real case and
f (Z̃) in the complex case, where

f (Z) =
1

(2π)
m
2

e−
1
2 Z′Z; f (Z̃) =

1
πm e−Z̃∗ Z̃.

We will include the normalizing constants in all our models so that they will also be
statistical densities. Consider a constant p× m, p ≤ m matrix H of rank p. Then, in the
real case, X = HZ ∼ Np(O, HH′) and X is called a scale mixture. Then, HH′ > O (real
positive definite). Let A = (HH′)−1. Then, the function or density of X = HZ, at a given
A, denoted by f (X|A), is the following:

f (X|A)dX =
|A| 12
(2π)

p
2

e−
1
2 tr(AXX′)dX, A > O, tr(AXX′) = X′AX, (27)

for X′ = [x1, . . . , xp],−∞ < xj < ∞ and j = 1, . . . , p. In the complex case, X̃ = HZ̃ and the
function or density of X̃ in the conditional space, denoted by f (X̃|A), is the following:

fa(X̃|A)dX̃ =
|det(A)|

πp e−X̃∗AX̃dX̃, A = A∗ > O, tr(AX̃X̃∗) = X̃∗AX̃, (28)

for X̃′ = [x̃1, . . . , x̃p], |x̃j|2 = x2
j1 + x2

j2,−∞ < xjk < ∞, k = 1, 2 and j = 1, . . . , p. We will
consider several cases of prior functions or prior distributions for the parameter matrix A.

3.1. Bayesian Models

In the real case, let g(A) be the prior function or prior density of A, where

g(A)dA =
|C|γ

Γp(γ)
|A|γ−

p+1
2 e−tr(CA)dA, C > O, A > O,<(γ) > p− 1

2
(29)

where Γp(γ) is defined in Lemma 2. The corresponding function in the complex domain
is denoted again by ga(Ã), where A and C in the complex case are Hermitian positive
definite.

ga(Ã)dÃ =
|det(C)|γ

Γ̃p(γ)
|det(Ã)|γ−pe−tr(CÃ)dÃ, Ã = Ã∗ > O, C = C∗ > O,<(γ) > p− 1 (30)

where Γ̃p(γ) is defined in Lemma 2. Note that C in (30) may be complex or real. It is
assumed that the p× p constant positive definite matrices C in the real and complex cases
are known. If C has its own prior function or prior density, then we have one more step
in the Bayesian procedure. The unconditional function or unconditional density of X and
X̃ will be called the Bayesian models in this paper, and they will be denoted by f1(X)
and f1a(X̃), respectively. The Bayesian procedure involves one more step of computing
the posterior function or posterior density, denoted by g1(A|X) = f (X|A)g(A)/ f1(X) in
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the real case and g1a(Ã|X̃) fa(X̃|Ã)/ f1a(X̃) in the complex case, and then studying the
properties of A in the real case and Ã in the complex case in the conditional space of A|X
and Ã|X̃, respectively. In the above real case, f1(X) is as follows in Section 3.2.

3.2. Bayesian Model 1 in the Real Case

f1(X) =
∫

A>O
f (X|A)g(A)dA

=
|C|γ

(2π)
p
2 Γp(γ)

∫
A>O
|A|γ+

1
2−

p+1
2 e−

1
2 tr(AXX′)−tr(CA)dA

=
|C|γΓp(γ + 1

2 )

(2π)
p
2 Γp(γ)

|C +
1
2

XX′|−(γ+
1
2 ),<(γ +

1
2
) >

p− 1
2

=
Γp(γ + 1

2 )

|C| 12 Γp(γ)(2π)
p
2
{

p

∏
j=1

(1 + λj)}−(γ+
1
2 ) (31)

where λ1, . . . , λp are the eigenvalues of C−
1
2 1

2 XX′C−
1
2 > O, C = C′ > O and <(γ) > p−1

2 .

3.3. Bayesian Model 1 in the Complex Domain

Let the unconditional function or unconditional density of X̃ in the complex domain
be denoted by f1a(X̃). Then, going through parallel steps to those in the real case, we have
f1a(X̃) as the following:

f1a(X̃)dX̃ =
Γ̃p(γ + 1)

πpΓ̃p(γ)|det(C)|
{

p

∏
j=1

(1 + λj)}−2(γ+1) (32)

for <(γ) > p− 1 and C = C∗ > O, where λj > 0 and j = 1, . . . , p are the eigenvalues of

C−
1
2 X̃X̃∗C∗−

1
2 . We have used the same notations for the eigenvalues in the complex case

as in the real case, but in the complex case the eigenvalues will be real because the matrix
here is Hermitian positive definite, but the eigenvalues need not be the same as those in
the real case.

The next step in the Bayesian procedure will be illustrated by computing the expected
value of |A| in the conditional space of A, given X, in the real case here. Then, in the
real case, the conditional density of A, given X, denoted by g1(A|X) = f (X|A)g(A)

f1(X)
and the

Bayes’ estimate of |A|, given X, is E[|A|] in g1(A|X) and it is the following, where E(·)
denotes the expected value of (·):

∫
A>O
|A|g1(A|X)dA =

|C + 1
2 XX′|γ+ 1

2

Γp(γ + 1
2 )

∫
A>O
|A|γ+

3
2−

p+1
2 e−tr(A(C+ 1

2 XX′))dA

=
Γp(γ + 3

2 )

Γp(γ + 1
2 )
|C +

1
2

XX′|−1

=
Γ(γ + 3

2 )Γ(γ + 1)

Γ(γ + 1− p
2 )Γ(γ + 1

2 −
p
2 )|C + 1

2 XX′|
.

For the next model also, we will start with the conditional function as a Gaussian one
as in (27) and (28). For the prior function or prior density, we will consider a matrix-variate
logistic-type function. Let the prior function or prior density for A in the real case be the
following, again denoted by g(A):

g(A)dA =
c

Γp(γ)
|A|γ−

p+1
2

e−αtr(A)

(1 + ae−tr(A))α+β
dA, 0 < a < 1, A > O,
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for <(α) > 0,<(β) > 0 and <(γ) > p−1
2 , where the normalizing constant c is already

evaluated in Section 2. The corresponding prior function or prior density in the complex
domain, denoted by g(Ã), will be the following:

g(Ã)dÃ =
c̃

Γ̃p(γ)
|det(Ã)|γ−p e−αtr(Ã)

(1 + ae−tr(Ã))α+β
dÃ, Ã = Ã∗ > O, 0 < a < 1,

for <(α) > 0,<(β) > 0 and <(γ) > p− 1.
Then, the unconditional function or density of X in the real case, again denoted by

f1(X), is as follows in Section 3.4.

3.4. Bayesian Model 2 in the Real Domain

f1(X)dX =
c

(2π)
p
2 Γp(γ)

∫
A>O
|A|γ+

1
2−

p+1
2 e−

1
2 tr(AXX′) e−αtr(A)

(1 + ae−tr(A))α+β
dA

=
c

(2π)
p
2 Γp(γ)

∞

∑
k=0

(α + β)k
(−a)k

k!

∫
A>O
|A|γ+

1
2−

p+1
2 e−(α+k)tr(A)− 1

2 tr(AXX′)dA

=
cΓp(γ + 1

2 )

(2π)
p
2 Γp(γ)

∞

∑
k=0

(α + β)k
(−a)k

k!
|(α + k)I +

1
2

XX′|−(γ+
1
2 ). (33)

The corresponding f1a(X̃) in the complex domain is the following:

f1a(X̃) =
c̃Γ̃p(γ + 1)
πpΓ̃p(γ)

∞

∑
k=0

(α + β)k
(−a)k

k!
|det((α + k)I + X̃X̃∗)|−(γ+1). (34)

By using the properties of the determinant of a partitioned matrix, we have the
following equivalent relationships in the real case:

|(α + k)I +
1
2

XX′| =
∣∣∣∣ 1 −X′

1
2 X (α + k)I

∣∣∣∣
= (α + k)p[1 +

X′X
2(α + k)

] = (α + k)p−1[α +
1
2

X′X + k].

Then, f1(X) of (33), that is, in the real case, is the following:

f1(X) =
c

(2π)
p
2

Γp(γ + 1
2 )

Γp(γ)

∞

∑
k=0

(α + β)k
(−a)k

k!
(α + k)−(γ+

1
2 )(p−1)[(α +

1
2

X′X) + k]−(γ+
1
2 )

=
c

(2π)
p
2

Γp(γ + 1
2 )

Γp(γ)
ζ[{((γ +

1
2
)(p− 1), α), ((γ +

1
2
), α +

1
2

X′X)} : α + β; ;−a]

=
1

(2π)
p
2

Γp(γ + 1
2 )

Γp(γ)

ζ[{((γ + 1
2 )(p− 1), α), (γ + 1

2 , α + 1
2 X′X)}; α + β; ;−a]

ζ[{(pγ, α)}; α + β; ;−a]
(35)

for <(γ) > p−1
2 , p<(γ) > 1,<(γ) + 1

2 > 1,<(α) > 0,<(β) > 0, 0 < a < 1 and X is p× 1
real. By using steps parallel to those in the real case, we can obtain the corresponding
unconditional function or density in the complex domain as follows in Section 3.5.

3.5. Bayesian Model 2 in the Complex Domain

f1a(X̃) =
1

πp
Γ̃p(γ + 1)

Γ̃p(γ)

ζ[{(2(γ + 1)(p− 1), α), (2(γ + 1), α + X̃∗X̃)} : α + β; ;−a]
ζ[{(2pγ, α)}; α + β; ;−a]

(36)

for <(γ) > p− 1, 2(<(γ) + 1) > 1,<(α) > 0,<(β) > 0, 0 < a < 1 and X̃ is p× 1.
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For the next model, we will also start with a real multivariate Gaussian function
or density with the parameter matrix being the covariance matrix therein, denoted by a
p× p real positive definite matrix B > O. The Gaussian function in the real domain is the
following, again denoted by f (X|B):

f (X|B)dX =
1

(2π)
p
2 |B| 12

e−
1
2 tr(B−1XX′)dX, B > O, X′ = [x1, . . . , xp],

for −∞ < xj < ∞ and j = 1, . . . , p. In the complex domain, the corresponding function or
density is the following:

fa(X̃|B) = 1
πp|det(B)|e

−tr(B−1X̃X̃∗)dX̃, B = B∗ > O, X̃′ = [x̃1, . . . , x̃p],

for x̃j = xj1 + ixj2,−∞ < xjk < ∞, k = 1, 2, j = 1, . . . , p and i =
√
(−1). The two models

that we considered so far had A = B−1 having a prior function or density. But, when B has
a prior function or density, then the problem becomes complicated. Then, the integral to be
evaluated will belong to matrix-variate Bessel type or Krätzel type. Let the prior function or
density for B be an extended logistic function or density. We will denote the prior function
in the real and complex domains by g(B) and ga(B), respectively, where in the real case
B = B′ > O and in the complex case B = B∗ > O. In the real case, let

g(B)dB =
c

Γp(γ)
|B|γ−

p+1
2

e−αtr(B)

(1 + ae−tr(B))α+β
dB (37)

for <(α) > 0,<(β) > 0, 0 < a < 1,<(γ) > p−1
2 and c−1 = ζ[{(pγ, α)} : α + β; ;−a].

The corresponding prior function or density in the complex domain can be obtained by
replacing |B| with |det(B)|, p+1

2 with p, Γp(γ) by Γ̃p(γ) and the condition <(γ) > p−1
2

with <(γ) > p− 1. Hence, it will not be listed here separately in order to save space. Then,
the unconditional density of X in the real case, again denoted by f1(X), is as follows in
Section 3.6.

3.6. Bayesian Model 3 in the Real Domain

f1(X) =
∫

B>O
f (X|B)g(B)dB

=
c

Γp(γ)(2π)
p
2

∫
B>O
|B|γ−

1
2−

p+1
2 e−

1
2 tr(B−1XX′) e−αtr(B)

(1 + ae−tr(B))α+β
dB

=
c

Γp(γ)(2π)
p
2

∞

∑
k=0

(α + β)k
(−a)k

k!

∫
B>O
|B|γ−

1
2−

p+1
2 e−

1
2 tr(B−1XX′)−(α+k)tr(B)dB (38)

for 0 < a < 1,<(α) > 0,<(β) > 0, B = B′ > O,<(γ) > p−1
2 and X is p× 1 real. Direct

evaluation of the integral in (38) is difficult because it is a real matrix-variate Bessel type or
Krätzel type integral involving B and B−1 in the exponent. Ref. [11] evaluated the general
form of this integral for the real scalar variable case, in connection with the generalized
reaction-rate probability integral in nuclear reaction rate theory. We can consider the
Fourier transform of f1(X) in (38) by taking an expected value of a conditional expectation.
Let T be a p× 1 parameter vector. The Fourier transform of f1(X), denoted by Ff1(T), is
E[e−iT′X ], i =

√
(−1). This we can evaluate by taking a conditional expectation at a given

B and then taking an expectation over B. That is,

Ff1(T) = E[e−iT′X ] = E[E[e−iT′X |B]]. (39)
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But from real Gaussian density, we have the conditional expectation of e−iT′X |B as
e−

1
2 T′BT , and in the complex case it is e−

1
4 T∗BT , where T∗ is the conjugate transpose of T;

see, for example, [12]. Observe that in the real case 1

(2π)
p
2 |B|

1
2

e−
1
2 X′B−1X is now replaced by

e−
1
2 T′BT . In the complex case, 1

|det(B)|(π)p e−X̃∗B−1X̃ is now replaced by e−T∗BT . Now, take
the integral over B to complete the integration in the real case:∫

B>O
|B|γ−

p+1
2 e−(α+k)tr(B)− 1

2 tr(BTT′)dB = Γp(γ)|(α + k)I +
1
2

TT′|−γ

for <(γ) > p−1
2 . By using the properties of the determinant of a partitioned matrix, we

have the following:

|(α + k)I +
1
2

TT′| =
∣∣∣∣ 1 −T′

1
2 T (α + k)I

∣∣∣∣ = |(α + k)I|[1 + 1
2

T′T
α + k

]

= (α + k)p−1[α + k +
1
2

T′T]⇒ |(α + k)I +
1
2

TT′|−γ

= (α + k)−γ(p−1)[α + k +
1
2

T′T]−γ. (40)

The corresponding quantity in the complex domain is (α+ k)−2γ(p−1)[α+ k+ T∗T]−2γ.
The unconditional function or density of X in the real case is now available from the inverse
Fourier transform of [α + k + 1

2 T′T]−γ. In order to evaluate it, we will use the technique
used in [12]. We can replace [α + k + 1

2 T′T]−γ with an equivalent integral, namely,

[α + k +
1
2

T′T]−γ =
1

Γ(γ)

∫ ∞

0
yγ−1e−y[α+k+ 1

2 T′T]dy

=
1

Γ(γ)

∫ ∞

0
yγ−1e−y(α+k)e−

y
2 T′Tdy,<(γ) > 0

where y is a real positive scalar. The Fourier inverse of e−
y
2 T′T is 1

√
y(2π)

p
2

e−
1

2y X′X. Hence,

the Fourier inverse coming from (39) is the following:

f1(X) =
c

Γp(γ)

∞

∑
k=0

(α + β)k
(−a)k

k!
Γp(γ)

Γ(γ)

× 1

(2π)
p
2 (α + k)(p−1)γ

∫ ∞

0
yγ− 1

2−1e−y(α+k)− 1
2y X′Xdy

=
c

(2π)
p
2 (α + k)(p−1)γΓ(γ)

∞

∑
k=0

(α + β)k
(−a)k

k!

∫ ∞

0
yγ− 1

2−1e−y(α+k)− 1
2y X′Xdyc−1 (41)

= ζ[{(pγ, α)} : α + β; ;−a].

For evaluating the integral in (41), we will use the following lemma:

Lemma 4. For δ 6= ±ν, ν = 0, 1, 2, . . . ,<(ρ) > 0,<(γ) > 0

P(γ) =
∫ ∞

0
tδ−1e−ρt− γ

t dt =
Γ(δ)
ρδ 0F1( ; 1− δ; γρ) + γδΓ(−δ)0F1( ; 1 + δ; γρ). (42)

where 0F1(·) is the Bessel hypergeometric series.



Mathematics 2023, 11, 4076 15 of 19

Proof. Let us take the Mellin transform of P(γ) with Mellin parameter s. Then,

MP(s) =
∫ ∞

0
γs−1P(γ)dγ

=
∫ ∞

0
tδ−1e−ρt[

∫ ∞

0
γs−1e−

γ
t dγ]dt

= Γ(s)Γ(δ + s)ρ−(δ+s),<(s) > 0,<(δ + s) > 0.

From the inverse Mellin transform,

P(γ) =
1

ρδ(2πi)

∫ c+i∞

c−i∞
Γ(s)Γ(δ + s)(γρ)−sds, i =

√
(−1).

For δ 6= ±ν, ν = 0, 1, . . ., the poles of the integrand are simple and then the integral
can be evaluated as the sum of the residues at the poles of Γ(s) and Γ(δ + s). Poles coming
from Γ(s) give the sum of residues, denoted by S1, as the following:

S1 =
1
ρδ

∞

∑
ν=0

(−1)ν

ν!
Γ(δ− ν)(γρ)ν =

Γ(δ)
ρδ

∞

∑
ν=0

1
(1− δ)ν

(γρ)ν =
Γ(δ)
ρδ 0F1( ; 1− δ; γρ)

where 0F1(·) is a Bessel hypergeometric series, the properties used are lims→−ν(s+ ν)Γ(s) =
(−1)ν

ν! and Γ(γ− ν) = (−1)νΓ(γ)
(1−γ)ν

whenever 1− γ 6= 0,−1, . . . and Γ(γ) is defined. The sum
of the residues coming from Γ(δ + s), denoted by S2, is the following:

S2 = γδΓ(−δ)0F1( ; 1 + δ; γρ).

Note that S1 + S2 proves the lemma.
Then, the integral part in (41) is the following:

∫ ∞

0
yγ− 1

2−1e−y(α+k)− X′X
2y dy =

Γ(γ− 1
2 )

(α + k)γ− 1
2

0F1( ;
3
2
− γ;

1
2
(α + k)X′X)

+ Γ(
1
2
− γ)(

1
2

X′X)γ− 1
2 0F1( ; γ +

1
2

;
1
2
(α + k)X′X)

for <(γ − 1
2 ) 6= ±ν, ν = 0, 1, 2, . . .<(α) > 0 and <(γ) > 1

2 . In the complex case, the
corresponding integral will be the following:

∫ ∞

0
yγ−1−1e−y(α+k)− X̃∗ X̃

y dy =
Γ̃(γ− 1)
(α + k)γ−1 0F1( ; 2− γ; (α + k)X̃∗X̃)

+ Γ̃(1− γ)(X̃∗X̃)γ−1
0F1( ; γ; (α + k)X̃∗X̃)

for <(γ− 1) 6= ±ν, ν = 0, 1, 2, . . .<(α) > 0 and <(γ) > 1.

Note 5. The integral in Lemma 4 can also be evaluated in terms of a modified Bessel function of the
second kind: ∫ ∞

0
tν−1e−αt− γ

t dt = 2
(γ

α

) ν
2 Kν(2

√
αγ) (43)

for <(α) > 0 and <(γ) > 0, where Kν is the modified Bessel function of the second kind of order ν;
see, for example, page 368 of [13]. Hence, from (41) and (42), we have the unconditional density of
X in the real case as the following:
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f1(X) =
c

(2π)
p
2 Γ(γ)

∞

∑
k=0

(α + β)k
(−a)k

k!
{ Γ(γ− 1

2 )

(α + k)γ− 1
2

0F1( ;
3
2
− γ;

1
2
(α + k)X′X)

+ Γ(
1
2
− γ)(

1
2

X′X)γ− 1
2 0F1( ; γ +

1
2

;
1
2
(α + k)X′X)

}
(44)

for <(γ) > 1
2 , γ− 1

2 6= ±ν, ν 6= 0, 1, . . . ,<(α) > 0 and c−1 = ζ[{(pγ, α)} : α + β; ;−a]. In
the complex domain, the unconditional density f1a(X̃) is available from (44) by replacing γ− 1

2
with γ− 1 and 1

2 X′X with X̃∗X̃. That is,

f1a(X̃) =
c̃

(π)pΓ̃(γ)

∞

∑
k=0

(α + β)k
(−a)k

k!
{ Γ̃(γ− 1)
(α + k)γ−1 0F1( ; 2− γ; (α + k)X̃∗X̃)

+ Γ̃(1− γ)(X̃∗X̃)γ−1
0F1( ; γ; (α + k)X̃∗X̃)

}
(45)

for <(γ) > 1,<(γ)− 1 6= ±ν, ν = 0, 1, . . . ,<(α) > 0 and c̃−1 = ζ[{(2pγ, α)} : α + β; ;−a].

3.7. Bayesian Model 4 in the Real Case

Now, we consider a rectangular matrix. Let the p× q, p ≤ q real matrix X of rank p
have the following density:

f (X)dX = c|AXBX′|γ e−αtr(AXBX′)

(1 + ae−tr(AXBX′))α+β
dX

= c
∞

∑
k=0

(α + β)k
(−a)k

k!
|AXBX′|γe−(α+k)tr(AXBX′)dX, (46)

for 0 < a < 1, A > O and B > O., where A is a p× p and B is a q× q constant positive
definite matrix. The normalizing constant c can be evaluated by making the transformations

Y = A
1
2 XB

1
2 ⇒ dY = |A|

q
2 |B|

p
2 dX and U = YY′ ⇒ dY = π

pq
2

Γp(
q
2 )
|U|

q
2−

p+1
2 dU, and then

integrate out by using a real matrix-variate gamma integral to obtain

c−1 =
π

pq
2 Γp(γ + q

2 )

Γp(
q
2 )|A|

q
2 |B|

p
2

ζ[{(p(γ +
q
2
), α)} : α + β; ;−a],<(γ +

q
2
) >

p− 1
2

. (47)

The density in the complex case, denoted by f (X̃), is available from the real case
structure by replacing |AXBX′| with |det(AX̃BX̃∗)| and AXBX′ with AX̃BX̃∗, and then
the normalizing constant in the complex case, denoted by c̃, is the following:

c̃−1 =
πpqΓ̃p(γ + q)

Γ̃p(q)|det(Ã)|q|det(B̃)|p
ζ[{(2p(γ + q), α)} : α + β; ;−a],<(γ + q) > p− 1. (48)

If matrix A has a prior function or density, then f (X) in the real case is f (X|A). Let
the prior density of A in the real case be again denoted by g(A) where,

g(A)dA =
|C|δ

Γp(δ)
|A|δ−

p+1
2 e−tr(CA)dA,<(δ) > p− 1

2
(49)

where the constant positive definite matrix C > O is assumed to be known. Then, the
unconditional density of X in the real case, denoted by f1(X), is the following:
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f1(X) =
∫

A>O
f (X|A)g(A)dA

=
|B|

p
2 |C|δΓp(

q
2 )|XBX′|γ

π
pq
2 Γp(δ)Γp(γ + q

2 )ζ[{(p(γ + q
2 ), α)} : α + β; ;−a]

×
∞

∑
k=0

(α + β)k
(−a)k

k!

∫
A>O
|A|γ+

q
2+δ− p+1

2 e−(α+k)tr(AXBX′)−tr(CA)dA

=
|B|

p
2 |C|δΓp(

q
2 )|XBX′|γ

π
pq
2 Γp(δ)Γp(γ + q

2 )ζ[{(p(γ + q
2 ), α)} : α + β; ;−a]

× Γp(γ + δ +
q
2
)

∞

∑
k=0

(α + β)k
(−a)k

k!
|(α + k)XBX′ + C|−(γ+δ+

q
2 ). (50)

One can have the following simplification by using the properties of the partitioned
determinant:

|(α + k)XBX′ + C| = |XBX′| |(α + k)I + (XBX′)−
1
2 C(XBX′)−

1
2 |

= |XBX′|
p

∏
j=1

(k + α + λj) (51)

where λj > 0, j = 1, . . . , p are the eigenvalues of the positive definite matrix

(XBX′)−
1
2 C(XBX′)−

1
2 .

From (50) and (51), the unconditional density can be written in terms of an extended
zeta function. Observe that |XBX′|γ is cancelled in the normalizing constant and the
balance of the exponent is δ + q

2 . Then, f1(X), the unconditional density in the real domain,
is the following:

f1(X) =
|B|

p
2 |C|δΓp(

q
2 )|XBX′|−(δ+

q
2 )Γp(γ + δ + q

2 )

π
pq
2 Γp(δ)Γp(γ + q

2 )ζ[{(p(γ + q
2 ), α)} : α + β; ;−a]

× ζ[{((γ + δ +
q
2
), α + λ1), . . . , ((γ + δ +

q
2
), α + λp)} : α + β; ;−a] (52)

for B > O, C > O,<(δ) > p−1
2 ,<(γ) + q

2 > p−1
2 , p(<(γ) + q

2 ) > 1,<(α) > 0,
<(β) > 0 and 0 < a < 1, where the λj’s are defined in (51).

In the complex case, the prior density of Ã = Ã∗ > O, corresponding to the real case
g(A), denoted by ga(Ã), is the following:

ga(Ã) =
|det(C)|δ

Γ̃p(δ)
|det(Ã)|δ−pe−tr(CÃ)dÃ, Ã = Ã∗ > O, C = C∗ > O,<(δ) > p− 1. (53)

The unconditional density of X̃, denoted by f1(X̃), is the following:

f1a(X̃) =
|det(B)|p|det(C)|δΓ̃p(q)|det(XBX∗)|−(δ+q)Γ̃p(γ + δ + q)

πpqΓ̃p(δ)Γ̃p(γ + q)ζ[{(2p(γ + q), α)} : α + β; ;−a]

× ζ[{(2(γ + δ + q), α + λ1), . . . , (2(γ + δ + q), α + λp)} : α + β; ;−a] (54)

for B = B∗ > O, C = C∗ > O,<(δ) > p− 1,<(γ + q > p− 1, 2p(<(γ) + q) > 1,<(α) > 0,
<(β) > 0 and 0 < a < 1, where the λjs appearing here are the real positive eigenvalues of

the Hermitian positive definite matrix (X̃BX̃∗)−
1
2 C(X̃BX̃∗)−

1
2 , C = C∗ > O, B = B∗ > O,
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and we have used the same notation, λj, as in the real case, and the λjs in the complex case
need not be equal to those in the real case.

4. Concluding Remarks

Instead of A in (52) and (54) having a prior distribution, if B has a prior distribution
or if both A and B have compatible prior distributions, then one can also evaluate the
unconditional density, but the procedure will be a little more lengthy. Note that we have
only mainly considered two cases of the unconditional function or density for X, namely,
one case where the p× 1 vector X has a Gaussian density with a null mean value and X
has a p× q rectangular matrix-variate gamma distribution. Then, we considered different
prior distributions for a parameter matrix, mainly in the class of logistic-type distributions.
We did not consider the situations where a determinant appears as a multiplicative factor
when the trace in the exponent has an arbitrary power, or a determinant and a trace appear
as multiplicative factors, when the trace in the exponent has an arbitrary power, because
these cases will involve lengthy steps and too much space would have been taken for
the discussion. We could have also looked into Mathai’s pathway-type models for the
conditional and prior functions or densities, which could be considered as extensions of
multivariate-, matrix-variate Gaussian-, matrix-variate gamma- or Wishart-type models.
Also, in order to save space, we did not study various properties of the models introduced
here. In order to limit the size of the manuscript, we stop the discussion here.

For further studies, apart from the items mentioned above, one can explore the path-
way idea by combining matrix-variate type-1 beta, type-2 beta and gamma densities,
observing that particular cases of the matrix-variate gamma will produce matrix-variate
Gaussian as well as Wishart densities. One can study various properties of the models
introduced here. Such studies are likely to bring in more parameters from the set ajs
and bjs. One can explore the applications of the models here, especially the ones in the
complex domain, in quantum physics, communication theory and related areas in light of
the evidence in [1,5].
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