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Abstract: In this work, we propose a mathematical model to describe the price trends of unsustainable
growth, abrupt collapse, and eventual stabilization characteristic of financial bubbles. The proposed
model uses a set of ordinary differential equations to depict the role played by social contagion and
herd behavior in the formation of financial bubbles from a behavioral standpoint, in which the market
population is divided into neutral, bull (optimistic), bear (pessimistic), and quitter subgroups. The
market demand is taken to be a function of both price and bull population, and the market supply is
taken to be a function of both price and bear population. In such a manner, the spread of optimism
and pessimism controls the supply and demand dynamics of the market and offers a dynamical
characterization of the asset price behavior of a financial bubble.
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1. Introduction

Asset price bubbles have been a topic of considerable discussion and controversy in
light of the rapid stock price increases of the 1990s and the growth in US housing prices of
the early 2000s. In particular, the observed rapid asset price increase in such markets has
engendered concerns of significant market distortions, leading some to call for increasing
government oversight to limit the prices of such assets [1].

The definition of a financial (or asset) bubble is controversial; although some academic
economists and the popular media define a financial bubble as a rapid rise in the price
of an asset that makes the asset appear vulnerable to a similarly abrupt collapse, such a
definition is considered imprecise and problematic by most economists. An example that
supports economists’ views is the introduction of new fashion lines, in which the phases
of price growth and decline actually reflect changes in the fair value of the asset and are
the desirable behavior of a healthy market [1]. However, in other assets in which price
fluctuations are not expected, significant increases in price could be concerning, as this
may evidence the asset taking on a price that does not reflect its true value. With this in
mind, Barlevy [1] provides the definition of an asset bubble preferred by most economists,
namely that a bubble is present when the market price of an asset exceeds the asset’s fair or
fundamental value.Therefore, in accordance with this definition, the mathematical model
of financial bubbles developed in this study will establish a market equilibrium at the
fundamental value of the asset and depict the price behavior as it moves away from this
equilibrium price level. This is consistent with the fact that asset bubbles can form even
though the fundamental value of the asset remains completely stable and unchanging [2].

According to Sornette and Cauwels [3], there are often certain events that serve to
trigger the formation of a bubble. Specifically, a bubble often begins to form when a market
is captivated by some new information (such as the introduction of a new technology into
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an industry or market or the appearance of a new market) that creates an expectation of
great future performance. Word begins to spread that the market has the potential for great
returns on investment, triggering a movement of investors into the market. Competent
investors are the first to enter, acknowledging the legitimate investment opportunity pre-
sented by the new development, followed by other (less competent or attentive) investors.
By extension, the increasing demand for the asset and skyrocketing price driven by the
herd behavior of individual investors causes the normal equilibrium behaviors of supply
and demand to effectively cease, leading to market instability [2,3]. Furthermore, over
the course of this growth phase in asset price, the bubble is often subject to a larger than
exponential growth that exceeds the natural growth rate of the market [3]. However, such
price growth trends cannot be sustained indefinitely; the greater the expansion of the
bubble, the more unstable and prone to collapse (due to even small events) the market
becomes [3].

A renowned historical example of the process of bubble formation and collapse ap-
pears in the course of events surrounding the tulipmania of the seventeenth century. As
recounted by Thompson [4], the course of the Thirty Years War of 1618–1648 influenced the
inflated price trends witnessed in the European tulip markets subject to tulipmania. Over
the course of the early to mid-1630s, the Germans successfully pushed back Swedish forces
at a time when the strength of peasant revolts and the Harz Mountain Rebels began to
wane in northwestern Germany. Given tulips’ popularity among the European nobility and
their proclivity to thrive in the region, these developments signaled to the tulip market that
the situation was stabilizing and that demand for tulips would begin to grow significantly.
Therefore, Germany’s military successes in the early to mid-1630s created a general expec-
tation of great prospects for the tulip market and fit the condition for new information that
captivates the market and triggers the formation of a bubble, as outlined by Sornette and
Cauwels [3]. Accordingly, tulip prices began to rise at an abnormal rate in 1632 [4]. The
event that triggered the abrupt collapse of tulip prices came in early October 1636, with
the resounding defeat that Germany suffered to the Swedes (with French support) at the
Battle of Wittstock, combined with a renewal of German peasant revolts, which threatened
to plunge northwest Germany back into turmoil [4]. Demand for tulips subsequently
collapsed, while supply (likely) increased as German princes in the region were forced
to dig up the unguarded and vulnerable tulips. The repercussions for the tulip market
were felt in short order; by early November 1636, tulip prices had fallen to one-seventh
of their peak value [4]. This historical example of a bubble clearly shows the influence of
human behavior on the price of an asset and the emergence of a bubble, which is a major
and current topic of interest in behavioral finance [5–8].

Even though an asset bubble is characterized mainly by the abovementioned phases of
formation and collapse, Kiselev and Ryzhik [9] incorporate a third regime, namely a mean
reversion regime, where the mean reversion is defined as the forces that act on the market
price of an asset to bring it back to the fundamental value from which it diverged. The
authors also indicate that the collapse regime of the bubble might stop only once prices fall
below the fundamental value, particularly if market prices have first risen to exorbitantly
high values.

Thus, we henceforth refer to the three distinct phases in the life cycle of a bubble
that characterize the rapid growth, the abrupt collapse, and the eventual stabilization of
prices as the bubble phase, the collapse phase, and the stabilization phase, respectively. Given
these distinct phases of an asset bubble, the main research question of interest arises: can
the price trends of unsustainable growth, abrupt collapse, and eventual stabilization be
explained by investor behavioral/social contagion processes?

Several mathematical models describing bubble price trends have been proposed
from different perspectives, predominantly from a stochastic perspective [9–12], but also
from an econophysics perspective [2], a mathematical log-periodic power law function
perspective [3], and an agent-based model perspective [13].
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In this work, we hypothesize that the bubble, collapse, and stabilization phases of
asset bubbles can be explained qualitatively from a behavioral/social contagion standpoint
in the market. To investigate this hypothesis, we develop a mathematical mechanistic
model of financial bubbles that incorporates a social contagion dimension to describe how
behavioral herd dynamics lead to an asset price trend that exhibits the three distinct phases
of a bubble. For this purpose, we first present the modelling methodology and outline the
expected behaviors of the price of an asset subjected to a bubble in Section 2. Then, we
build the model in Section 3, carrying out a stability analysis of the model in Section 4 and
presenting some numerical simulations of the model to illustrate the various kinds of price
behaviors of an asset subjected to a bubble in Section 5. Finally, we discuss the results of
the study in Section 6.

2. Modelling Methodology and Expected Behavior of Bubbles

The epidemiological nature of social contagion phenomena, in which the spread of a be-
havior acts analogously to the spread of an infectious disease, is well established and widely
analyzed with mathematical epidemiological modelling [14,15]. This epidemiological view
has also been applied to the study of social contagion in financial phenomena [14,16]. For
example, Korobeinikov [16] describes how the spread of financial distress among a suscep-
tible subpopulation can lead to a financial crisis using an epidemiological model composed
of a system of two differential equations.

This insight into social contagion also permeates our work. Specifically, we describe
how the spread of herd behaviors can influence the price of an asset to the extent of
creating an asset bubble. Thus, the modelling methodology must incorporate and link
two aspects, namely social contagion or herd behavior and the asset price. Since the basic
economic model determining the price of an asset is that of supply and demand [17], it is
reasonable to use this model as a link between herd behaviors and asset prices. In other
words, the proposed mathematical model presented in Section 3 uses, on the one hand,
a basic economic model of supply and demand to describe the dynamics of the price of
an asset and, on the other hand, an epidemiological approach to describe the dynamics of
contagious behaviors, which, in turn, affect the supply and demand and, ultimately, the
price of an asset.

Now that the basic modelling methodology has been established, we turn our attention
to explaining how bubble phases are affected by supply and demand and identifying the
types of bubble trends the model dynamics should replicate.

As Sornette and Cauwels [3] indicate, a positive bubble is brought about and charac-
terized by excess demand that pushes prices up and away from the fundamental, rational
value of the asset; this period of unsustainable price growth is also referred to as the bubble
regime [9]. This period of growth in an asset’s price is followed by a period of price decline,
which occurs as confidence in the value of the asset begins to waver and market optimism
wanes; increasing numbers of investors begin to liquidate (sell) their positions in the market,
while the number of buying investors dwindles. Thus, the market imbalance reverses,
bringing about excess supply and a shortage of demand for the asset. This phase of excess
supply is referred to as a negative bubble [3] or collapse regime [9]. As can be inferred from the
work of Bobalová and Novotná [17], a decrease in demand and increase in supply would
cause the asset price to reverse trend and begin to decrease. As such, during the collapse
regime portion of a financial bubble, the asset is subject to a precipitous drop in price [9].
Interestingly, however, such collapse regimes do not necessarily bring about an immediate
return to the fundamental value of the asset; instead, collapse regimes tend to (temporarily)
fall below the asset’s fundamental value, driven by the excess supply and demand shortage
in the market, and it may, at times, be necessary for prices to fall below the equilibrium
(fundamental) value in order for the collapse to cease [9].

Thus, as mentioned previously, an asset bubble can be taken to comprise three basic
stages, namely a bubble phase, in which irrational exuberance brings about an unsustainable
growth in the asset’s price; a collapse phase, in which investors liquidate their positions and
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flee the market, leading to a precipitous fall in the asset price below the fundamental value;
and a stabilization phase, in which the price begins to recover and climb slowly back to the
fundamental value due to the market demand and supply returning to their prebubble
rational equilibria. We illustrate these three phases qualitatively in Figure 1.

Figure 1. Expected price trend behaviors of financial bubbles over time.

These general price trends (bubble phase, collapse phase, and stabilization phase)
can be historically observed in several real-world markets. According to Barlevy [1], one
instance of the unstable-price-increase definition of financial bubbles is the United States
stock market over the course of the 1920s. In fact, he references the meteoric rise and subse-
quently precipitous collapse of the Dow Jones Industrial Average (DJIA) in the late 1920s
and early 1930s as a commonly mentioned example of this bubble definition, alongside the
seventeenth century’s tulipmania. The price trends of the Dow Jones Industrial Stock Price
Index from 1 January 1923 to 1 June 1935 are given in Figure 2a (source: [18]). Note that
according to the data from the Federal Reserve Bank of St. Louis [18], the Dow Jones index
grew substantially in value until late 1929 (bubble phase), followed by a precipitous fall
to a minimum value in 1932 (collapse phase) and a gradual recovery back up toward the
fundamental value (stabilization phase).

Another instance of these expected price trends is the NASDAQ Composite Index over
the course of the Dot-com Bubble, whose historical values from 1 June 1996 to 1 December
2005 are depicted in Figure 2b (source: [19]). Note that the historical NASDAQ Composite
Index values from the time of the Dot-com Bubble also display the expected trends of
unsustainable growth, abrupt collapse, and moderate upward recovery.

(a) (b)
Figure 2. Two notable historical instances of the bubble, collapse, and stabilization phases. (a) Dow
Jones Industrial Stock Price Index, 1 January 1923–1 June 1935 [18]. (b) Dot-com Bubble NASDAQ
Composite Index Prices, 1 June 1996–1 December 2005 [19].

Another important price trend discussed by Kiselev and Ryzhik [9] is the phenomenon
of serial bubbles, in which bubbles follow one another in succession in the same market. One
reason the authors give for the formation of such serial bubbles is that the upward price
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trends taking place in the recovery phase (as prices rise back toward the fundamental value)
may be significant enough to provoke the formation of another bubble in the market [9].

Hence, the primary objective of this study is to build a behavioral mathematical
model that yields price trends consistent with the expected bubble phase, collapse phase,
and stabilization phase of financial bubbles as depicted in Figure 1 and, if possible, also
consistent with alternate market trends such as serial bubbles.

3. Building the Behavioral Model
3.1. Model Assumptions

To build a behavioral mathematical model of financial bubbles that incorporates herd
behavior and price dynamics, it is necessary to first outline some of the assumptions
inherent in the model.

First, similarly to Korobeinikov’s work [16], the model is assumed to operate in
an economy (or community) composed of C individual agents, where there is no influx
of participants.

Second, we assume that the participants in the economy are homogeneous, i.e.,
all investors have equal purchasing power (purchase equal amounts of the asset at a given
price) and influence on their peers (equal degrees of authority, credibility, and publicity
such that no participants have ‘celebrity’ status in the market).

Third, the model assumes that the participants in the economy consist of three groups,
namely (i) neutrals, who are neither supportive of nor opposed to investing in a particular
asset (and have neither a long position in the asset nor are engaged in selling it but who are
still in the market); (ii) optimists, often referred to as ‘bulls’, who are convinced of the value
of investing in the asset (and who are entering or have entered into a long position in the
asset in question); and (iii) pessimists, often referred to as ‘bears’, who are convinced of the
need to liquidate their investment in the asset (and who wish to sell their investment and
liquidate their long position in the market).

It is also assumed that the pessimists/bears will eventually (and permanently) quit
the market altogether (predominantly by selling the asset), thereby converting into a
subpopulation of quitters. Notice that the neutral individuals, who are not currently
purchasing, holding, or selling the asset, can still be influenced by investor sentiment,
unlike the quitters.

Thus, the model assumes that the population in the economy is divided into four
groups, namely neutrals, denoted as N(t); optimists/bulls, denoted as T(t) (from the Latin
term for bull, taurus); pessimists/bears, denoted as U(t) (from the Latin term for bear,
ursus); and quitters, denoted as Q(t).

Finally, to avoid complications, the process of short selling is ignored in the model
(such that purchasing and owning the asset is assumed to be a necessary prerequisite for
selling it), and it is assumed that there is no economic growth or inflation in the market
over the lifetime of the bubble (such that the fundamental value of the asset is held to be
constant indefinitely in both real and nominal terms).

On the basis of these assumptions, we introduce the equations describing the dynamics
of an asset price in Section 3.2, the equations describing the social contagion dynamics
of the economy’s population in Section 3.3, and the full mathematical model of financial
bubbles in Section 3.4.

3.2. Price Dynamics

Based on the assumption of economic equilibrium, where a stable asset price is at-
tained by the balance of supply and demand, the following Evans price equilibrium
model [17,20–22], which describes the rate of change of price with respect to time as a
function of the difference between demand and supply, is used:

dp
dt

= k1(D(p)− S(p)) , (1)
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where k1 > 0, and the demand and supply functions of price are expressed as:

D(p(t)) = d1 + d2 p(t) , and S(p(t)) = s1 + s2 p(t) , (2)

where d1 > 0 and d2 < 0 denote the autonomous demand and price elasticity of demand,
respectively, and s1 < 0 and s2 > 0 denote the autonomous supply and price elasticity of
supply, respectively.

Since the market demand depicts the quantity of the asset that participants are willing
to purchase at a given price and only optimists/bulls (T(t)) are engaged in purchasing the
asset, it is reasonable to think of the market demand as an increasing function of the number
of optimists (T(t)) in the economy. Similarly, since the market supply depicts the quantity
of the asset that participants are willing to sell at a given price and only pessimists/bears
(U(t)) are engaged in selling the asset, it is also reasonable to think of the market supply as
an increasing function of the number of pessimists (U(t)) in the economy.

Therefore, we must adapt Equation (1) in such a way that the demand is a function of
the number of optimists/bulls (T(t)) in the economy and the supply is a function of the
number of pessimists/bears (U(t)) in the economy.

3.2.1. Demand Function

Let us address the demand function first. As previously mentioned, positive bubbles
are characterized by excess demand for an asset [3], and since only the optimists/bulls
(T(t)) are engaged in purchasing the asset, it is reasonable to think that the market demand,
as expressed by Equation (2), should be an increasing function of optimists.

In order to unfold the effect of the number of optimists on the demand, recall that the
price elasticity (d2 < 0) is a parameter that describes the change in the quantity demanded
for a given change in price and that the presence or availability of substitutes for an
asset results in a greater price elasticity of demand [23,24]. Since growing optimism and
zeal reduces the asset’s perceived substitutability (potential substitutes are viewed as not
obtaining comparable returns), this perceived decline in substitutes must reflect a decrease
in the price elasticity of demand.

As such, the price elasticity (d2) is appropriately understood as a function of the
optimist/bull population (T(t)); the more numerous the optimists/bulls in the market, the
more price-inelastic the demand curve will become. A basic rational function describing
this situation is:

d2(T) = −
d∗2

τT + 1
, (3)

where the parameter τ > 0 characterizes the effect of the bull population on the price
elasticity of demand, and d2(0) = −d∗2 (with d∗2 > 0) denotes the basal price elasticity
of demand.

Now, let us turn our attention to the autonomous demand (d1), which is the quantity
of the asset demanded when prices equal zero [17]. Assuming that this quantity increases
according to the number of optimists and that the contribution of each optimist/bull in
the market toward autonomous demand is the same, the autonomous demand function
reflecting its dependence on the optimist population can be written in the following form:

d1(T) = ζT + d∗1 , (4)

where ζ > 0 characterizes the effect of the bull population on the autonomous demand,
and d∗1 > 0 denotes the stable autonomous demand level in the absence of bulls.

Therefore, the overall demand function used to describe the price dynamics during
the formation of a bubble takes the following form:

D(p, T) = d1(T) + d2(T)p = ζT + d∗1 −
d∗2

τT + 1
p , (5)

where d∗1 , d∗2 , ζ, τ > 0.
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3.2.2. Supply Function

Turning now to the supply function in Equation (2), recall that negative bubbles (and,
by extension, collapsing bubbles) are characterized by general market pessimism and excess
supply of the asset [3]. Since pessimistic investors seek to liquidate their investments by
selling the asset and thereby contribute to the market supply, it is reasonable to assume
that this growing pessimism among investors in the asset serves as the underlying cause
of excess supply and that the supply function (S(p) = s1 + s2 p) should be an increasing
function of the number of pessimists/bears (U(t)).

Unlike the case of the price elasticity of demand (d2) discussed previously, the price
elasticity of supply (s2) is subject to two opposing effects during the collapse phase of the
bubble cycle as the number of bears (U(t)) grows.

The first effect arises from investors who are risk-averse and thus tend to avoid risk
in lieu of improved certainty [25]; as such, risk-averse investors would prefer to liquidate
(sell) their position in the market and eliminate their risk, even if doing so implies a loss on
investment. In fact, risk aversion leads investors to prefer to incur a cost rather than face a
higher level of risk [26]. Such pessimistic investors may be assumed to exhibit a decreased
interest in the price at which they sell their investment (instead prioritizing liquidating their
position at any viable price), which would correspond to a decrease in the price elasticity
of supply (s2) of the asset.

Meanwhile, the second effect arises from investors who are loss-averse, who are com-
monly understood as investors with a steeper utility function (and, hence, a greater dislike)
for losses than (their preference) for gains [27]; this loss aversion is a common form of
myopic behavior among investors [28]. These loss-averse investors would therefore be
unwilling to sell the asset at a loss and choose instead to maintain their positions and wait
out the fall in price for as long as necessary. Since such loss-averse investors become more
hesitant to sell during the fall in asset price, loss-averse behavior results in an increase in
the price elasticity of supply (s2).

Therefore, the two forces of risk aversion and loss aversion work in opposite directions
during the collapse period of the bubble cycle, with the former leading to a decrease in
price elasticity of supply and the latter leading to an increase in the same. Because the
magnitude of each of these forces in the market is unknown, it is uncertain which behavioral
effect (if any) would override the other and lead to an increase or decrease in the overall
price elasticity of supply. Therefore, for the sake of simplicity, it is assumed that the price
elasticity of supply (s2) is independent of the number of bears (U(t)) and held at a constant
value (s∗2) (stable price elasticity of supply) throughout the entire bubble cycle, i.e., s2 = s∗2 .

Concerning the autonomous supply, s1 represents the amount supplied when prices
equal zero. It is assumed that the underlying asset in the market has some positive intrinsic
value; therefore, suppliers or investors will always be unwilling to give it away for free
(p = 0), and the autonomous supply will be subject to the condition s1 < 0.

However, investors’ willingness to sell the asset at a particular price will vary with
the level of pessimism in the market. As the number of pessimists/bears (U(t)) grows
in the market and increasing numbers of investors liquidate their positions, the asset
supply increases accordingly, and investors also begin selling the asset at prices that were
previously considered too low to sell. This brings about a corresponding increase in the
autonomous supply (s1) (equivalent to a decrease in its absolute value). Since the asset is
assumed to have positive intrinsic value, the autonomous supply must remain negative
and is taken to fulfill s1(U)→ 0 as U(t)→ ∞.

Hence, the autonomous supply (s1(U)) can be expressed in the following simple
rational function form:

s1(U) = −
s∗1

υU + 1
, (6)

where the parameter υ > 0 characterizes the effect of the bear/pessimist population on
the autonomous supply, and s1(0) = −s∗1 (where s∗1 > 0) denotes the stable autonomous
supply level in the absence of pessimists.
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Combining the functions of the two supply parameters (s1 and s2), the overall supply
function used to describe the price dynamics in our model takes the following form:

S(p, U) = −
s∗1

υU + 1
+ s∗2 p , (7)

where s∗1 , s∗2 , υ > 0.
Denoting the demand and supply curves in the absence of a bubble (i.e., T = U = 0)

as D and S, respectively, and those in the presence of a bubble as D′ and S′, respectively,
the shift in the demand curve (from D to D′) as the number of bulls (T(t)) increases and the
shift in the supply curve (from S to S′) as the number of bears (U(t)) increases are depicted
qualitatively in Figure 3.

Figure 3. Shifts in the market demand and supply curves as T(t) and U(t) increase.

3.2.3. Overall Price Equation

Now that the supply and demand functions depending on the bull/optimist and
bear/pessimist populations have been constructed, we adapt the differential Equation (1)
to a situation in which a bubble is present and obtain the following differential equation
describing the price dynamics of an asset in terms of supply and demand functions affected
by the presence of bulls (T(t)) and bears (U(t)):

dp
dt

= k1(D(p, T)− S(p, U)) , (8)

where k1 > 0 and the demand and supply functions are expressed by Equations (5) and (7),
respectively, whose substitution into Equation (8) yields:

dp
dt

= k1

(
ζT + d∗1 −

d∗2
τT + 1

∗ p−
(
−

s∗1
υU + 1

+ s∗2 p
))

, (9)

which, after rearrangement of its right-hand side, becomes the final price differential
equation to be used in our financial bubble model.

dp
dt

= k1

(
ζT + d∗1 +

s∗1
υU + 1

)
− k1 p

(
s∗2 +

d∗2
τT + 1

)
, (10)

where k1, ζ, υ, τ, d∗1 , d∗2 , s∗1 , s∗2 > 0, and U(t) and T(t) denote the pessimist and optimist
populations at time t, respectively.

Before building the equations describing the social contagion dynamics, note from
Equation (10) that the price dynamics in the absence of a bubble (i.e., T(t) = U(t) = 0) are
described by the following differential equation:

dp
dt

= k1(d∗1 + s∗1)− k1 p(s∗2 + d∗2) . (11)
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Thus, under the assumption of an economic equilibrium, the stable asset price attained
by the balance of supply and demand (ignoring inflation and other potential confounding

factors), i.e.,
dp
dt

= 0, is given by

p̄ =
d∗1 + s∗1
s∗2 + d∗2

. (12)

This price level determines the fundamental value of the asset and is taken as the starting
price point from which the bubble emerges (i.e., the initial condition for the price), as well
as the price level to which the market should converge once the bubble has exhausted itself.

3.3. Behavioral Contagion Dynamics

Now that we have established the dynamics of the price of an asset (p(t)), we need
to describe the social contagion dynamics of the full population in the economy dur-
ing a bubble in terms of the major players in the market, namely bulls/optimists (T(t))
and bears/pessimists (U(t)) (see Equation (10)), as well as the neutral (N(t)) and quitter
(Q(t)) groups.

Recall that bubbles form from the introduction of some type of information that
appears to promise great future prospects for a particular asset or market [3]. We assume
that prior to this information, the full population in the economy is neutral and of size
C (thus, no bulls, bears, or quitters are present in the market) and that as soon as the
information is introduced, a fraction of this neutral population is immediately converted
into optimists; this fraction determines the initial condition (T(0)) of the bull/optimist
population for the social contagion dynamics. Furthermore, since the new (positive)
information does not convert any investors into bears or quitters, the initial condition for the
system of differential equations that describes the dynamics of the neutral (N(t)), optimist
(T(t)), pessimist (U(t)), and quitter (Q(t)) subpopulations of the economy following the
introduction of the information is expressed as:

N(0) = C− T(0) > 0 , T(0) > 0 , U(0) = 0 , and Q(0) = 0 . (13)

In order to present the equations that describe the social contagion dynamics, we must
first outline how the herd behaviors of the optimists and pessimists are spread (analogously
to an infectious disease) among the market population.

Since asset bubble price trends are driven by herd behavior [3] (as investors become
convinced to enter or leave the market after exposure to the optimistic/pessimistic views
of their peers), the model assumes that the bull subpopulation (T(t)) will infect members
of the neutral subpopulation (N(t)) and convert them into optimists/bulls themselves.

Meanwhile, the extreme growth in price during the bubble phase and plummeting
prices during the collapse phase cause some optimistic investors to spontaneously become
disillusioned with the market, turning into pessimists/bears and liquidating their positions
in an effort to exit the market. These pessimistic/bear investors then also influence their
peers, converting bulls (T(t)) into bears (U(t)).

Thus, there are two contagion behaviors to be considered in the model: the optimistic
behavior spread from the bulls to the neutral population and the pessimistic behavior
spread from the bears to the bull population. Note that due to the assumption of no
short selling, the bears cannot influence neutral investors, as they have no long positions
to liquidate.

Finally, as mentioned in Section 3.1, the pessimists/bears quit the market permanently
after a given period of time (predominantly by selling their asset), thereby joining the
quitter subgroup (Q(t)).

Incorporating these behaviors into a system of differential equations, the social conta-
gion dynamics of the market population composed of neutrals, bulls, bears, and quitters
take the following form:



Mathematics 2023, 11, 4102 10 of 17

dN
dt

= −βN(t)T(t) ,

dT
dt

= βN(t)T(t)− (γU(t) + ρ)T(t) ,

dU
dt

= (γU(t) + ρ)T(t)− 1
σ

U(t) ,

dQ
dt

=
1
σ

U(t) ,

(14)

where β > 0 and γ > 0 represent the contagion rate of optimistic and pessimistic behavior,
respectively; ρ > 0 denotes the rate at which optimists/bulls (T(t)) spontaneously convert
into pessimists/bears (U(t)) without outside influence (in other words, the spontaneous
rate of pessimism in the market); and σ > 0 denotes the average time a pessimist stays in
the bear group (U(t)) before permanently abandoning the market and becoming a quitter
(Q(t)).

Note that the dynamics of the market population are mainly driven by herd behavior
(and are thus independent of the asset price) and that

dN
dt

+
dT
dt

+
dU
dt

+
dQ
dt

= 0 . (15)

In other words, the size of the population in the economy remains constant during the
duration of the bubble.

N(t) + T(t) + U(t) + Q(t) = C . (16)

3.4. The Full Model

Now, we consolidate the asset price dynamics and the social contagion dynamics
expressed by Equations (10) and (14), respectively, to construct the full behavioral bubble
model:

dp
dt

= k1(ζT + d∗1 +
s∗1

υU + 1
)− k1 p(s∗2 +

d∗2
τT + 1

) ,

dN
dt

= −βN(t)T(t) ,

dT
dt

= βN(t)T(t)− (γU(t) + ρ)T(t) ,

dU
dt

= (γU(t) + ρ)T(t)− 1
σ

U(t) ,

dQ
dt

=
1
σ

U(t) ,

(17)

subject to the initial condition

p(0) =
d∗1 + s∗1
s∗2 + d∗2

, N(0) = C− T(0) > 0 , T(0) > 0 , U(0) = 0 , and Q(0) = 0 , (18)

where C is the size of the population in the economy; k1 > 0 denotes the proportionality
constant of the difference between demand and supply determining the rate of change of
the asset price; ζ > 0 characterizes the effect of the bull population on the autonomous
demand; υ > 0 characterizes the effect of the bear/pessimist population on the autonomous
supply; τ > 0 characterizes the effect of the bull population on the price elasticity of
demand; d∗1 > 0 and −d∗2 < 0 denote the stable autonomous demand level in the absence
of bulls and the basal price elasticity of demand, respectively; −s∗1 < 0 and s∗2 > 0 denote
the stable autonomous supply level in the absence of pessimists and the constant price
elasticity of supply, respectively; β > 0 and γ > 0 represent the contagion rate of optimistic
and pessimistic behavior, respectively; ρ > 0 denotes the rate at which optimists/bulls
(T(t)) spontaneously convert into pessimists/bears (U(t)) without outside influence (the
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spontaneous rate of pessimism in the market); and σ > 0 denotes the average time a
pessimist stays in the bear group (U(t)) before permanently abandoning the market and
becoming a quitter (Q(t)).

In the next section, we carry out a stability analysis of the model, which enables us to
determine its long-term behavior; in particular, we conclude that the bubble will eventually
exhaust itself and the asset price will return to its fundamental value.

4. Stability Analysis

Note that the dynamics of the social contagion component of the full model (17)
expressed by its last four equations (or equivalently by Equation (14)) is independent of the
dynamics of the asset price expressed by its first equation (or equivalently by Equation (10)).
Thus, in order to carry out the stability analysis, we first find the steady state ((N̄, T̄, Ū, Q̄))
of Equation (14).

Letting
dQ
dt

=
dU
dt

= 0, we obtain

Ū = T̄ = 0 , (19)

which implies that
dN
dt

=
dT
dt

= 0 and, according to Equation (16), that

N̄ + Q̄ = C, (20)

where N̄ ≥ 0 and Q̄ ≥ 0.

Therefore, the behavioral component of the model expressed by Equation (14) has a
continuum of equilibria, which we prove below is a global attractor.

Since the equations for the N(t), T(t), and U(t) subpopulations in Equation (14) are
independent of the equation for Q(t), we can rewrite the social contagion component of
the model as

dN
dt

= −βN(t)T(t) ,

dT
dt

= βN(t)T(t)− (γU(t) + ρ)T(t) ,

dU
dt

= (γU(t) + ρ)T(t)− 1
σ

U(t) ,

(21)

knowing that Q(t) = C− N(t)− T(t)−U(t).

The following theorem describes the long-term behavior of Equation (21).

Theorem 1. Let
Ω0 =

{
(N, T, U) ∈ R3

+ ; N + T + U ≤ C
}

,

and
M0 = {(N, T, U) ∈ Ω0 ; U = T = 0} .

Then, for every solution ((N, T, U)(t)) of (21) such that (N, T, U)(0) ∈ Ω0, we have

(N, T, U)(t) → M0 as t→ ∞.

Proof. Noting that the Ω0 set is a compact, positively invariant set with respect to (21), we
use LaSalle’s Theorem [29] to demonstrate the result.

Let function V : R3 → R be defined as

V(N(t), T(t), U(t)) = N(t) + T(t) + U(t) . (22)

Thus, using Equation (21), we obtain

dV
dt

=
d
dt
(N(t) + T(t) + U(t)) = − 1

σ
U(t) ≤ 0 . (23)
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Now, let us set

E =

{
(N, T, U) ∈ Ω0 ;

dV
dt

= 0
}

= {(N, T, U) ∈ Ω0 ; U = 0} . (24)

Notice that for any invariant set (Mi) in E, we must have T = 0. If that were not
the case, there would exist a point (xo = (No, To, 0)) in Mi for which To > 0. Since Mi is
invariant, (N, T, U)(t,xo)

∈ Mi for t ≥ 0 (i.e., U(t,xo) = 0 for t ≥ 0), and consequently,

dU
dt

(t) = 0 , for t ≥ 0 . (25)

However, using Equation (21) and assuming the existence of To > 0, we have

dU
dt

(0) = ρTo > 0 , (26)

which contradicts Equation (25). Hence, for any invariant set (Mi) in E, we must have
T = 0, which implies that the largest invariant set in E is expressed by

M0 = {(N, T, U) ∈ E ; T = 0} = {(N, T, U) ∈ Ω0 ; U = T = 0} . (27)

Thus, according to LaSalle’s Theorem [29], (N, T, U)(t) → M0 as t→ ∞.

Now that Theorem 1 has been established, we present the theorem concerning the
asymptotic behavior of the full bubble model (17).

Theorem 2. Let

Ω =
{
(N, T, U, Q) ∈ R4

+ ; N + T + U + Q = C
}

,

and
M = {(N, T, U, Q) ∈ Ω ; U = T = 0} .

Then, for every solution ((p, N, T, U, Q)(t)) of (17) such that p(0) > 0 and (N, T, U, Q)(0) ∈ Ω,
we have

(i) (N, T, U, Q)(t) → M as t→ ∞ , and

(ii) p(t)→
d∗1 + s∗1
s∗2 + d∗2

as t→ ∞ .

Proof. Part (i) is a straightforward consequence of Theorem 1. Note that set M corresponds
to the continuum of equilibria expressed by Equations (19) and (20).

For part (ii), notice that since (U, T)(t) → (0, 0) as t → ∞ (according to Theorem 1),
the equation for asset price (10) becomes

dp
dt

= k1(d∗1 + s∗1)− k1 p(s∗2 + d∗2) as t→ ∞ . (28)

Therefore,

p(t) →
d∗1 + s∗1
s∗2 + d∗2

as t→ ∞ . (29)

Hence, we have proven that the bubble will exhaust itself, and as a result, the asset
price will eventually return to its fundamental value.

As we are interested in the dynamics of the market before the bubble exhausts itself, the
next section focuses on a numerical investigation of the possible price dynamics exhibited
by the market over the duration of the bubble.
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5. Bubble Dynamics and Price Trends

Now that the global stability of the prebubble market equilibrium (Ū = T̄ = 0) has
been established, we proceed to test the ability of the bubble model (17) to reproduce the
expected bubble, collapse, and stabilization phases of the asset price (see Figure 1) during
a financial bubble. To do so, we carry out numerical simulations of the model (using the
Euler approximation method in Python) with different parameter values.

Recall from Section 3.3 that bubbles form as a result of the introduction of some type of
information that creates an expectation of future prospects for a particular asset. Thus, to set
up the initial condition for the bubble model (17), we assume that prior to this information,
the price of the asset is at its fundamental value and that the full population in the economy
is neutral and of size C (i.e., no bulls, bears, or quitters at that time). Moreover, we assume
that the information is introduced at time t = 0, which causes a fraction of the neutral
population to be converted into optimists; this fraction determines the initial condition
(T(0)) of the bull/optimist population. Thus, the initial condition for the bubble model (17)
that describes the dynamics of the asset price (p(t)) and the neutral (N(t)), optimist (T(t)),
pessimist (U(t)), and quitter (Q(t)) subpopulations of the economy upon the introduction
of the information is expressed by Equation (18).

The first numerical simulation for the price dynamics is depicted in Figure 4a, as
obtained by taking the size of the population in the economy (C = 1, 000), initial conditions
(N(0) = 995, T(0) = 5, U(0) = 0, and Q(0) = 0), and parameter values (k1 = 2, β = 0.0001,
σ = 30, ζ = 0.00002, γ = 0.0002, ρ = 0.0002, d∗1 = 0.02, d∗2 = 0.001, s∗1 = 0.03, s∗2 = 0.004,
τ = 0.0002, and υ = 0.0018). As can be observed, the price trends obtained in Figure 4a
clearly display the bubble phase, collapse phase, and stabilization phase predicted in
Figure 1 (and displayed in the historical price trends of Figure 2a,b); notably, the asset price
falls below the fundamental value during the collapse phase before recovering to the stable
(fundamental) value.

Other price dynamics of interest can also be obtained by changing the values of certain
parameters. Note that unless otherwise indicated, the value of each parameter is kept the
same as in the preceding figure/simulation.

First, a price trend that does not fall below the fundamental value during the collapse
phase of the bubble can be obtained by decreasing the parameter value (υ to υ = 0.0007)
(thereby reducing the influence of pessimists/bears on the autonomous supply (s1)), yield-
ing Figure 4b. Note that the collapse phase is not so abrupt as to cause the asset price to fall
below its fundamental value, but the price still returns to its fundamental value as t→ ∞.

(a) (b)
Figure 4. Ordinary bubble behaviors. (a) Price trend behaviors of the bubble, collapse, and stabiliza-
tion phases. (b) Price trend behaviors without falling below the fundamental value.

Secondly, returning parameter υ back to υ = 0.0018 and decreasing the value of
parameter β to β = 0.00002 (thereby decreasing the ‘infectiousness’ of bulls (T(t))) toward
neutral investors (N(t)) yields the trend depicted in Figure 5a. Although the price dynamics
display the bubble, collapse, and upward recovery phases of the bubble cycle, these are
followed immediately by another bubble cycle in the market. This is consistent with the
phenomenon of serial bubbles as addressed by Kiselev and Ryzhik [9], who indicate that
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the recovery phase following a bubble collapse may itself be sufficient to help trigger
another bubble.

This phenomenon of serial bubbles is even more evident in Figure 5b, as obtained
by keeping β = 0.00002 and increasing the value of γ parameter to γ = 0.0007 (thereby
increasing the ‘infectiousness’ of bears (U(t))). As can be seen in the figure, the price dy-
namics exhibit various bubble cycles consisting of the three phases of bubble, collapse, and
recovery, in which each bubble is followed immediately by another one (of a progressively
smaller amplitude).

Serial bubble behavior is most clearly shown in Figure 5c, as obtained by increasing
the time needed for bears to become quitters to σ = 90, increasing the infectiousness of
bears to γ = 0.002, and decreasing the value of the υ parameter (controlling the impact of
bears on the autonomous supply (s1)) to υ = 0.0008. These modifications slow down the
movement of investors into the quitter subgroup, increase the spread of pessimism in the
market, and reduce the excess supply during the collapse phase. Note that the three bubble
phases of bubble, collapse, and stabilization are clearly displayed in Figure 5c, as is the
serial bubble’s point of transition from stabilizing price trends to the uncontrolled growth
of the ensuing bubble.

Finally, another interesting bubble dynamic is depicted in Figure 5d, as obtained by
decreasing the time (σ) before a bear becomes a quitter to σ = 5. As can be seen in the
figure, the price no longer falls to or below the fundamental value during the dynamic
fluctuations, instead maintaining a general upward trend in price and losing its oscillatory
behavior as prices begin to fall in a more sustained fashion. This occurs because as the
time (σ) needed for pessimists/bears to convert to quitters decreases, the price collapses
over a shorter period of time and hence remains above the fundamental value during the
collapse. Although not shown in the figure, the price will return to its fundamental value
in the long run.

(a) (b)

(c) (d)
Figure 5. Serial bubble behaviors. (a) Serial bubbles for β = 0.00002; (b) serial bubbles for γ = 0.0007;
(c) serial bubbles for σ = 90, γ = 0.002, and υ = 0.0008; (d) bubble dynamics for σ = 5.

Overall, the numerical simulations shown in Figure 5 indicate that serial bubbles are
more likely to occur for a lower contagion rate of optimistic behavior (β) and a higher
contagion rate of pessimistic behavior (γ).
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It is worth mentioning that the model can yield a multitude of other price trends (not
included in this work) depending on the choice of parameter values describing the social
contagion dynamics of the population.

Overall, the numerical outputs obtained in Figure 4a are consistent with the price
trends of bubble, collapse, and stabilization present in the Dow Jones and NASDAQ
historical records shown in Figure 2a,b [18,19] and described in Figure 1. Furthermore,
Figure 5a–c are consistent with the behavior of serial bubbles, in which financial bubbles
follow in succession from the previous cycle’s recovery. Hence, the behavioral model
developed in this study is capable of exhibiting bubble trends consistent not only with
ordinary bubbles but also with serial bubbles as described by Kiselev and Ryzhik [9].

6. Discussion

The results of this study indicate that observed market price trends can be explained
by market behaviors such as social contagion. In particular, the resulting dynamics of
the proposed mathematical model confirm our study hypothesis, namely that the bubble,
collapse, and stabilization phases of asset bubbles can be explained qualitatively by the
processes of investor social contagion. Because we relied exclusively on social contagion to
change the market demand and supply, we conclude that the phenomenon of financial bub-
bles and associated general price trends can be adequately explained from an exclusively
behavioral standpoint. The outputs of the model indicate that the fall in prices below the
fundamental value before the end of the bubble collapse [9] can reasonably arise from the
behavioral phenomenon of social contagion, as can the appearance of serial bubbles [9]. As
such, the results of this study are consistent with the phenomena associated with financial
bubbles outlined by Sornette and Cauwels [3] and Kiselev and Ryzhik [9].

This study reinforces the work previously established in the scholarly literature by
studying the topic of financial bubbles from a different standpoint. In particular, we used a
different underlying methodology than other financial bubble models in the scholarly liter-
ature; for instance, unlike other studies that relied on stochastic behavior to construct finan-
cial bubble models [9–12], we modelled the bubble price trends from a deterministic stand-
point. However, unlike the deterministic model constructed by Sornette and Cauwels [3],
which uses the log-periodic power law to depict bubble prices without considering the
underlying market dynamics, our model’s price trends are determined by shifts in the
market demand and supply curves, which are, in turn, dictated by investor sentiment and
social contagion. As such, this study confirms the price trends and underlying behaviors
predicted by the scholarly literature [2,3,9].

Furthermore, our investigations reported in Section 5 demonstrate our model’s versa-
tility in depicting a multitude of possible bubble price trends, indicating that even bubbles
that deviate from the three expected phases (bubble, collapse, and stabilization) can be
replicated from a herd behavior/social contagion standpoint.

Even though the proposed model properly describes the expected qualitative behav-
iors of an asset bubble, it also faces certain limitations related to its application to real-world
data. For instance, because of the deterministic nature of the model, it is unable to depict
the short-term stochastic fluctuations in price that occur in real-world asset markets (an
aspect considered in the model developed by Kiselev and Ryzhik [9]). Also, because of the
complexity of market forces and the possibility of spontaneous introduction of information
into the market, this model is limited in its ability to predict the timing and, consequently,
future course of a bubble (e.g., the timing of collapse or recovery). For example, the model
assumes only a one-time introduction of information at the beginning of the bubble cycle
but does not account for the near-continuous and stochastic introduction of information
that occurs in a real-world market, including random information at different times in the
bubble cycle, that could cause the market to fluctuate significantly and deviate from the
three expected phases of bubble, collapse, and stabilization. In addition, the model assumes
that the market population is constant, when in reality, this population may vary (driven
by general population or economic growth or by the introduction of information that either
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brings more investors into the market or drives them away). This may limit the degree of
confidence in a process of model parameter estimation with real-world market data. Even
though addressing these limitations in fitting the model to real-world data is beyond the
scope of the present study, it can certainly serve as a potential direction for future research.

The particular significance of this work lies not only in the deterministic modelling
approach of financial bubbles but, more importantly, in its contribution to explaining
and replicating bubble price trends exclusively driven by investor social contagion. As
such, this study validates the central role that behavioral phenomena in general and social
contagion in particular play in the formation, collapse, and recovery phases of bubbles in
asset markets.

However, there remain numerous areas for future investigation and development
of the proposed model in order to obtain a more realistic depiction of financial bubbles.
For example, further research could be carried out to more accurately ascertain the rela-
tionship between investor optimism/pessimism and market demand/supply, which may
vary depending on the market; particular attention can be paid to determining how the
price elasticity of demand (and supply) are influenced by asset substitutability (and, by
extension, investor sentiment). As indicated by Ahern [24], research on this topic has been
generally limited.

Also, as the proposed model focuses on the influence of herd behavior on the dynamics
of price, future investigation into how price impacts investor herd behavior could be of
great interest. In particular, examination of the changes in the bubble dynamics when
one incorporates the effect of price on the spontaneous rate of pessimism (ρ) (which was
assumed to be a constant parameter in our model), in the proposed model by potentially
assuming it to be a function of the asset price could represent a valuable contribution.

It might also be instructive to investigate the effect on the bubble dynamics of an
Evans price equilibrium model in which the rate of change of price is described by a
nonlinear function of the difference between demand and supply [21]. Other areas for
further investigation and development of this model include studying the effects of a
changing market population, a growing fundamental asset value, and inflation on the price
trends of the market. The proposed model could also be analyzed in cases in which some
(or all) bears/pessimists convert back to neutral status instead of becoming quitters, in a
similar fashion to a ‘leaky vaccine’ in epidemiological modelling [30–32]. Finally, it may
also be of interest to incorporate a stochastic component into the asset bubble model to
yield the short-term price fluctuations of real-world asset prices while keeping the expected
(long-term) price trends unchanged.
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