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Abstract: We present three reduced integrable hierarchies of nonlocal integrable nonlinear Schrödinger-
type equations, starting from a given vector integrable hierarchy generated from a matrix Lie algebra of
B type. The basic tool is the zero curvature formulation. Three similarity transformations are taken to
keep the invariance of the involved zero curvature equations. The key is to formulate a matrix solution
to a reduced stationary zero curvature equation such that the zero curvature formulation works for a
reduced case.
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hierarchy; nonlinear Schrödinger equations
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1. Introduction

Lax pairs of linear eigenvalue problems are primary objects in the study of nonlinear
integrable partial differential equations. It is important to formulate a linear eigenvalue
problem from a given matrix Lie algebra [1]. Many integrable hierarchies of nonlinear
partial differential equations have been engendered, beginning with the special linear
algebras [2–4], and the special orthogonal algebras (see, e.g., [5]). Hamiltonian formulations
are normally generated, which is done by applying the trace identity when the underlying
matrix Lie algebra is semisimple and the variational identity when the underlying matrix
Lie algebra is non-seimsimple. In combination with the recursion structures possessed by
the integrable hierarchies, bi-Hamiltonian formulations can often be established, thereby
guaranteeing their Liouville integrability.

Motivated by recent studies on nonlocal integrable equations (see, e.g., [6]), we look for
similarity transformations and use them to construct integrable reductions from given in-
tegrable hierarchies. Such transformations keep the original zero curvature equations
invariant. Many local and nonlocal reduced integrable nonlinear Schrödinger (NLS)
and modified Korteweg–de Vries (mKdV) equations have been constructed from the
Ablowitz–Kaup–Newell–Segur (AKNS) eigenvalue problems (see, e.g., [7–9] and [10–13]
for local and nonlocal reduced examples, respectively). Recently, it has been verified that
when taking pairs of similarity transformations, it is possible to present novel kinds of
both local and nonlocal reduced integrable partial differential equations [14,15]. Such
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studies have given rise to many new interesting problems in the theory of equations of
mathematical physics.

This paper aims to present an application of similarity transformations to generate
reduced nonlocal integrable NLS-type equations. In Section 2, we restate a multi-component
integrable Hamiltonian hierarchy [16]. In Section 3, we build three types of similarity
transformations for the adopted spectral matrix and compute three reduced nonlocal
integrable hierarchies. The first two representative examples of reduced nonlocal integrable
NLS type equations out of the resultant reduced integrable hierarchies are

irt = rxx − 2rγδrT(−x,−t)r + rγrTr(−x,−t)δ,

and
irt = rxx + 2rγδrT(x,−t)r− rγrTr(x,−t)δ,

with γ and δ being two constant symmetric and orthogonal matrices which commute and
rT denoting the matrix transpose of the potential matrix r. The third is

irt = rxx + 2rγδr†(−x, t)r− rγrTr∗(−x, t)δ,

with γ and δ being two real constant symmetric and orthogonal matrices, which again
commute, and r† and r∗ denoting the Hermitian transpose and the complex conjugate of
the potential matrix r, respectively. Lastly, in the final section, a conclusion and several
remarks are presented.

2. A Vector-Integrable Hamiltonian Hierarchy

In the forthcoming analysis, we recall the multi-component integrable Hamiltonian
hierarchy recently computed in [16]. The local integrable hierarchy is constructed from a
linear eigenvalue problem, associated with a non-special linear algebra [16]. Let n ∈ N be a
given number, γ be a given nth-order orthogonal and symmetric matrix, and λ denote the
eigenvalue parameter. Supposing that we have the potential vector

u = u(x, t) = (r, sT)T = (r(x, t), sT(x, t))T , (1)

where
r(x, t) = (r1(x, t), · · · , rn(x, t)), s(x, t) = (s1(x, t), · · · , sn(x, t))T , (2)

then, starting from the spatial linear eigenvalue problem below

−iφx = Mφ = M(u, λ)φ, M =


−λ r 0

s 0 γTrT

0 sTγT λ

, (3)

which is a counterpart of the AKNS eigenvalue problem [2], we can find a matrix solution
to the associated stationary zero curvature equation

−iZx = [M, Z], (4)

by assuming the solution to be of Laurent form:

Z =


−e f 0

g h γT f T

0 gTγT e

 = ∑
l≥0

λ−lZ[l], (5)
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with the coefficient matrices formulated similarly:

Z[l] =


−e[l] f [l] 0

g[l] h[l] γT f [l]T

0 g[l]TγT e[l]

, l ≥ 0. (6)

Obviously, the corresponding stationary zero curvature equation with such a matrix solu-
tion determines a recursive way of computing the matrix solution Z:

e[0]x = 0, f [0] = 0, g[0] = 0, h[0]x = 0,

f [l+1] = i f [l]x + e[l]r + rh[l], g[l+1] = −ig[l]x + se[l] + h[l]s,

e[l+1]
x = i( f [l+1]s− rg[l+1]) = − f [l]x s− rg[l]x ,

h[l+1]
x = i(s f [l+1] − g[l+1]r + γTrT g[l+1]TγT − γT f [l+1]TsTγT),

(7)

in which l ≥ 0. When choosing
e[0] = 1, h[0] = 0 (8)

and taking the integration constants to be zero,

h[l]|u=0 = 0, e[l]|u=0 = 0, l ≥ 1, (9)

a series of differential polynomials {e[l], f [l], g[l], h[l]| l ≥ 1} can be computed explicitly.
Upon taking the temporal linear eigenvalue problems

−iφt = N[k]φ = N[k](u, λ)φ, N[k] = (λkZ)+ =
k

∑
l=0

λlZ[k−l], k ≥ 0, (10)

it can be seen that the compatibility conditions of the two linear eigenvalue problems
in (3) and (10), namely, the corresponding zero curvature equations

Nt − N[k]
x + i[M, N[k]] = 0, k ≥ 0, (11)

yield the vector integrable hierarchy

ut =

[
rT

t
st

]
= X[k] =

[
i f [k+1]T

−ig[k+1]

]
, k ≥ 0. (12)

The first example consists of the generalized multi-component integrable nonlinear Schrö-
dinger equations {

irt = rxx + 2rsr− rγrTsTγ,

ist = −sxx − 2srs + γrTsTγs,
(13)

with γ being an arbitrary orthogonal and symmetric matrix.
The Hamiltonian structure for the integrable hierarchy (12), established by the trace

identity, is provided by

ut = Xk = J
δH[k]

δu
, k ≥ 1, (14)

where the Hamiltonian operator J reads

J = i

[
0 In

−In 0

]
, (15)
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with In being the nth-order identity matrix, and the Hamiltonian functionals H[k] are
provided by

H[l] = −
∫ e[l+1]

l
dx, l ≥ 1, (16)

with e[l] being defined by the corresponding stationary zero curvature equation. The
above Hamiltonian formulation presents a relation between symmetries and conserved
quantities [17,18]. It is known that infinitely many symmetries commute with each other:

[[Xk, Xl ]] =
d
dε

∣∣∣
ε=0

[
(Xk(u + εXl)− Xl(u + εXk)

]
= 0, k, l ≥ 0, (17)

which follows from a Lax operator algebra:

[[V[k], V[l]]] =
d
dε

∣∣∣
ε=0

[
(V[k](u + εXl)−V[l](u + εXk)

]
+ [V[k], V[l]] = 0, k, l ≥ 0. (18)

Furthermore (see, e.g., [19,20]), the Hamiltonian formulation in (14) guarantees that in-
finitely many conserved functionals commute under the following Poisson bracket:

{H[k],H[l]}J =
∫ ( δH[k]

δu
)T J

δH[l]

δu
dx = 0, k, l ≥ 0, (19)

which is associated with the previous Hamiltonian operator J.

3. Novel Nonlocal Integrable NLS-Type Equations

Let us take a new nth-order orthogonal and symmetric matrix δ which commutes
with the previous orthogonal and symmetric matrix γ, and then introduce a higher-order
orthogonal matrix Θ by

Θ =


0 0 1

0 δ 0

1 0 0

. (20)

From this, we can see that the transformed matrix reads

ΘM(λ)Θ−1 =


λ sTγδ 0

γδrT 0 δs

0 rδ −λ

. (21)

3.1. Similarity Transformation 1

We first conduct the similarity transformation

ΘM(x, t, λ)Θ−1 = −M(−x,−t, λ) (22)

for the spectral matrix M. Based on the result in (21), the above transformation equiva-
lently yields

s = −γδrT(−x,−t) or r = −sT(−x,−t)δγ. (23)

Further, it can be directly determined that

ΘZ(x, t, λ)Θ−1 = −Z(−x,−t, λ). (24)

This is a consequence of the uniqueness property of the Cauchy problem for the station-
ary zero-curvature Equation (4). In our case, we have the two Laurent series solutions,
ΘZ(x, t, λ)Θ−1 and Z(−x,−t, λ) of λ, which solve the corresponding stationary zero-
curvature Equation (4), where the spectral matrix M(x, t, λ) is replaced with−M(−x,−t, λ)
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and we have the opposite initial values at λ = ∞. Thus, noting that N[k] = (λkZ)+, we
can have

ΘN[k](x, t, λ)Θ−1 = −N[k](−x,−t, λ), k ≥ 0. (25)

This tells us the relation

Θ
(

Mt(x, t, λ)− N[k]
x (x, t, λ) + i[M(x, t, λ), N[k](x, t, λ)]

)
Θ−1

= Mt(−x,−t, λ)− N[k]
x (−x,−t, λ) + i[M(−x,−t, λ), N[k](−x,−t, λ)], k ≥ 0,

(26)

between the reduced and unreduced zero curvature equations. A consequence of this is a
reduced nonlocal integrable hierarchy

rt = i f [k+1]|s=−γδrT(−x,−t), or st = −ig[k+1]|r=−sT(−x,−t)δγ, k ≥ 0. (27)

Each equation in this reduced integrable hierarchy possesses all characteristic integrable
properties that integrable equations exhibit; in particular, the existence of infinitely many
symmetries and conserved functionals in the reduced case is guaranteed by the unreduced
case. The nonlocal reduced integrable NLS type equation in the resultant hierarchy is
provided by

irt = rxx − 2rγδrT(−x,−t)r + rγrTr(−x,−t)δ, (28)

with γ and δ being two orthogonal and symmetric matrices which commute with each other.

3.2. Similarity Transformation 2

Second, we conduct the similarity transformation:

ΘM(x, t, λ)Θ−1 = M(x,−t,−λ), (29)

for the spectral matrix M, where Θ is determined by (20).
Upon observing (21), the above similarity transformation generates

s(x, t) = γδrT(x,−t) or r(x, t) = sT(x,−t)γδ. (30)

Under either of the two potential reductions, we can obtain

ΘZ(x, t, λ)Θ−1 = −Z(x,−t,−λ). (31)

The reason is similar, that is, it follows from the uniqueness property of the corresponding
Cauchy problem. Clearly, the two Laurent series solutions ΘZ(x, t, λ)Θ−1 and Z(x,−t,−λ)
of λ of the corresponding stationary zero curvature Equation (4), where M(x, t, λ) is re-
placed with M(x,−t,−λ), have the opposite initial values at λ = ∞.

The relation (30) guarantees that

θN[2l](x, t, λ)Θ−1 = −N[2l](x,−t,−λ), l ≥ 0, (32)

and it then follows that

Θ
(

Mt(x, t, λ)− N[2l]
x (x, t, λ) + i[M(x, t, λ), N[2l](x, t, λ)]

)
Θ−1

= −
(

Mt(x,−t,−λ)− N[2l]
x (x,−t,−λ) + i[M(x,−t,−λ), N[2l](x,−t,−λ)]

)
, l ≥ 0.

(33)

Therefore, the reduced zero curvature equations lead to an integrable hierarchy of nonlocal
reduced NLS-type equations:

rt = i f [2l+1]|s=γδrT(x,−t), or st = −ig[2l+1]|r=sT(x,−t)δγ, l ≥ 0. (34)
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Under the potential reduction (30), the original infinitely many symmetries and conserved
functionals become the reduced ones for this reduced hierarchy. In the reduced hierarchy,
the nonlocal reduced integrable NLS-type equation reads

irt = rxx + 2rγδrT(x,−t)r− rγrTr(x,−t)δ, (35)

with γ and δ being two constant orthogonal and symmetric matrices which commute.

3.3. Similarity Transformation 3

We now conduct a third similarity transformation

ΘM(x, t, λ)Θ−1 = M∗(−x, t,−λ∗), (36)

for the spectral matrix M, where Θ is again determined by (20) and ∗ denotes the complex
conjugate.

Upon recognizing the result in (21), the above similarity transformation precisely
engenders

s(x, t) = γδr†(−x, t) or r(x, t) = s†(−x, t)γδ, (37)

where we suppose γ and δ to be real and † stands for the Hermitian transpose. Under
either of these potential reductions, we can obtain

ΘZ(x, t, λ)Θ−1 = −Z∗(−x, t,−λ∗), (38)

as the two Laurent series solutions ΘZ(x, t, λ)Θ−1 and Z∗(−x, t,−λ∗) of the corresponding
stationary zero curvature Equation (4), where M(x, t, λ) is replaced with M∗(−x, t,−λ∗),
take the opposite initial values at λ = ∞. This further ensures that

ΘN[2l](x, t, λ)Θ−1 = −N[2l]∗(x,−t,−λ∗), l ≥ 0. (39)

Then, it follows that

θ
(

Mt(x, t, λ)− N[2l]
x (x, t, λ) + i[M(x, t, λ), N[2l](x, t, λ)]

)
Θ−1

=
(

Mt(−x, t,−λ∗)− N[2l]
x (−x, t,−λ∗) + i[M(−x, t,−λ∗), N[2l](−x, t,−λ∗)]

)∗, l ≥ 0;
(40)

consequently we obtain the following integrable hierarchy of nonlocal reduced NLS-type
equations:

rt = i f [2l+1]|s=γδr†(−x,t), or st = −ig[2l+1]|r=s†(−x,t)δγ, l ≥ 0. (41)

Their infinitely many symmetries and conserved functionals are similarly guaranteed
by reducing the originals through the potential reduction (37). In the resulting reduced
hierarchy, the first integrable equation is the nonlocal reduced integrable NLS-type equation

irt = rxx + 2rγδr†(−x, t)r− rγrTr∗(−x, t)δ, (42)

with γ and δ being two real constant orthogonal and symmetric matrices, which again
commute, and with r† and r∗ standing for the Hermitian transpose and the complex
conjugate of the potential matrix r, respectively.

All three nonlocal reduced integrable hierarchies of NLS-type equations presented
above are distinct from those that have been presented previously, starting from the multi-
component AKNS hierarchy (see, e.g., [6,14]). As counterparts of linear examples of
differential equations (see, e.g., [21,22]), those provide new nonlinear extensions (see
also, [23,24]) to mathematical theories of integrable differential equations.

4. Concluding Remarks

Under the specific spectral matrix reductions, three reduced integrable hierarchies of
nonlocal multi-component NLS type equations have been computed from a new vector
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integrable Hamiltonian hierarchy. The three similarity transformations presented here are
key to the formulation of nonlocal reduced integrable equations.

It would be of interest to look for new nonlocal integrable equations under similarity
transformations from other linear eigenvalue problems. A further question is whether
soliton solutions to reduced integrable equations could be guaranteed by Darboux trans-
formations [25] or the Riemann–Hilbert technique [6]. Other interesting solutions in-
clude lump wave solutions [26,27], complexiton solutions [28], rogue wave solutions [29],
Grammian solutions [30], and algebro-geometric solutions [31,32]. Reduced Lax pairs of
linear eigenvalue problems and the Hirota bilinear method should be helpful in this regard.
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