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Abstract: Federated learning (FL) allows the collaborative training of a collective model by a vast
number of decentralized clients while ensuring that these clients’ data remain private and are not
shared. In practical situations, the training data utilized in FL often exhibit non-IID characteristics,
hence diminishing the efficacy of FL. Our study presents a novel privacy-preserving FL algorithm,
HW-DPFL, which leverages data label distribution similarity as a basis for its design. Our proposed
approach achieves this objective without incurring any additional overhead communication. In
this study, we provide evidence to support the assertion that our approach improves the privacy
guarantee and convergence of FL both theoretically and empirically.
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1. Introduction

Federated learning (FL) enables the collaborative training of a shared model by multi-
ple decentralized clients, eliminating the demand for direct data exchange between clients.
The utilization of this paradigm guarantees the localization of the training data and the
protection of clients’ privacy [1]. Consequently, FL have gained significant traction in
addressing numerous practical challenges across diverse fields, including the medical
arena [2]. Nevertheless, the training data disseminated among numerous participating
clients typically exhibit non-IID characteristics [3–5], which is a vital issue in the field of
FL, as highlighted in reference [1]. The impact of label distributions in clients’ training
data on the overall performance of classification tasks has been observed [6]. Non-IID
data significantly impact FL from two distinct perspectives: two primary factors contribute
to the divergence of local models. One is that the data distributions vary significantly
among various clients, and another is that the local data are imbalanced. The non-IID
distributed data might result in a phenomenon known as “weight divergence” during a
model’s training process. Furthermore, this could have a detrimental effect on the efficiency
of the global model [7,8].

One approach to address the aforementioned issue is mitigating the impact of data
category imbalance on FL model by employing data augmentation techniques in situations
where there exists a substantial disparity in data categories across various client datasets [9].
Nevertheless, the predominant obstacle in practical implementation is the inefficient uti-
lization of communication resources resulting from the disproportionate allocation and
dissemination of client data. The FedAvg algorithm, introduced by McMahan et al. [10], is
widely acknowledged in this context. The system efficiently combines the model updates
from several clients by utilizing a weighted averaging technique on the parameters. The sys-
tem efficiently combines the model updates from several clients by employing a weighted
averaging technique on the model parameters. This study examines the variation in client
data while making the assumption that the global data follow the IID assumption. Further-
more, it is observed that there has been limited progress in enhancing the performance of
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the algorithm. Based on this premise, researchers initiated investigations into enhanced FL
methodologies, including FedProx [11], SCAFFOLD [12], and MOON [13], with the aim
of enhancing the performance of FedAvg in non-IID data scenarios through refining local
training procedures. Nevertheless, in this particular situation, it is worth noting that the en-
hancements achieved by FedProx may have been more gratifying, whereas the SCAFFOLD
and MOON approaches imposed a considerable amount of supplementary communication
overhead. The enhanced FL algorithm for non-IID data aims to optimize the aggregation
weight in order to enhance the performance of FedAvg. The enhancement of aggregation
weight places greater emphasis on the computation of similarity between the local and the
global model [14,15]. But this approach has significant storage and time costs and does
not effectively merge variations in client data distribution. Hence, the primary focus of
our research paper is centered in the non-IID data scenario. Our objective is to assess the
similarity of the distribution of clients’ data and subsequently modify the aggregate weight
based on these findings. The objective is to mitigate the communication bottleneck.

While FL can provide a certain level of privacy protection by sharing model param-
eters like gradients, it is vital to consider the non-IID scenario. In such cases, attackers
can deduce model parameter information, hence posing a potential danger of privacy
breach [16]. To augment the privacy protection capacity of the model during transmission,
current approaches integrate FL with additional privacy protection technologies. These
technologies include Differential Privacy (DP) [17], Homomorphic Encryption [18], and
Secure Multi-Party Computation [19]. DP, in particular, possesses both a rigorous mathe-
matical foundation and the ability to quantify the level of data privacy protection through
the concept of privacy budget. Currently, DP has emerged as a highly effective method
for safeguarding data privacy in the context of FL. Two primary application approaches of
DP are commonly utilized: centralized DP and localized DP. The conventional approach to
distributed processing involves the centralization of data processing and storage on the
central server. However, this strategy is susceptible to single-point failures and potential
breaches of privacy [20]. The concept of localized data processing entails the distribution of
data processing and protection tasks over multiple local devices, hence enhancing privacy
safeguards. In [21], the authors offer a privacy protection strategy called FedProx at the
client level. However, they do not provide sufficient evidence to establish that the scheme
fully satisfies the notion of DP. The study in [22] offers a theoretical demonstration; however,
it fails to consider the trade-off between privacy parameters and model utility. Hence, for
the non-IID scenario, the pressing issue at hand pertains to the reduction of communication
costs while simultaneously guaranteeing the privacy of FL. Hence, this study presents a
privacy-preserving FL technique that leverages the similarity in distribution of client data.

The primary contributions of our study are as follows:

(1) To address the issue of suboptimal FL algorithm models resulting from non-IID data,
we have put out a proposed scheme, which involves utilizing the Hellinger distance
to quantify the disparity between the local data distributions of clients and the ideal
balanced distribution. By doing so, we aim to alleviate the divergence in the model;

(2) To address the issue of excessive communication usage in FL while dealing with non-
IID data, we propose an aggregation technique that incorporates similarity weighting.
This method leverages the similarity results obtained from analyzing the data dis-
tribution of each client, allowing for fast transfer of local model information to the
Parameter Server (PS);

(3) To address the privacy disclosure issue in FL, we employ DP as a solution. During
the training process, Gaussian noise is incorporated into the client’s output in order
to enhance privacy and security measures.

The remainder of our paper is organized as follows. Following this introduction,
the relevant preliminary is presented in Section 2 and the proposed system model for
the privacy-preserving FL algorithm the context of non-IID is presented in Section 3.
The findings pertaining to privacy theory are presented in Section 4, whereas the results
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concerning convergence theory can be found in Section 5. In Section 6, the discussion is
given. Finally, the concluding remarks are presented in Section 7.

2. Preliminary

This section primarily outlines the fundamental framework of FL, elucidates the notion
of DP mechanism, and examines the influence of non-IID data on model optimization.

2.1. Federated Learning

FL refers to a collaborative training procedure that involves the interaction between
local clients and PS [19]. Supposing a standard FL system with N local clients and a PS,
each client k ∈ {1, 2, . . . , N} has its private training dataset Dk, and the dataset size is nk;

here, Dk =
{(

u(k)
i , v(k)i

)}nk

i=1
, u(k)

i represents data point i of client k, and v(k)i indicates the
label of the data point i of client k. The client communicates with the PS to train the global
model cooperatively without transmitting the original data. Therefore, the optimization
problem of FL could be described as

min
w

F(w) ,
N

∑
k=1

pkFk(w), (1)

where F(w) denotes a global objective function, w ∈ Rd stands for a model parameter
vector, pk = nk/∑N

k=1 nk refers to aggregate weights, and Fk(w) denotes the local target
function of client k. Specifically, we assume that the nk training data of the client k is
Dk =

{(
u(k)

1 , v(k)1

)
,
(

u(k)
2 , v(k)2

)
, . . .

(
u(k)

nk , v(k)nk

)}
; then, the local objective function Fk(w)

can be defined as

Fk(w) ,
1
nk

nk

∑
i=1

`(w; u(k)
i , v(k)i ), (2)

where `(·) refers to the loss function specified by the client. Cross-entropy is often used as
a loss function in image recognition tasks.

The FedAvg algorithm [21] is a commonly employed approach in federated optimiza-
tion. The PS computes the average of the local model parameters submitted by individual
clients and thereafter distributes the aggregated outcomes to each client. In the conventional
FedAvg algorithm, the initial step involves the client retrieving the latest global model
parameters from the PS and subsequently initializing the local model. In the scenario
where clients are chosen at random for training, the selected clients engage in training the
local data update model. This is achieved by individually executing E rounds of random
gradient descent steps and afterwards reporting the results to the PS. Ultimately, the PS
obtains the model that has been modified locally and proceeds to aggregate it through an
averaging process.

2.2. Differential Privacy

Dwork et al. proposed DP [23] to solve the privacy protection problem in databases.
As a proven privacy protection technology, DP can ensure that the impact of a single sample
on the whole is always lower than a certain threshold when outputting information, which
makes it impossible for attackers to analyze the situation of a single sample from the change
in output.

Definition 1. ((ε, δ)-DP [23]): Consider any two neighboring datasets D and D′, which differ
in only one data sample. A randomized mechanism M : D→ R with domain D and range R
guarantees (ε, δ)-DP ((ε, δ)-DP), and, for any subsets of outputs S ⊂ R, it holds that

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S] + δ. (3)
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This ensures that the output of (ε, δ)-DP is indistinguishable, regardless of differences in a
single record. The parameter ε > 0 is known as the privacy budget; smaller ε indicates stronger
privacy protection level, and δ ∈ [0, 1] represents the probability to break the ε-DP.

Typically, ε-DP and (ε, δ)-DP assurance can be achieved through the Laplace Mechanism
and Gaussian Mechanism, but this paper focuses on guaranteeing (ε, δ)-DP by adding random
noise that conforms to the Gaussian distribution N(0, σ2 Id) to the output function. To meet the
requirements of DP, this mechanism controls the noise variance within a certain range to ensure
that it meets the following conditions:

σ2 ≥ 2(∆ f )2 log(1.25/δ)

ε2 , (4)

Here, the notation ∆ f , max
D,D′
‖ f (D)− f (D′)‖2 stands for the L2-norm sensitivity of

the function.
Sampling processes are frequently employed in machine learning algorithms. The privacy

amplification characteristic, as suggested by differential privacy (DP) [24], demonstrates that the
DP mechanism, when applied to a randomly chosen subset of the dataset, provides superior privacy
safeguards compared to when it is applied to the entire dataset.

Lemma 1. (Privacy amplification by subsampling [25]): If M is (ε, δ)-DP, then M ◦ Subsampling
obeys (ε′, δ′)-DP, with ε′ = log(1 + γ(eε − 1)) and δ′ = γδ.

The privacy amplification theorem demonstrates that, by sub-sampling the client, it
is possible to effectively decrease the noise variance needed to attain the desired level of
privacy protection, as specified by DP. In a broader sense, the lemma suggests that it is vital
to exploit the randomness in sub-sampling because, if M is (ε, δ)-DP, then a sub-sampled
mechanism with probability γ < 1 obeys (O(γε), γδ)-DP for a sufficiently small ε.

2.3. Impact of Non-IID Data

In every global iteration of FL, each client aims to reduce their loss function based on
its local data. The existence of non-IID attributes in the local dataset can result in significant
discrepancies between the local and the global model. In certain instances, it has been
shown that the gradient of local models may exhibit a contrasting direction compared
to that of the global model, leading to a phenomenon known as drift inside the local
model [12,26]. Put differently, the revised local model exhibits a bias towards the local
optimum and deviates from the global optimum state. Assume that the parameters of these
local models are uploaded to the PS for the purpose of aggregation. The precision of the
global model will be impacted, and there will also be a significant utilization of network
capacity, resulting in a decrease in communication efficiency.

Figure 1 illustrates the FedAvg problem in both IID and non-IID scenarios. In IID
scenarios, it can be observed that the global optimal value exhibits a strong proximity to the
local ideal value. In other words, the global average model converges towards the global
optimum. In non-IID scenarios, the discrepancy between the global optimal value and
the local ideal value results in a considerable distance between the averaged global model
and the global optimal state. Hence, it is imperative to investigate the methodologies for
developing a proficient FL in non-IID scenarios.
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Figure 1. The FedAvg problem in IID and non-IID data.

3. System Model

In this section, we introduce the privacy-preserving FL algorithm (HW-DPFL), which
is designed on the basis of the concept of probability distribution similarity of data labels.
Subsequently, the method’s specific process is described.

Firstly, it is vital to note that, in the FedAvg algorithm, the PS is responsible for
aggregating and averaging the local model parameters. Thus, the effectiveness of FedAvg
is greatly influenced by the weighting method employed. Typically, the weight assigned
to each local dataset is determined by calculating the ratio of that dataset to the entire
dataset. Nevertheless, in non-IID cases, this approach can have an impact on the rate
of convergence and potentially compromise privacy. Hence, it is imperative to choose a
more suitable approach for determining the weight. To address the problems at hand, this
section presents a privacy-preserving FL approach called HW-DPFL, which leverages the
similarity of probability distributions of data labels. The flow of the algorithm is depicted
in Figure 2. During the process of model aggregation, the algorithm computes the Hellinger
distance of the label distribution for each client’s dataset. It then extracts the local model
information from this calculation and aggregates it using an updated weighting approach.
The proposed approach mitigates the challenges associated with training non-IID data and
enhances the efficiency of model training.

Figure 2. Schematic diagram of the HW-DPFL algorithm process.

In each iteration t, the label distribution of the client k dataset can be represented by
the label vector Gk:

Gk = [nk,1, nk,2, . . . , nk,C] (5)

where C denotes the total number of label types, nk,C indicates the number of C- type labels
possessed by the client k.
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The Hellinger distance is computed based on the label distribution Gk of the client k
local dataset and the standard balanced data label distribution S:

ht= H(G, S) =
1√
2

∥∥∥√G−
√

S
∥∥∥

2
=

1√
2

√
∑n

i=1(
√

Gi −
√

Si)
2

(6)

Hellinger distance is a metric employed in the field of probability and statistics to
quantify the degree of similarity between two probability distributions [27]. In the context
of non-IID data, the Hellinger distance could be employed as a metric to assess the similarity
between two classes, hence enabling algorithmic enhancements. Hence, the measure of
similarity between each client’s local dataset and the designated standard balanced dataset
can be determined by computing the Hellinger distance.

The parameters for updating the weight of the model vary depending on the number
of iterations:

wt = ∑M
k=1τk · wk

t , (7)

τk =
hk

t

∑M
j=1 hj

t

. (8)

Furthermore, given the PS’s inclination towards honesty and curiosity while adhering
to the FL protocol, it demonstrates a greater interest in the client’s data information. Simul-
taneously, the system is susceptible to additional external attacks during the transmission
of model parameters. To address this issue, we propose the incorporation of noise that
adheres to a Gaussian distribution, thereby ensuring DP. Algorithm 1 provides a concise
representation of the privacy-preserving FL method suggested in this research, which is
founded on the concept of data label distribution similarity (HW-DPFL).

Algorithm 1: HW-DPFL

Input: K denotes the number of terminals; B denotes the local batch size; E denotes the local
training times of the terminal model; F denotes the proportion of clients participating in training;
η denotes learning rate; S denotes standard balanced data label distribution.
Output: model parameter
The PS does
Initialize global model parameters

for each round t = 1, 2, ···, do
M← max(C · K, 1) // Determine the number of clients for this round of communication
St ← (random set o f M client) // Randomly select M clients to participate in training

for each client k ∈ St in parallel, do
wk

t ← ClientUpdate(k, wt−1)
ht ← GetWeight(k)

wt ← HW − DPFL
(

w̃k
t

)
def GetWeight(k): // Get the aggregation weight of user k

G ← (Get local dataset label distribution)
ht ←W(G, S) // Calculate the distribution similarity of user data labels

return ht
def HW-DPFL(w, h): // Weighted aggregation

wt ← ∑K
k=1 w̃k

t ·hk
t

∑K
k=1 hk

t
return wt

def ClientUpdate(k, w): // Model update
B← (Batch Local Datasets)

for each local epoch from 1 to E do
for batch b ∈ B do // Train each batch of data

w̃k
t ← (wk

t − η∇Fk
t (w; b)) + Zk

t , Zk
t ∼ N(0, σ2

t,k Id)
return to server
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During the process of model iteration, the method introduces noise to the model
parameter information, thereby perturbing the data in a manner that significantly hinders
the attacker’s ability to extract meaningful information from it. The determination of noise
parameters and privacy budget in DP is contingent upon the specific requirements for
privacy protection. The combination theorem enables clients to effectively compute the
privacy loss incurred throughout each iteration of the training process. In order to enhance
clarity, the tth round, on the basis of the HW-DPFL algorithm, might be denoted as follows:

Client k :
wk

t = ClientUpdate(k, wt−1)
w̃k

t = wk
t + Zk

t , Zk
t ∼ N(0, σ2 Id)

(9)

Server : wt = ∑M
k=1τk · w̃k

t , (10)

where wt is the global model parameter of round t, wk
t denotes the local model parameter of

client k in round t, ClientUpdate(k, wt−1) means the local random gradient descent process
of client k, and d is the dimension of model parameters.

4. Privacy Analysis

In this section, we focus on the analysis of the privacy guarantees offered by the
HW-DPFL algorithm. We begin by analyzing the sensitivity of the local parameter update
function in relation to the L2-norm. Following this, we proceed to assess the level of privacy
guarantee in each subsequent iteration. Finally, we calculate the total privacy budget after
the conclusion of all T iterations.

4.1. L2-Norm Sensitivity

To achieve DP, we incorporate the Gaussian technique with L2-norm sensitivity
by introducing noise. Thus, we elucidate the sensitivity towards the local parameter
updating function.

Assumption 1. Suppose ζk
t is a uniform random sampling from the local data of client k in the itera-

tion t. The squared norm of gradients for all clients is uniformly bounded, so
∣∣∣∣∣∣∇Fk(w

k,e
t ; ζk,e

t )
∣∣∣∣∣∣2 ≤ G2

for k = 1, . . . , N, e = 1, . . . , E, and t = 1, . . . , T.
Paper [21] has successfully used Assumption 1 for DP-based research proof, as evidenced by

the application of a gradient clipping methodology [28].

Lemma 2. If Assumption 1 holds, then the L2-norm sensitivity of the local update parameters for
user k in the iteration t is

∆ f k
t , max

D,D′
||wk

t (Dk)− wk
t (D′k)||2 = 2ηEG (11)

The proof of Lemma 2 is shown in Appendix A.

4.2. Privacy Guarantee in Round T

Subsequently, a sub-sampling privacy amplification lemma is employed to mitigate
the noise variance, ensuring that each client adheres to the noise variance constraint in
every iteration.

Theorem 1. Without replacement sampling in mini-batches, given that the noise level σ2
t,k and the

added noise Zk
t are obtained from sampling from a Gaussian distribution N(0, σ2

t,k Id), then we have

σ2
t,k ≥

32γ2η2E2G2 log(1.25γ/δ)

ε2 , (12)

where the sampling probability is γ = Eb/nk.
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Proof of Theorem 1. According to the privacy amplification by sub-sampling, the Gaussian
noise level in fact can describe (log(1 + γ(eε − 1)), γδ)-DP. Since

log(1 + γ(eε − 1)) ≤ γ(eε − 1) ≤ 2γε, (13)

we can then obtain that the Gaussian noise level achieves at least (2γε, γδ)-DP. Specifically,
in the iteration t, in order to satisfy the (ε, δ)-DP guarantee of client k, the Gaussian noise
level can be decreased to

σ2
t,k ≥

8(∆ f k
t )

2
γ2 log(1.25γ/δ)

ε2

=
32γ2η2E2G2 log(1.25γ/δ)

ε2

(14)

The proof is finished; the text continues here. �

4.3. The Total Privacy Loss

In this paper, we employ the moment accountant approach to quantify the cumulative
privacy loss across T rounds. Our proposed methodology offers a more stringent constraint
for quantifying the overall extent of privacy compromise compared to prior research efforts.

Theorem 2. Assume that the noise Zk
t obeys a Gaussian distribution N(0, σ2

t,k Id); then, the
HW-DPFL algorithm guarantees (ε̂, δ)-DP. We have

ε̂ = ε

(
T log(1/δ)

2 log(1.25γ/δ)

) 1
2
. (15)

Proof of Theorem 2. According to [28], we define the log of the moment-generating
function evaluated at e for client k in iteration t as

αk
t (e) = log

Ew̃k
t


 Pr[w̃k

t

∣∣∣Dk]

Pr[w̃k
t
∣∣D′k]

e
. (16)

Suppose that u0 and u1 stand for the probability density function of N(0, σ2
t,k Id) and

N
(

∆ f k
t , σ2

t,k Id
)

, respectively. Let u denotes the mixture of two Gaussian distributions as
u = (1− γ)u0 + γu1. Therefore, we have

αk
t (e) = log(max(E1, E2)) (17)

where
E1 = Ez∼u0

[(
u0(z)
u(z)

)e]
,

E2 = Ez∼u

[(
u(z)
u0(z)

)e]
.

(18)

According to composability for moment accountant method and Lemma 3 in [27],
we have

αk
t (e) ≤

Tγ2(∆ f k
t )

2e2

σ2
t,k

=
Tε2e2

8 log(1.25γ/δ)
. (19)

Next, following Theorem 2.2 in [28], the HW-DPFL algorithm satisfies
(
ε̂, δ̂
)
-DP. Here,

δ̂ = min
e∈Z+

exp(αk(e)− eε̂)

= min
e∈Z+

exp
(

Tε2e2

8 log(1.25γ/δ)
− eε̂

) (20)
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Since the above formula is a quadratic function of e, we assume that
θ(x) = Tε2e2/8log(1.25γ/δ)− ε̂e, e = 1, . . . E. Then,

δ̂ < exp(θ(e∗ + 1)), (21)

where e∗ is the minimum point of the function θ(x).
To make the HW-DPFL algorithm satisfy (ε̂, δ̂)-DP, let

θ(e∗ + 1) =
Tε2

8 log(1.25γ/δ)
− 2 log(1.25γ/δ)ε̂2

Tε2 ≤ log(δ). (22)

Thus, we have

log(1/δ) ≤ − Tε2

8 log(1.25γ/δ)
+

2 log(1.25γ/δ)ε̂2

Tε2 ≤ 2 log(1.25γ/δ)ε̂2

Tε2 . (23)

and

ε̂ ≥ ε

(
T log(1/δ)

2 log(1.25γ/δ)

) 1
2
. (24)

The proof is finished, the text continues here. �

The coexistence of b and E adds to the acceleration of the convergence of Stochastic
Gradient Descent (SGD) [29]. Moreover, as stated in Theorem 1, in cases when both b and
E exhibit substantial magnitudes, it becomes imperative to provide a higher level of noise
in order to guarantee differential privacy. However, this increased noise may potentially
hinder the convergence of the algorithm. This suggests that there is a trade-off between the
speed at which the algorithm reaches convergence and the degree of privacy protection.
The aforementioned trade-off is subjected to further analysis in the future section.

5. Convergence Analysis

This section primarily focuses on the analysis of the convergence of the HW-DPFL
algorithm described herein. Let us commence by establishing certain assumptions.

Assumption 2. For all k ∈ [N] , each Fk is L-smooth, i.e., for all x and y, Fk(x) ≤ Fk(y) +
(x− y)T∇Fk(y) + L‖x− y‖2/2.

Assumption 3. For all k ∈ [N] , each Fk is µ strong convex, i.e., for all x and y, Fk(x) ≥
Fk(y) + (x− y)T∇Fk(y) + µ‖x− y‖2/2.

Assumption 4. For all k ∈ [N] , the stochastic gradients for each client satisfy E[∇Fk(wk
t ; ζk

t , b)] =

∇Fk(wk
t ) and E[

∥∥∥∇Fk(wk
t ; ζk

t , b)−∇Fk(wk
t )
∥∥∥2
] ≤ ρ2

k .

Let F∗ and F∗k denote the optimal values of total objective functions and objective
function of the client k, respectively. According to [30], we assume that the degree of data
heterogeneity can be expressed as Γ = F∗ −∑N

k=1 pkF∗k . It can be observed that, when the
client data are IID, Γ = 0. The more heterogeneous the data, the greater the value of |Γ|.

Suppose wk
t is the model parameter of the client k in the round t, and E is the total

number of local epochs. The command set ΩE = {nE|n = 1, 2, . . .} represents the times
of the client communicates with the PS. Considering that a subset of clients is randomly
selected to participate the training according to the sampling scheme, at this time, if
t + 1 ∈ ΩE, it means that the PS aggregates the local models’ parameters to obtain the
global model and sends the latest model parameters to each client, if t + 1 /∈ ΩE, the client
updates the local model parameters with its local data. Because clients participating in
the training have to perform multiple rounds of iterations locally, we use an intermediate
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variable υk
t+1 to represent the results of the one-step SGD, and the updated results can be

expressed as
υk

t+1 = wk
t − η∇Fk(wk

t , ζk
t ) (25)

wk
t+1 =


υk

t+1, t + 1 /∈ ΩE
M
∑

k=1
τkυk

t+1, t + 1 ∈ ΩE
. (26)

In order to enhance the comprehensibility of the proof, we shall introduce the subse-
quent lemma.

Lemma 3. (Results for each round t) In iteration t, suppose that Assumptions 1 to 4 hold. Then,

E
[
||υ̂t+1 − w∗||22

]
≤ (1− µη)E

[
||ŵt − w∗||22

]
+ Ψ + TΛ, (27)

where

Ψ = 2(E− 1)2η2G2 + 2(M + 2)η2LΓ + η2
M

∑
k=1

τ2
k ρ2

k (28)

Λ= d
M

∑
k=1

τ2
k σ2

t,k= d
M

∑
k=1

τ2
k

32γ2η2E2G2 log(1.25γ/δ)

ε2 , (29)

where w∗ stands for the global optimal solution.

The proof of Lemma 3 is shown in Appendix B.

Theorem 3. Suppose Assumptions 1 to 4 hold; then, the convergence rate of the HW-DPFL
algorithm satisfies

E
[
F(ŵT)

]
− F(w∗) ≤ L

2 E
[
‖ŵT − w∗‖2

2

]
≤ L(1−µη)T

2 E
[
‖ŵ0 − w∗‖2

2

]
+ Lµη

(
Ψ+TΛ

2 + N−M
N−1

2
M η2E2G2

) (30)

Proof of Theorem 3. If t + 1 /∈ ΩE, it can be observed that ŵt+1 = υ̂t+1. And if t + 1 ∈ ΩE,
the two are not equal. Assuming that there is no communication loss among the selected
clients in each round, we hope that the model parameters obtained after sub-sampling
and average aggregation are unbiased; thus in the HW-DPFL algorithm, when t + 1 ∈ ΩE,
we have

ESt [ŵt+1] = υ̂t+1. (31)

Here, it is used to express the expectation of the set St of randomly selected
partial clients.

Lemma 4. (Bounding the variance of {ŵt} [29]). If PS samples St uniformly without replace-
ment, then the variance of {ŵt} is bounded by

ESt

[
‖ŵt+1 − υ̂t+1‖2

2

]
≤ N −M

N − 1
4
M

η2E2G2. (32)

Note that

E
[
‖ŵt+1 − w∗‖2

2

]
= E

[
‖ŵt+1 − υ̂t+1 + υ̂t+1 − w∗‖2

2

]
= E

[
‖ŵt+1 − υ̂t+1‖2

2

]
︸ ︷︷ ︸

R1

+ E
[
‖υ̂t+1 − w∗‖2

2

]
︸ ︷︷ ︸

R2

+ 2E[〈ŵt+1 − υ̂t+1, υ̂t+1 − w∗〉]︸ ︷︷ ︸
R3

. (33)

Then, we use ESt [ŵt+1] = υ̂t+1, and the term R3 = 0.
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Case 1. If t + 1 /∈ ΩE, then R1 = 0 because ŵt+1 = υ̂t+1. According to Lemma 3,
we have

E
[
‖ŵt+1 − w∗‖2

2

]
= E

[
‖υ̂t+1 − w∗‖2

2

]
≤ (1− µη)E

[
‖ŵt − w∗‖2

2

]
+ Ψ + TΛ. (34)

Case 2. If t + 1 ∈ ΩE, according to Lemmas 3 and 4, it follows that

E
[
‖ŵt+1 − w∗‖2

2

]
= E

[
‖υ̂t+1 − w∗‖2

2

]
+ E

[
‖ŵt+1 − υ̂t+1‖2

2

]
≤ (1− µη)E

[
‖ŵt − w∗‖2

2

]
+ Ψ + TΛ + N−M

N−1
4
M η2E2G2.

(35)

Unrolling the recursion, we can obtain

E
[
‖ŵT − w∗‖2

2

]
≤ (1− µη)TE

[
‖ŵ0 − w∗‖2

2

]
+

T−1
∑

t=1
(1− µη)t

(
Ψ + TΛ + N−M

N−1
4
M η2E2G2

)
≤ (1− µη)TE

[
‖ŵ0 − w∗‖2

2

]
+ µη

(
Ψ + TΛ + N−M

N−1
4
M η2E2G2

)
.

(36)

Since Fk(.) is L-smooth, we have

E
[
F(ŵT)

]
− F(w∗) ≤ L

2 E
[
‖ŵT − w∗‖2

2

]
≤ L(1−µη)T

2 E
[
‖ŵ0 − w∗‖2

2

]
+ Lµη

(
Ψ+TΛ

2 + N−M
N−1

2
M η2E2G2

) (37)

The proof is finished; the text continues here. �

By Theorem 3, the convergence upper bound of the HW-DPFL algorithm is affected
by several factors, namely, the number of transmission rounds T, the mini-batch size b,
the noise level σ, and the number of local update steps E. It is important to recognize
that an increase in E has the potential to enhance the algorithm’s convergence rate. The
potential for enhancing convergence rates exists when the mini batch size b is increasing
at the local level. Nevertheless, the algorithm’s convergence rate may be impeded by the
significant magnitudes of E and b. Increasing the degree of noise σ has the potential to
improve the effectiveness of privacy measures. However, this may lead to a decrease in the
rate of convergence.

6. Experiment

In this section, we assess the efficacy of the HW-DPFL. The experiments primarily
employ Convolutional Neural Networks for the purpose of classifying the MNIST dataset.

MNIST dataset: The dataset was publicly provided by the National Institute of Stan-
dards and Technology. It is a binary image dataset, which consists of 70,000 grayscale
images that have been manually scribbled. Each image is associated with a numerical
designation ranging from 0 to 9. The resolution of the image is fixed at 28 × 28 pixels. For
the MNIST dataset, a resolution of 28 × 28 has been considered a relatively low resolution,
which has been widely accepted and effectively applied in practice. Some image examples
from the MNIST dataset are in Figure 3.

A total of 60,000 images were designated as the training dataset, while the remaining
10,000 images were allocated for testing the model. During the model training process, it
is necessary to specify the overall number of clients and ensure an equitable distribution
of 60,000 images among them. This allocation ensures that each client receives an equal
share of 600 photographs. The proportion of customers whose data are dependent and
identically distributed is established at 0.8.



Mathematics 2023, 11, 4123 12 of 21

Figure 3. Size-normalized examples from the MNIST database.

Parameter setting: We set δ = 10−5 and the maximal local gradient norm to 1. It
should be noted that the loss function is defined as cross-entropy and represents a highly
convex optimization issue:

(1) Impact of local mini-batch size b: The impact of varying local mini-batch sizes on the
training loss of the HW-DPFL algorithm is depicted in Figure 4. We set the values of
local mini-batch size b = {10, 15, 20, 50}. Based on the findings from the experimental
results, it is not difficult to see that an optimal state is present in two distinct contexts.
In the IID case, it is observed that an increase b results in accelerated convergence
and greater reduction in training loss. Nevertheless, the outcome is detrimental when
the magnitude is above a specific threshold. The decrease in training loss is more
pronounced when handling non-IID data, and the disparity in convergence between
distinct b values is more noticeable;

(2) Impact of the number of local update steps E: We also analyze the performance of
the HW-DPFL algorithm with different local update steps. In the experiment, we set
the number of local update steps as E= {1, 10, 20, 50}. The outcomes are depicted in
Figure 5. For a fixed ε = 1, there is an optimal E value which makes the HW-DPFL
perform the best in two scenarios. Moreover, increasing the value of E can result in
expedited algorithm convergence. Nevertheless, the rate of convergence decelerates
significantly when E is too large. In addition, for non-IID, an excessively large E
results in a higher degree of variability in the training loss. The presence of larger E
can result in more significant variations in weights among clients, hence impeding
the convergence of the HW-DPFL;

(3) Impact of the noise level σ: The experience results of the HW-DPFL with different
noise levels σ are presented in Figure 6. We set the noise level σ = {0.2, 0.5, 1}.
The results indicate a steady decrease in training loss as the noise level increases.
This can be attributed to the detrimental impact of high noise levels on the model’s
convergence performance, leading to a substantial increase in training loss. In both IID
and non-IID cases, the training loss of the HW-DPFL exhibits an initial steep decline.
In non-IID scenarios, the training loss experiences a greater reduction. Furthermore,
the HW-DPFL has the potential to enhance the resilience of the training model in the
face of DP injection noise;

The above experiments examines the impact of various factors on the efficacy of the
HW-DPFL algorithm. It is evident that the HW-DPFL algorithm demonstrates superior
performance across several data features. When the data follow the IID assumption,
correctly raising the local mini-batch size b and the number of local update steps E enhances
the convergence speed and decreases training losses. However, surpassing a particular
threshold would result in the reverse effect. When dealing with non-IID data, it has been
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seen that increasing the value of b can effectively decrease training losses. However, it
should be noted that, as the value of E increases, there is a corresponding increase in the
variability of training losses. Furthermore, it is vital to consider the trade-off between utility
and privacy when dealing with both IID and non-IID scenarios. The excessive noise level
significantly impacts the convergence performance of the model. In circumstances where
the data are non-IID distributed, the HW-DPFL algorithm exhibits reduced training losses
and demonstrates enhanced capacity for improving the robustness of the model. Hence,
the performance of the HW-DPFL algorithm can be enhanced through the adjustment of
parameters such as the local mini-batch size b, the number of local update steps E, and the
high noise level σ. In relation to the b value, it is imperative to select a suitable magnitude
that aligns with the IID characteristics of the data. Regarding the E value, it is crucial to
maintain control within a moderate range to prevent fluctuations and mitigate the adverse
impact on the rate of convergence that may arise from an excessively large size. As for
the σ value, it is essential to strike a balance between utility and privacy considerations,
thereby opting for an appropriate level of noise that guarantees privacy while ensuring the
desired level of utility. Implementing these modifications will enhance the training efficacy
of the HW-DPFL algorithm and bolster the resilience of the model;

(4) Algorithm performance comparison: In IID and non-IID scenarios, HW-DPFL exhibits
a greater level of accuracy compared to both the DP-FedAvg [8] and DP-FL [19].
Simultaneously, HW-DPFL demonstrates comparable accuracy to the DP-FL algorithm
in the non-IID case in Table 1, thereby confirming the practicality and efficacy of the
HW-DPFL algorithm in non-IID data scenarios.
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Figure 6. Comparing the impact of the noise level on training loss in different data scenarios: (a) IID
data. (b) Non-IID data.

Table 1. Comparison accuracy of DP-FedAvg, DP-FL, and HW-DPFL.

Clients
Acc on Acc on Acc on

DP-FedAvg DP-FL HW-DPFL

IID data 100 96.41% 94.20% 96.67%

Non-IID data 100 90.03% 93.90% 95.21%

7. Discussion

This section examines three key aspects: data dissemination, privacy protection, and
training time. In this study, we evaluate the efficacy of three techniques in the context of
non-IID data, using heterogeneous and homogeneous models.

The primary focus of HW-DPFL lies in training non-IID data inside both homogeneous
and heterogeneous models while emphasizing the implementation of robust privacy pro-
tection measures. The process of fine-tuning primarily takes place during the training stage
and relies on weight aggregation. The Hellinger distance metric is also utilized to quantify
the similarity between two probability distributions [26]. The performance of a system is
influenced by the configuration of its models and the distribution of its data, both at the
local level throughout numerous iterations and at the global level during aggregations. The
substantial variance in updates leads to a departure of the global model from the genuine
optimization outcomes.

Models are commonly perceived as entities that serve as repositories for storing knowl-
edge derived from diverse datasets. The complexity of a model is influenced by various
factors, including its structural design, dimensions, the distribution of data, and the size
of the dataset. The augmentation of hidden units or parameters results in generalization
mistakes. When various techniques are utilized to train the model under identical condi-
tions, such as measuring the model complexity using CNN, it is noted that the accuracy of
the model surpasses that of a shallow model. However, it is worth noting that the training
time is extended.

During the preparation of this paper, it has come to our attention that a study con-
ducted by [3] in the IEEE Internet of Things Journal in January 2023 explores an issue
closely related to our research. It also investigates the application of FL to non-IID datasets,
using DP techniques, yielding promising outcomes. However, it fails to address the content
of our study adequately. Four distinct points of divergence exist between our paper and
the work mentioned above: (1) The optimization of the gradient in FL was enhanced
by [3] by utilizing historical gradient information. In contrast, our approach focuses on
optimizing the gradient by adjusting the server-side aggregation strategy of parameters;
(2) The reference [3] employs the K-means algorithm to cluster the label distribution of
user data, aiming to address the issue of non-IID. In our work, we utilize the Hamming
distance as a metric to quantify the difference between the IID and non-IID distribution;
(3) Regarding the DP mechanism, [3] employs Laplace noise and a simple combination
theorem to calculate privacy loss. In contrast, we introduce Gaussian noise and utilize the
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moment accountant method to calculate privacy loss; (4) The reference [3] solely presents
empirical experiments to demonstrate their results, while we provide theoretical proof of
privacy and convergence in our work.

The HW-DPFL is configured with three distinct levels of noise, which are afterward
linked to DP privacy protection. The hyper-parameters indicate the privacy protection
level for both data and models.

8. Conclusions

This paper has studied an FL framework toward non-IID data, and a novel approach
called HW-DPFL is proposed based on weighted aggregation of data distribution, which
aims to improve FL’s efficiency and protect the FL’s privacy in non-IID data scenarios. Based
on Hellinger distance, the algorithm quantifies the distribution balance degree of the clients’
local privacy data labels to readjust the weight information of FL aggregation on PS so that
the algorithm can converge faster while ensuring that the client information is fully trained.
To effectively deal with the problem of information leakage, we add Gaussian noise to the
shared parameters before uploading the parameters to PS. The algorithm can obtain local
differential privacy with adjustable noise in FL architectures. Theoretical guarantees on the
privacy protection capabilities and convergence of HW-DPFL were derived. The HW-DPFL
algorithm was subsequently assessed using the MNIST dataset. The experimental findings
exhibited the enhancement of HW-DPFL about non-IID data across several dimensions.
The findings also suggest that HW-DPFL demonstrates potential usefulness and robust
convergence in the face of non-IID data. Moreover, DP is incorporated into the upgraded
FL framework to ensure the scheme’s privacy.

Further research can be conducted to explore additional examinations of the theorems
and the efficacy of HW-DPFL in future endeavors. Additionally, it is important to address
various non-IID settings, such as feature-based non-IID scenarios. The potential strengths
of DP-shuffle can be enhanced through the manipulation of various levels of noise. Further-
more, due to its nature as a local sample federated scheme, HW-DPFL has the potential for
seamless integration into many upcoming federated learning frameworks as a fundamental
operational component.
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Appendix A

Proof of Lemma 2. During each iteration t, each client will initialize their local model with
wt−1 and perform E steps of local SGD to obtain wk

t , starting from wt−E,

wk
t = wt−1 −

E

∑
e=1

ηgk,e
t , (A1)
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where gk,e
t is the local gradient vector on the basis of the local datasets. Thus,

||wk
t (Dk)− wk

t (D′k)||2
= ||

E
∑

e=1
ηgk,e

t (Dk)−
E
∑

e=1
gk,e

t (D′k)||2

= η||
E
∑

e=1
ηgk,e

t (Dk)− gk,e
t (D′k)||2

= η
E
∑

e=1
||gk,e

t (Dk)− gk,e
t (D′k)||2

≤ 2ηEG

(A2)

where the last inequality is obtained from Assumption 1.
The proof is finished. �

Appendix B

Proof of Lemma 3. First, let υ̂t = ∑M
k=1 τkυk

t , ŵt = ∑M
k=1 τkwk

t , ĝt = ∑M
k=1 τk · ∇Fk(wk

t ), and
gt = ∑M

k=1 τk · ∇Fk(wk
t ; ζk

t , b). Then, ĝt = E[gt]. Notice that υ̂t+1 = ŵt − ηgt + Zt; then,
we have

E
[
‖υ̂t+1 − w∗‖2

2

]
= E

[
‖ŵt − ηgt + Zt − w∗‖2

2

]
= E

[
‖ŵt − w∗ − ηgt + Zt‖2

2

]
= E

[
‖ŵt − w∗ − ηgt‖2

2

]
︸ ︷︷ ︸

A1

+ E
[
‖Zt‖2

2

]
︸ ︷︷ ︸

A2

−2η〈ŵt − w∗ − η ĝt, Zt〉︸ ︷︷ ︸
A3

(A3)

Because the added noise obeys the Gaussian distribution N(0, σ2
t,k Id), we have A3 = 0.

Next, we consider the bounding A1. Note that

E
[
‖ŵt − w∗ − ηgt‖2

2

]
= E

[
‖ŵt − w∗ − ηgt + η ĝt − η ĝt‖2

2

]
= E

[
‖ŵt − w∗ − η ĝt‖2

2

]
︸ ︷︷ ︸

B1

+ η2E
[
‖ĝt − gt‖2

2

]
︸ ︷︷ ︸

B2

+ 2ηE[〈ŵt − w∗ − η ĝt, ĝt − gt〉]︸ ︷︷ ︸
B3

(A4)

Then, B3 = 0, according to ĝt = E[gt]. Next, we prove that the term B1 is bounded.
We have

B1 = E
[
‖ŵt − w∗‖2

2

]
+ η2E

[
‖ĝt‖2

2

]
︸ ︷︷ ︸

C1

−2ηE[〈ŵt − w∗, ĝt〉]︸ ︷︷ ︸
C2

. (A5)

Since Fk(.) is L-smooth, it follows that∥∥∥∇k(wk
t )
∥∥∥2

2
≤ 2L

(
Fk(wk

t )− F∗k
)

. (A6)

According to the convexity of ‖.‖2
2, it follows that∥∥∥∇k(wk

t )
∥∥∥2

2
≤ 2L

(
Fk(wk

t )− F∗k
)

. (A7)

If any non-negative constants τk satisfy ∑M
k=1 τk = 1, then∥∥∥∥ M

∑
k=1

τk(wk
t )

∥∥∥∥2

2
≤

M
∑

k=1
τk

∥∥∥wk
t

∥∥∥2

2
,∥∥∥∥ M

∑
k=1

wk
t

∥∥∥∥2

2
≤ M

M
∑

k=1

∥∥∥wk
t

∥∥∥2

2

(A8)
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Applying that the above formulas, we have

C1 = η2E
[
‖ĝt‖2

2

]
= η2E

[∥∥∥∥ M
∑

k=1
τk∇Fk(wk

t )

∥∥∥∥2

2

]
≤ η2ME

[
M
∑

k=1
τk

∥∥∥∇Fk(wk
t )
∥∥∥2

2

]
≤ 2MLη2E

[
M
∑

k=1
τk

(
Fk(wk

t )− F∗k
)]

.

(A9)

And we bound the term C2 as follows:

C2 = −2ηE[〈ŵt − w∗, ĝt〉]

= −2ηE
[

M
∑

k=1
τk〈ŵt − w∗,∇Fk(wk

t )〉
]

= −2ηE
[

M
∑

k=1
τk〈ŵt − wk

t ,∇Fk(wk
t )〉+

M
∑

k=1
τk〈wk

t − w∗,∇Fk(wk
t )〉
]

.

(A10)

Since the µ-strong convexity of Fk(.) is true, it follows that

−〈wk
t − w∗,∇Fk(wk

t )〉 ≤ −
(

Fk(wk
t )− Fk(w∗)

)
− µ

2

∥∥∥wk
t − w∗

∥∥∥2

2
. (A11)

According to AM–GM inequality and Cauchy–Schwarz inequality, we have

−2〈ŵt − wk
t ,∇Fk(wk

t )〉,∇Fk(wk
t )〉 ≤

1
η

∥∥∥ŵt − wk
t

∥∥∥2

2
+ η

∥∥∥∇Fk(wk
t )
∥∥∥2

2
. (A12)

Then,

C2 = −2ηE
[

M
∑

k=1
τk〈ŵt − wk

t ,∇Fk(wk
t )〉
]
− 2ηE

[
M
∑

k=1
τk〈wk

t − w∗,∇Fk(wk
t )〉
]

≤ η
M
∑

k=1
τkE
(

1
η

∥∥∥ŵt − wk
t

∥∥∥2

2
+ η

∥∥∥∇Fk(wk
t )
∥∥∥2

2

)
− 2η

M
∑

k=1
τkE
(

µ
2

∥∥∥wk
t − w∗

∥∥∥2

2
+ Fk(wk

t )− Fk(w∗)
) (A13)

Combining (A5), (A9), and (A13), we have

B1 ≤ E
[
‖ŵt − w∗‖2

2

]
+2MLη2

M
∑

k=1
τkE
[

Fk(wk
t )− F∗k

]
+η

M
∑

k=1
τkE
(

1
η

∥∥∥ŵt − wk
t

∥∥∥2

2
+ η

∥∥∥∇Fk(wk
t )
∥∥∥2

2

)
− 2η

M
∑

k=1
τkE
(

µ
2

∥∥∥wk
t − w∗

∥∥∥2

2
+ Fk(wk

t )− Fk(w∗)
)

≤ E
[
‖ŵt − w∗‖2

2

]
− µη

M
∑

k=1
τkE
[∥∥∥wk

t − w∗
∥∥∥2

2

]
+

M
∑

k=1
τkE
[∥∥∥ŵt − wk

t

∥∥∥2

2

]
+2Lη2(M + 1)

M
∑

k=1
τkE
[

Fk(wk
t )− F∗k

]
− 2η

M
∑

k=1
τkE
[

Fk(wk
t )− Fk(w∗)

]
≤ (1− µη)E

[
‖ŵt − w∗‖2

2

]
+

M
∑

k=1
τkE
[∥∥∥ŵt − wk

t

∥∥∥2

2

]
+2Lη2(M + 1)

M

∑
k=1

τkE
[

Fk(wk
t )− F∗k

]
− 2η

M

∑
k=1

τkE
[

Fk(wk
t )− Fk(w∗)

]
︸ ︷︷ ︸

D

(A14)

where the third inequality comes from ŵt = ∑M
k=1 τk

t wk
t , and, from

∥∥∥∑M
k=1 τk(wk

t )
∥∥∥2

2
≤

∑M
k=1 τk

∥∥∥wk
t

∥∥∥2

2
, it follows that ∑M

k=1 E
[∥∥∥wk

t − w∗
∥∥∥2

2

]
≥ E

[
‖ŵt − w∗‖2

2

]
.
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We next aim to bound D. Let ϕ = 2η(1− ηL(M + 1)). Note that η < 1/(L(M + 1)). We
have 0 < ϕ < 2η. Then,

D = 2Lη2(M + 1)
M
∑

k=1
τkE
[

Fk(wk
t )− F∗k

]
− 2η

M
∑

k=1
τkE
[

Fk(wk
t )− Fk(w∗)

]
= ϕ

M
∑

k=1
τkE
[

Fk(w∗)− Fk(wk
t )
]
+ (2η − ϕ)

M
∑

k=1
τkE
[
Fk(w∗)− F∗k

]
= −ϕ

M

∑
k=1

τkE
[

Fk(wk
t )− Fk(w∗)

]
︸ ︷︷ ︸

J

+ 2η2L(M + 1)Γ,

(A15)

where Γ = F(w∗)−
M
∑

k=1
τkF∗k .

For the term J, according to the convexity of Fk(.) and AM–GM inequality, we find

J = −ϕ
M
∑

k=1
τkE
[

Fk(wk
t )− Fk(w∗)

]
= −ϕ

M
∑

k=1
τkE
[

Fk(wk
t )− Fk(ŵt)

]
− ϕ[F(ŵt)− F(w∗)]

≤ −ϕ
M
∑

k=1
τkE〈∇Fk(ŵt), wk

t −wt−1〉 − ϕ[F(ŵt)− F(w∗)]

≤ ϕ
M
∑

k=1
τkE
[

ηL
(

Fk(ŵt)− F∗k
)
+ 1

2η

∥∥∥wk
t − ŵt

∥∥∥2

2

]
− ϕ[F(ŵt)− F(w∗)]

(A16)

Thus, we can obtain

D ≤ ϕ
M
∑

k=1
τkE
[

ηL
(

Fk(ŵt)− F∗k
)
+ 1

2η

∥∥∥wk
t − ŵt

∥∥∥2

2

]
− ϕ[F(ŵt)− F(w∗)] + 2η2L(M + 1)Γ

= ϕ
M
∑

k=1
τkE
[

ηL(Fk(ŵt)− F(w∗)) + ηL
(

F(w∗)− F∗k
)
+ 1

2η

∥∥∥wk
t − ŵt

∥∥∥2

2

]
−ϕ[F(ŵt)− F(w∗)] + 2η2L(M + 1)Γ

= ϕηL
M
∑

k=1
τkE[(Fk(ŵt)− F(w∗))]− ϕ[F(ŵt)− F(w∗)] + ϕ

2η

M
∑

k=1
τkE
[∥∥∥wk

t − ŵt

∥∥∥2

2

]
+ηLΓ(2η(M + 1) + ϕ)

= ϕ(ηL− 1)[(F(ŵt)− F(w∗))] + ϕ
2η

M
∑

k=1
τkE
[∥∥∥wk

t − ŵt

∥∥∥2

2

]
+ ηLΓ(2η(M + 1) + ϕ)

≤
M
∑

k=1
τkE
[∥∥∥wk

t − ŵt

∥∥∥2

2

]
+ 2(M + 2)η2LΓ

(A17)

where the last inequality results from ηL− 1 < 0, 0 < ϕ < 2η, and ∑M
k=1 E[(Fk(ŵt)− F(w∗))]

= F(ŵt)− F(w∗) ≥ 0.
Recalling the expression of B1, we have

B1 ≤ (1− µη)E
[
‖ŵt − w∗‖2

2

]
+ 2

M

∑
k=1

τkE
[∥∥∥ŵt − wk

t

∥∥∥2

2

]
︸ ︷︷ ︸

Q

+ 2(M + 2)η2LΓ (A18)
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For the term Q, we analyze that HW-DPFL requires communication every E steps;
then, we can bound the divergence of

{
wk

t

}
:

Q =
M
∑

k=1
τkE
[∥∥∥ŵt − wk

t

∥∥∥2

2

]
=

M
∑

k=1
τkE
[∥∥∥(wk

t − ŵt0)− (ŵt − ŵt0)
∥∥∥2

2

]
≤

M
∑

k=1
τkE
[∥∥∥(wk

t − ŵt0)
∥∥∥2

2

]
≤

M
∑

k=1
τk

t−1
∑

t=t0

(E− 1)η2
∥∥∥∇Fk(wk

t ; ζk
t , b)

∥∥∥2

2

≤ (E− 1)2η2G2

(A19)

To sum up, we can have

B1 ≤ (1− µη)E
[
‖ŵt − w∗‖2

2

]
+ 2(E− 1)2η2G2 + 2(M + 2)η2LΓ, (A20)

where, in the first inequality, we use E‖X− EX‖2
2 ≤ E‖X‖2

2 and X = wk
t − ŵt0 , with

probability τk. For any t ≥ 0, there is a t0 < t < t0 + E such that t − t0 ≤ E − 1 and
wk

t0
= ŵt0 . Note that we use Jensen inequality in the second inequality; it follows that

∥∥∥wk
t − ŵt0

∥∥∥2

2
=

∥∥∥∥∥ t−1

∑
t=t0

η∇Fk(wk
t ; ζk

t , b)

∥∥∥∥∥
2

2

≤ (t− t0)
t−1

∑
t=t0

η2
∥∥∥∇Fk(wk

t ; ζk
t , b)

∥∥∥2

2
. (A21)

We next focus on bounding the term B2:

B2 = η2E
[
‖ĝt − gt‖2

2

]
= η2E

[∥∥∥∥ M
∑

k=1
τk ·
(
∇Fk(wk

t ; ζk
t , b)−∇Fk(wk

t )
)∥∥∥∥2

2

]
≤ η2

M
∑

k=1
τ2

k · E
[∥∥∥(∇Fk(wk

t ; ζk
t , b)−∇Fk(wk

t )
)∥∥∥2

2

]
≤ η2

M
∑

k=1
τ2

k ρ2
k

(A22)

Here in the last inequality, we use the variance of the stochastic gradients for each

client, satisfying E[
∥∥∥∇Fk(wk

t ; ζk
t , b)−∇Fk(wk

t )
∥∥∥2
] ≤ ρ2

k .
Combining, (A20) and (A22), we have

A1 ≤ (1− µη)E
[
‖ŵt − w∗‖2

2

]
+ 2(E− 1)2η2G2 + 2(M + 2)η2LΓ + η2

M
∑

k=1
τ2

k ρ2
k (A23)

where Ψ = 2(E− 1)2η2G2 + 2(M + 2)η2LΓ + η2
M
∑

k=1
τ2

k ρ2
k .

Since the HW-DPFL algorithm guarantees (ε̂, δ)− DP, the Gaussian noise level can be
represented as

σ2
t,k =

32γ2η2E2G2 log(1.25γ/δ)

ε2 (A24)

For the term A2,we can have

A2 = E
[
‖Zt‖2

2

]
= d

M

∑
k=1

τ2
k σ2

t,k < TΛ (A25)
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where Λ= d
M
∑

k=1
τ2

k σ2
t,k= d

M
∑

k=1
τ2

k
32γ2η2E2G2 log(1.25γ/δ)

ε2 .

Combining (A23) and (A25), results for each iteration t can be expressed as

E
[
‖υ̂t+1 − w∗‖2

2

]
≤ (1− µη)E

[
‖ŵt − w∗‖2

2

]
+ Ψ + TΛ. (A26)

The proof is finished. �
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