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Abstract: Intuitionistic fuzzy information is a potent tool for medical diagnosis applications as it can
represent imprecise and uncertain data. However, making decisions based on this information can
be challenging due to its inherent ambiguity. To overcome this, power aggregation operators can
effectively combine various sources of information, including expert opinions and patient data, to
arrive at a more accurate diagnosis. The timely and accurate diagnosis of medical conditions is crucial
for determining the appropriate treatment plans and improving patient outcomes. In this paper,
we developed a novel approach for the three-way decision model by utilizing decision-theoretic
rough sets and power aggregation operators. The decision-theoretic rough set approach is essential
in medical diagnosis as it can manage vague and uncertain data. The redesign of the model using
interval-valued classes for intuitionistic fuzzy information further improved the accuracy of the
diagnoses. The intuitionistic fuzzy power weighted average (IFPWA) and intuitionistic fuzzy power
weighted geometric (IFPWG) aggregation operators are used to aggregate the attribute values of
the information system. The established operators are used to combine information within the
intuitionistic fuzzy information system. The outcomes of various alternatives are then transformed
into interval-valued classes through discretization. Bayesian decision rules, incorporating expected
loss factors, are subsequently generated based on this foundation. This approach helps in effectively
combining various sources of information to arrive at more accurate diagnoses. The proposed
approach is validated through a medical case study where the participants are classified into three
different regions based on their symptoms. In conclusion, the decision-theoretic rough set approach,
along with power aggregation operators, can effectively manage vague and uncertain information in
medical diagnosis applications. The proposed approach can lead to timely and accurate diagnoses,
thereby improving patient outcomes.

Keywords: intuitionistic fuzzy sets; three-way decision; decision-theoretic rough sets; power
aggregation operators; decision making; optimization; efficiency
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1. Introduction
1.1. Evaluation of Medical Diagnosis

The accurate diagnosis of medical diseases can be a complex process as they can mani-
fest with a variety of symptoms. Common symptoms may include fever, coughing, fatigue,
vomiting, diarrhea, and skin rashes. Physicians rely on a range of diagnostic procedures
such as patient history, physical examination, laboratory tests, imaging studies, and other
techniques to arrive at a diagnosis. Medical professionals need to consider several factors,
including the patient’s age, medical history, lifestyle, and genetic predisposition while mak-
ing decisions during the diagnosis process [1]. In complex medical conditions, physicians
may use diagnostic algorithms or decision trees to support the decision-making process. In
recent years, medical technology advancements, including new imaging techniques, genetic
testing, and Al-based decision-making tools, have significantly improved the accuracy and
speed of medical diagnoses [2,3]. These advancements help medical professionals to make
more informed decisions and provide patients with better healthcare outcomes [4,5].

1.2. Three-Way Decision in the Medical Field

Rough set (RS) theory is a mathematical structure that deals with incomplete and
uncertain data in a systematic way. The theory was established by Zdzislaw Pawlak [6] in
the early 1980s as a method for dealing with vague and uncertain information. In medical
diagnosis, RS theory can be used to help detect the presence or absence of a particular
disease or condition based on incomplete or uncertain information [7]. This can include
symptoms, medical history, test results, and other relevant data [8]. The fundamental
theory behind RS theory is to divide a set of data into subsets based on their attributes,
such as symptoms or test results. This process can help to identify the prominent features
or factors that are most closely associated with a particular disease or condition. Once the
data have been divided into subsets, RS theory can be used to identify rules or patterns that
can be used to make predictions about whether a particular patient has a particular disease
or condition. Many researchers worked on this notion to identify novel algorithms for
diagnosis of diseases [9]. El-Bably et al. [8,10] introduced the soft and rough approximation
and applied it to diagnose the medical problem. Hosny et al. [11] worked on the extension
of RS using the maximal right neighborhood system and its application in the medical field.
Al-Shami et al. [12] defined maximal rough neighborhoods and applied this approach to
medical diseases.

Attansove [13] developed the idea of an intuitionistic fuzzy set (IFS) which is the
generalization of a fuzzy set (FS). In IFS, there are two grades of membership and grades
of non-membership of an element of universal set, respectively. Intuitionistic fuzzy sets
played a very important part in the medical field to identify diseases and problems. The
application of IFS in medical diagnosis has been studied in various contexts. One area of
application is in the diagnosis of medical conditions where there is significant uncertainty
and variability in symptoms and test results. IFS can help to capture this uncertainty
and provide more nuanced diagnostic information. For example, in the diagnosis of a
complex disease such as cancer, IFS can be used to represent the degree of certainty or
uncertainty in the diagnosis based on various diagnostic criteria such as the results of blood
tests, imaging studies, and biopsy findings. This can help to provide more accurate and
reliable diagnoses, as well as more personalized treatment plans. Jiang et al. [14] used
IFS for medical image fusion using entropy measures. Recently, Mehmood et al. [15,16]
generalized the intuitionistic fuzzy sets and applied these approaches to medical diagnosis.
De et al. [17] also analyzed an application of IFS in medical diagnosis and Davvaz et al. [18]
produced a similar technique. Szmidt et al. [19] explored IFS in intelligent data analysis for
medical diagnosis. During the decision making for IFS, the aggregation operators help a
lot to calculate the values of the attributes. Therefore, experts proposed many aggregation
operators; for example, Xu et al. [20] designed power aggregation operators for IFS and
applied them in MADM. In 2006, some geometric aggregation operators were produced
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for IFS by Xu [21]. Wajid et al. [22] presented a novel TWD approach for IHFS. Recently,
Senapati and Garg [23,24] also explored some novel operators.

Three-way decision (TWD) is a very important generalization of RS theory introduced
by Yao [25,26]. A three-way decision for medical diagnosis involves considering three
possible outcomes: positive, negative, or inconclusive. Positive: If the medical diagnosis
is positive, it means that the patient has the condition or disease being evaluated for. In
this case, the patient would need to receive treatment for the condition and the medical
team would need to monitor their progress. Negative: If the medical diagnosis is negative,
it means that the patient does not have the condition or disease being evaluated for. In
this case, the patient may not require any treatment and the medical team may need to
investigate other potential causes of the patient’s symptoms. Inconclusive: If the medical
diagnosis is inconclusive, it means that the test results are not clear enough to determine
whether the patient has the condition or disease being evaluated for. In this case, the
patient may need to undergo further testing or evaluation to arrive at a more definitive
diagnosis. Recently, Li et al. [27,28] applied TWD techniques for hybrid decision making to
diagnose medical problems. Hu et al. [29,30] presented the concept of a lattice model for
medical diagnosis using TWD. Jia and Fan [31] composed TWD models for multi-criteria
environments. Ye et al. [32] combined the TWD notion with the trending research area
fuzzy information system. Similarly, many scholars explored this area and proposed novel
approaches in different extensions of fuzzy sets [33-35].

1.3. Motivation for Proposed Work

In the literature, we found that three-way decision TWD models are very useful
in diagnosing medical problems. By combining IFS and TWD [36], a very powerful
theory is produced to cope with the vagueness and unclear situation. It is noted that for
aggregation, the results of many participants based on TWD is a very difficult problem.
Researchers used the classical way to calculate the alternatives for TWD [37-40]. In the
existing TWD model [25,37], to determine the equivalence classes, an external concept is
required. Moreover, the threshold is used to classify the alternatives into three regions.

The main purpose of composing this work is to design a novel algorithm for a TWD
model-based decision-theoretic rough set using aggregation operators and an improved
TWD decision approach based on interval-valued equivalence classes for IFS. The devel-
oped approach fulfils the lackness and resolves the computing problem for TWD. Below is
a demonstration of this analysis’ major contribution.

i Construct the concept of intervals for membership grades of IFS using the step size
function;

ii. Develop the equivalence classes based on intervals and called interval-valued
classes;

iii. To cope with the issues of computing and saving time, IFPWA and IFPWG aggrega-
tion operators are developed for the TWD model;

iv. An algorithm is proposed to classify the different patients and to diagnose the
disease on the basis of multiple symptom:s.

The rest of the article is given as follows: In Section 2, we have overviewed the basic
notion of IFS, power aggregation operators, and three-way decision (TWD). In Section 3, we
have designed intervals for the membership grade using the step size function. Based on
the intervals, equivalence classes are produced and remodel the TWD for IFS. In Section 4,
we have designed a proper algorithm with a flow chart and explained the approach step by
step. In Section 5, we have discussed a case study and utilized the proposed approach to
diagnosis a medical problem to classify the alternatives with power aggregation operators
for IFS. Some advantages and benefits of proposed models are discussed in detail. Section 6
includes the conclusion and future plan of the authors.
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2. Preliminaries

In this section, we update models for IFSs and several concepts pertaining to power
aggregation operators. Table 1 is added to describe the abbreviations of the symbols for
easiness of understanding.

Table 1. Symbols with their descriptions.

Symbol Description Symbol Description

FSs Fuzzy Sets IHFSs Intuitionistic Hesitant Fuzzy Sets

IFSs Intuitionistic Fuzzy Sets IFN Intuitionistic Fuzzy Number

TWD Three-Way Decision MG Membership Grade

NMG Non-membership Grade DTRS Decision-Theoretic Rough Set

IFPWA Intuitionistic Fuzzy Power Weighted Averaging  IFPWG Intuitionistic Fuzzy Power Weighted Geometric
IFPOWA izziiigczli;tic Fuzzy Power Order Weighted [FPOWG Iggiﬁggﬁtic Fuzzy Power Order Weighted
DRs Decision Rules IFRS Intuitionistic Fuzzy Rough Set

2.1. IFSs

As an extension of the FS model, Atanassov [13] proposed the IFS model. IFS simulta-
neously delivers MG and NMG while FS just delivers the MG of an element in a given set
[0, 1].

Definition 1 ([13]). Let an IFS W on E be symbolized by 2 (e) and 7 (e). Mathematically, it is
presented as:

W = (e, myy(e), yy(e))|e € E) 1)

where mypr(e) : E — [0, 1] and 7y (e) : E — [0, 1] signify the MG and NMG with condition
0 < m(e) +7(e) <1forall e € E. Generally, the pair (m,n) represents the IFN.

Definition 2. For IFNs, W = (7, 7v) and the score function and accuracy functions are
denoted and defined as follows:

S(W) = my — 7wy, S(W) e [-1, 1] (2)

For comparing two IFNs, Wy and W7, the score function and accuracy function provide the
assistance as below,
@ I S(Wl) > S(W]) then W1 > Wp;
(i) If S(Wp) < S(Wq) then Wy < Wy ;
(111) If S(W]) = S(Wl) then;
a. If H(W1) > H(Wl) then W1 > W,
b. If HW1) < H(W7q) then W1 < Wy,
C. If H(Wl) = H(Wl) then W1 = Wz.

Definition 3. Suppose W1 = (721,721) and Wy = (723,722) are IFSs, some basic operations are
described as follows:

i W; & W, = ({m1+m2—m1m2},{n1n2});
(i) Wyp ® Wy = ({mymy}, {ny+ny—mniny);
(i) Iwg = (1 —(1-m), n:'),:l > 0;

(v) Wi= ((m)l, 1-(1- n)j),:l > 0;

(V) Wi = (ng,m).
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Definition 4 ([20]) Assume that W; = (mj, ;) is a collection of IFSs; the weights @; =
(61,8, ..., @) for Wj with Y1 ®; = 1 and ®; € [0, 1]. Thus, the IFPWA,, operator is a
mapping of IFPWA,,: W” — W where

n
P (@I+T(W)HW))
_i=1
IEPWAL(W1, Wa, ooy W) = o0, (1+T(W)))
@;((1+7(W))) ®;0+17(W)))
—|1-1] (1— (m;) 5 Wi oy (nj)iﬁ’:lwﬂ”ﬂwf”
=1 ! j=1
where
n ~
T(W)) =) i _ 1®Sup(W;, W;)
i#]
and

Sup(Wj, W) =1-— d(W]-, w;)

1 m
AW, Wi) = 5 2 (fmi = || = )
i=

i#]

Definition 5 ([20]). For [FNs, W = (m], n]) with their weights &; = (@1,8, ..., (I)])T such
that &; > 0, ®; € [0, 1] and Y} 1®; = 1. A mapping of IFPOWA,:W" — W is defined as

follows:
n
B @+T(W,;)Wy)
j=1
IFPOWA~ (W1, Wy, ..., W) =
w( 1, 2/ ’ 71) Z]n 1(0 (1+T(W » ))
<&]<1+T<W @) (@;0+7(W o )))
n Y (1+T(W ) n o (I)(1+T<W )
= [ 1= L0 () i 1 () "

= =

Definition 6 ([21]). Assume that W; = (mj, 7] ) is a collection of IFNs and the weights
& = (@1, &, ..., @) for Wj and ' y@; = 1 where & € [0, 1). Then, the IFPWG,
operator is a mapping of IFPWG,: W" — W where

n
® (@;(1+T(W)HW))
i=1
IFPWG, (W1, Wy, ..., W,) =
(W1, Wa ") o 1w]<1+T< )

@;0+7(W)) ((+7( W,))

n 1 (™1 W n
_ H( )Z u)(1+T(W - T1(1— (”j) ):, ) ]1+T(W
j=1 j=1

where
n ~
T(W;) = Zl. _ 1 ®;Sup(Wj, W)
i#]
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Definition 7 ([21]). For IFNs, W; = (72, 7;) with their weights®; = (&1,0%, - .., G>j)T such
that &; > 0, &; € [0, 1] and Y1 ®; = 1. A mapping of IFPOWGy,:W" — W is defined as

follows:
n
® (@;1+T(Wy(;)Wo)
j=1
IFPOWGH~ (W7, Wy, ..., W) =
O Gw( 1, 2s s n) Z};léj(l+T(Wa(j))>
(@;0+7(W o)) (@;0+7(W o))
n 1 &:1+T(W ) v 1+ T(W )
_ l—Il(mo—(])) =1 j( +T( (7(]))>’1 _ 1—11(1 _ (no'(])) j=1 ]< +T( 0’(l>))
j= =

2.2. A Review of Decision-Theoretic Rough Set Model

The DTRS theory is a framework that involves a collection of states, X and X', indicat-
ing the presence or absence of components in X. The theory employs a series of actions,
dct = {dp, Ap, Ay}, where o, g, and o 4 act for the decisions to accept, defer, or
reject an object A based on its classification, respectively. The objects are classified into
three distinct zones, namely the positive region %os(X), boundary region %nd(X), and
negative region //'eg(X). Additionally, a matrix Table 2, # = {Jo<}5,, (0 = P, %, N,
and t© = P, W) delivers the cost parameters. The cost related with actions o/, o/, and
oy, when an object becomes X, is represented by Jo s, Jg., and 1 4. Conversely, when
an item does not belong to X, the corresponding expenses for the three actions are denoted
by Iz, Iz, and 1y . The classification losses & (& |[A]) related with the three actions

& (dz|[A]) = IpeP(X]|[A]) +:WPE><’

are stated as:
A]
& (Ax|[A]) = Iz P(X|[A]) + IuuP( X |[A]
&(.r|[A]) = LraP(X|[A]) + 1raP(X |[A])

Bayesian decision theory provides the principles for the minimum-loss decision.

1. If&(dp|[A]) < &(dz|[A]) and &(dp|[A]) < &(dy|[A]), then A € POS(X);
If &(A5|[A]) < &(Ap|[A]) and & (A 5|[A]) < & (ly|[A]), then A € BND(X);
If&(Ay|[A]) < E(Ap|[A]) and E(oy|[A]) < &(Az|[A]), then A € NEG(X).

Given the prerequisites of Jpg» < Jgo < Jye, Iy < gy < Iay and P(X|[A]) +

(x

P
4.  If P(X|[A]) > a, then A € POS(X);
5.
6.

@ N

[A]) = 1, the decision rules 1, 2, and 3 can be updated as follows:

If B < P(X|[A]) < &, then A € BND(X);
If P(X|[A]) < B, then A € NEG(X).

where
y oy —Amw and  — Jay —Iyx
Aoy —3Azx) — Qze —I2) (Agr —Ixw) +QAwg — 1z2)
Table 2. Cost matrix.
X X
A p oo o
A g e Jax

Ay Ive Iy
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3. A Novel Decision-Theoretic Rough Set Model Based on Interval-Valued Classes for
Intuitionistic Fuzzy Sets

The following section presents a novel approach to modeling DTRS using intuitionistic
fuzzy environments and interval design. This novel technique produces interval-valued
equivalence classes which can be used to partition the universe into three distinct areas, in-
cluding Pos(X), #eg(X), and Bnd(X) regions, for participant classification. To discretize
the information system, we have developed interval-valued equivalence classes instead of
traditional equivalence classes. This has been achieved with the help of a step-size function
that aids in the partitioning of alternatives into intervals. The step-size function is defined
as follows:

Definition 8. We define and denote the intervals 7y for approximation classes based on MGs for a
collection of IFNs A; = (m; n;,) where,i =1, 2,...n,

IN = [Min(m;), Min(m;) + h] 4)
where step size function (h) is defined for the membership grades of IFNs as

_ Max(7m;) — Min(m;)

h N

where N is the number of intervals Fy which we require.

As per Yao's parental concept [25], equivalence classes can be used to determine the ap-
proximation classes. Additionally, by defining intervals Fn according to Equation (4), the Nth
interval-valued equivalence classes [A]; can be developed for the alternatives, as follows:

Definition 9. The interval-valued equivalence classes [A]; for I C At for the alternatives A; are
designed as
[A]I = {A T A€ jN}

Definition 10. The membership function for interval-valued classes [Ay|, k € N for all IFNs is
defined as
[ X0 [Ag]]
P(X|[Ak];) = )
( | [ }I) ‘ [Ak] |

Interval-Valued Decision-Theoretic Rough Set Model

We have employed Definition [8] to create a new model for three-way decision making
under an IF environment. We have established the cost parameter matrix .# based on
intuitionistic fuzzy cost values which is shown in Table 3. Using Bayesian theory, we have
described the expected losses &(,|[A]), 0 = P, B, N for taking actions with the given
set of states for the interval-valued equivalence class [A] as follows:

& (dp|[A]) = IpaP(X|[A]) ®IpuP(X

[A]
& (dz|[A]) = IgeP(X|[A]) @ IguP (X [A]g
&(dy|[A]) =IyxP(X|[A]) ©IysP Xl’[A])

P(X|[A]) +P(X’

[A]) + A(A) =1 where A(A) is an error function. We have

&(d|[A]) = IpoP(X|[A]) © Jpn[1 = P(X|[A]) — A(A)]
&(d5|[A]) = Iz P(X|[A]) ©Ig.n[1 - P(X|[A]) — A(A)] (6)
&(dxl[A]) = IraP(X|[A]) © Jyw[1 — P(X|[A]) — A(A)]
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Table 3. Intuitionistic fuzzy cost matrix.

X X
A p pp = (mapp, nom) Agn = (mox, nor)
A 5 Izg = (map nam) Igw = (may nar)
Ay Ave = (myz, nrz) Avw = (mywy,nyr)

%

Bayesian decision theory offers the decision guidelines for the minimum-loss decision.

I & (do|[A]) < &(dy|[A]) and & (A5 |[A]) < &(dy|[A]), then A € POS(X);
If&(d5|[A]) < &(I2|[A]) and &(Z5|[A]) < &(Lx|[A]), then A € BND(X);
& (A y|[A]) < &(Ip|[A]) and & (L |[A]) < E(Ag|[A]), then A € NEG(X).

The expected losses are evaluated based on the intuitionistic cost parametric values

in Table 3 for interval-valued classes for identifying the thresholds which are designed as

E(dp|[A]) = |1—(1— m@@)P(XHA])(l - mgw)k
& (dg|[A]) = |1 — (1 — mge) XA (1 -

follows:
P(XHA])*A(A),(ﬂ9@>P(X\[A}),(n@W) —P(X|[A])-A(A)
m%/V)l—P(XHA])—A(A), (nggg,)P(XI[A])’ (rnar) —P(X[[A])-A(A)
P(XHAD—A(A), (ﬂW@)P(XHAD, (ﬂ/V/V)l—P(XHAD—A(A)

&(Ay|[A]) = (1= (1= meyg) XA~y )17

(ﬂag’

late the categorization losses, m(&), and n(&),

Let m(8), = 1— (1— 7o) XA (1 - 1y ) PEIAD=AA) ang (%), =
)P(Xl[A])(nwV)lfp(X\ AD=DA). here, 0 = P, B, .

The membership and non-membership grades of the cost parameter are used to calcu-
, respectively. Furthermore, according to

Bayesian decision theory, the new DRs are clearly examined by m(&),, for the minimum-loss
categorization. The categorization losses m(&),, and n(&),, are determined by the MG and
NMG of the cost parameter, respectively. Furthermore, the new decision rules are examined
based on Bayesian decision theory using m(%) for the minimum-loss categorizations.

10.
11.
12.

In [1 — (1= 7gpgn) XA (1 — e

Ifm(&)y < m(&)yand m(E), (&) 4, then A € Pos(X);
Ifm(&)y <m(&)y,and m(&), ( ).y then X € %nd(X);
Ifm(&), <m(&)y,and m(E) , < m(&), then X € Neg(X).

Based on categorization losses, if m(%’) o < m(&) g4, then

)P 101 (1= ) XD (1= g )t XTI AA)

By (10) {
n %:Z@m
P(X|[A]) = (1= A(A)) ——= ”f}mw
ln(lfm:@:@ X 1*’”1@%)
Similarly

1 {lfm/t/y}
1—mp
1=m vy

1-mpp
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The decision rules are constructed as (P), (B), and (N) by using the thresholds are
given as,
(P) If P(X|[A]) > x1 and P(X|[A]) > ¢y, then A € Pos(X)
(B) If P(X|[A]) < x1 and P(X|[A]) > w1, then A € %Bnd(X)
(N) If P(X|[A]) < wq and P(X|[A]) < 1, then A € Heg(X),

here

A
A

in[ 1|

1-mpe

@)

l-mape = 1-moy

x1=(1- A(A))ln(

1-magp 1-magy )

In {1*”%1/.# }

l*ﬂl@ﬂ/

1—77&959: 1—7%‘4‘/1/
l-myg = l-may

1-—m
ln NN
1-mgy
l-magp |, 1=myxy
ln(l—mm@ X Ty

pr=(1- A<A))ln( ) ®)

= (1-4(4))

©)
)

The rules for deciding the elements (P) — (N) have so far been characterized by
utilizing three thresholds xi(e), ¢ (e), and wq (e) from the membership grade perspective.
Furthermore, DRs (13)—(15) from the viewpoint of NMG are conferred.

13. Ifn(&)y < n(&)yand n(&), < n(¥) ,, then A € Pos(X);
14. Ifn(&)y <n(&)y,and n(&), < n(¥) , then A € Bnd(X);
15. Ifn(&), <n(&)yand n(&) , < n(&)y, then A € Veg(X).

Given that P(X|[A]) =1 — P(X/ ’ [A}) — A(A), DRs are expressed based on the com-

plement of conditional probability as below.
Ifn(&), < n(&)g4, then

P(X”A])h‘(w x W) > (1 —A(A))mgN(”W)

nagp = oy N(na2)
Thus I s
P(X[[A]) > (1 A(A))—— 137
In( %22 x zax)
Similarly
(&) = (), — PX|IAD
G Gy
1(8)5 2 n(8), — PXIAD
S (-6 e e
n(®)g > n(8), = P(X|[A])
> (1 )y
n(8) 2 n(E); = POXIAD
<1 A(A))m
n(®), > n(®)y = P(X|[A])
< A(A))M

Obviously, the decision rules are easily revised as (P2) — (N2).
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(P2) If P(X|[A]) > x2 and P(X|[A]) > ¢, then A € Pos(U)
(B2) If P(X|[A]) < x2 and P(X|[A]) > wy, then A € Bnd(U)
(N2) If P(X|[A]) < w, and P(X|[A]) < ¢y, then A € Neg(U),

where

ﬂgfv/y
X2 = (1-A(A)) e — (10)
In((222  2a2)

ngp PN

nyN

P2 = (1-A(A)) L (11)
In 2
wy = (1—-A(A)) = (12)

ln(”%,@ X ”,Vm)

nyp RN

Noticeably, providing the IFN cost parameters are also fulfilled,

ln{viz}q’] 1n{1*7”7§w}

—NRP 17772#1/57:
1—77Z,gv r 1—m v
n[i=es] [ ]
and npPp nBP
Inie Mg
BN YN
In%or  Inaay
wi(A) < ¥i(A) Xj(A) is obtained where x;(A) € (0,1], wj(A) € (0,1],
and ¢;(A) € (0,1], (j = 1,2). Therefore, the general DRs (P3) — (N3) can be described as
below:

(P3) If P(X|[A]) > x;j, then A € Pos(U)
(B3) If w; < P(X|[A]) < xj, then A € Bnd(U)
(N3) If P(X|[A]) < wj, then A € Neg(U),

From the above obtained results, the TWDM-IFNs are described according to the
Bayesian DRs, as below.

16. If P(X[[A]) > x;, then take o x;
17. If wj < P(X|[A]) < xj, then take og;
18. If P(X|[A]) < wj, then take & 5.

In TWD, two threshold pairs (x1(A), wi(A)) and (x2(A), wz(A)) are obtained from
various viewpoints in (16)-(18). Thus, actions are taken while P(X|[A]) is at the corre-
sponding positive, boundary, and negative region thresholds.

4. Proposing an Algorithm to Apply the Interval-Valued Decision-Theoretic Rough Set
Model to an Intuitionistic Fuzzy Environment

This section discusses the detailed application of IFPWA,, and IFPWG,, aggregation
operators under IF information for decision-theoretic rough set models. We have outlined
five steps for selecting the three-way DRs for various participants.

Let E = {A1, Ay, ..., An} be the collection of alternatives and X = {Yes, No} be a set
that indicates the decision for alternatives, where X is a subset of E. The flow chart of the
three-way decision model is displayed in Figure 1.

Step 1. Evaluate the intuitionistic fuzzy information system with conditional and
decision attributes.
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Step 2. For alternatives, A;(i=1, 2,...,n) aggregate all the IF attributes
Aji(j =1, 2,...,m) into a general solution A; applying I[FPWA and IFPWG,, operators

as:
n
D (®;1+T(W)HW))
j=1
IHFPWA, (W1, Wy, ..., W,) = F——
(W1, Wa 2 L@ (1+T(W)))
®;(+1W)) @;1+7(W)))
N ﬁ (1— (m) £y (W) ’ ﬁ (nj)zy:1®j<1+r<w,-)>
=1 ! j=1
and
n
® (O;(1+T(W)HW))
_j=1

IHFPWG, (W1, Wy, ..., W,) = G W)

@;1+7(W))) ®;(1+7(W)))
n P n
v 0:a+17(W)) v w,(1+T(W)))
— ],_lll (71’1]) j=1""] 71— ]._lll (] — (n]) j=1%] j

Step 3. Compute the interval-valued equivalence classes using the suggested intervals
as per Definition 9.

Step 4. Fix the set of states (X, X’) and compute the membership function, non-
membership function, and error functions for the participants.

Step 5. Calculation of expected losses and thresholds based on the cost parameter
matrix referenced in Table 8 using Equation (6).

Step 6. Classification of the elements depending upon their membership values using
thresholds given in decision rules 16-18.

Calculation using Aggregation Operators

Intervals for partition Define intervals for alternatives

Calculate Expected Losses and
thresholds from Cost Matrix

Classification of elements of
POS,NEG and BND regions

Figure 1. Flow chart of the interval-valued decision-theoretic rough set model.
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5. A Case Study

This section includes an illustrative example aimed at determining whether or not a
patient has a medical condition through a diagnostic investigation process. The objective is
to approve or rule out the existence of the disease.

5.1. Explanation of the Problem

Medical diagnosis is an incredibly crucial task that involves determining which dis-
ease or condition a person is suffering from based on their symptoms. Achieving a correct
diagnosis is crucial and medical professionals rely on their expertise and experience to
make the right decision. With the aid of Intuitionistic Fuzzy Rough Sets (IFRS), healthcare
practitioners can enhance their diagnostic accuracy while managing complex linguistic con-
cepts. The use of IFRS has been incredibly successful in medical diagnoses, as demonstrated
in numerous studies, including references [17,28]. Figure 2 offers a graphical depiction
of the medical diagnosis process that highlights the utility of IFRS in this context and
Figure 3 shows the graphical representation of decided elements based on the IFPWA,,
and IFPWG,, operators.

Data Collection

*Diesease symtomps

Data Evaluation

*Symptoms observation/measurements

N

Data Categorization
eDiagnosis

N

Figure 2. Medical diagnosis diagram.

Assuming there are 15 alternatives (A;) participating in the diagnosis of the “Coron-
avirus” disease and a set of conditional attributes (I),

I = {I1(Chestpain), I (Fever), Is(Fatigue), I4( Cough) }

is considered. Moreover, the decision attribute is represented by the sets as follows,
X = {Al,Az,A4,A15,A11} and Xl = {A3,A5,A6,A7,A3,Ag,Alo,Alz,A13,A14} which in-
dicate a positive decision for the existence of the disease. The diagnosis of the disease is
made by experts based on the participants” input and the resulting decisions are weighted
using a weight vector w = {0.2,0.3,0.4,0.1}. Next, we present a stepwise algorithm to
elaborate on the diagnosis of this disease.

Step 1: The given Table 4 shows the IF information of all the alternatives which
participated.
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Table 4. An IF information table of alternatives.
Alternatives I; I, I3 Iy D
Aq (0.1,0.3) (0.4,0.5) (0.1,0.5) (0.1,0.5) Yes
A, (0.4,0.5) (0.5,04) (0.5,0.3) (0.2,0.6) Yes
Az (0.2,0.3) (0.2,0.4) (0.6,0.2) (0.4,0.5) No
Ay (0.4,0.2) (0.1,0.2) (0.7,04) (0.3,0.1) Yes
As (0.5,0.3) (0.5,0.2) (0.3,0.2) (0.4,0.2) No
Ag (0.6,0.2) (0.7,0.1) (0.4,0.1) (0.4,04) No
Ay (0.7,0.1) (0.2,0.2) (0.5,0.2) (0.5,0.2) No
Ag (0.3,0.4) (0.3,0.3) (0.6,0.2) (0.2,0.3) No
Ag (0.4,0.2) (0.5,0.2) (0.7,0.2) (0.3,0.5) No
Aqo (0.5,0.2) (0.8,0.1) (0.2,0.3) (0.4,0.3) No
An (0.6,0.2) (0.9,0.1) (0.5,0.3) (0.5,04) Yes
A1 (0.8,0.1) (0.0,0.9) (0.6,0.4) (0.2,0.2) No
A1s (0.9,0.1) (0.3,0.2) (0.4,0.3) (0.4,0.3) No
A1s (0.1,0.2) (0.2,0.2) (0.6,0.3) (0.3,04) No
A1z (0.8,0.1) (0.1,0.3) (0.3,04) (0.4,0.2) Yes

Step 2. For alternatives A;(i =1, 2,..., 15), determine all the conditional attributes
numbers utilizing IF PWA(I) or IF PWG(I) operators in the following:

or

IFPWAL (W1, Wo, ...

1= 11 (1 = (my) MW,
i=1

IFPWG, (W1, Wy, ..
®;0+T(W)))

n

i=1

]

1 (mi) 5=

]

1+T(Wi

7 Wi’l) -

n

D (@;,(1+T(WHW))

i=1

/Wn):

®:((1+7(W)

i=1

n

]

T, 0 (1+T(WY))
®:(1+7(W)
(n;) w1 @;0+7(Wh)

® (@;(1+T(W)W))

=1

i=1

The outcomes are presented in Table 5.

Table 5. Aggregated outcomes of attributes of all alternatives.

]

T ®;(1+T(W)
®;((1+1(W7)

)1 11 (1= (n,) T 7 W)

Alternatives IFPWA 5 IFPWG
A (0.0203,0.458) (0.151,0.470)
Aj (0.466,0.374) (0.450,0.393)
Az (0.429,0.281) (0.347,0.306)
Ay (0.500,0.261) (0.333,0.292)
As (0.409,0.214) (0.389,0.217)
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Table 5. Cont.

Alternatives IFPWA & IFPWG
Ag (0.545,0.124) (0.507,0.142)
Ay (0.471,0.177) (0.401,0.183)
Ag (0.452,0.261) (0.400,0.275)
Aq (0.581,0.213) (0.541,0.226)
Aqg (0.523,0.201) (0.372,0.227)
Ann (0.703,0.205) (0.615,0.236)
A1 (0.507,0.384) (0,0.618)
A1s (0.535,0.220) (0.420,0.239)
Ay (0.411,0.252) (0.302,0.262)
Ass (0.395,0.276) (0.259,0.312)

Step 3. Calculate the interval-valued equivalence classes based on the proposed
approach and for step size n = 5 represented in Table 6.

Table 6. Interval-valued equivalence classes.

[A1] = {A1}
[Az] = {A2,A3, A4, A5, A7, Ag, A1}
IFPWA; [A6] = {A6, A9, A1, A2, A13}
[An] = {An}
[A15] = {A15}
[A1] = {A1}
[A2] = {A2, A5, A7, Ag, A1g, A3}
IFPWG [A3] = {A3, Ay, Ans, Ass}
[A6] = {As, A9, A11}
[A12] = {A12}

Step 4. The set of states for Yes is X = {Aj, Ay, A4, A15,A11} and for No is
X = {As, As, Ag, A7, Ag, A9, A1, A1, A1z, A14}. Now calculate the membership val-
ues, non-membership values, and error values in the following Table 7.

Table 7. Membership values, non-membership values, and error values.

IFPWA & IFPWG &

Alternatives Me‘r;; Ila‘elgsship Non—%:ﬁ Esership Error Values Me\r}; llaszsship Non-%:llz Esership Error Values
Aq 1 0 0 1 0 0
As 0.28 0.72 0 0.16 0.83 0.01
As 0.28 0.72 0 0.50 0.50 0
Ay 0.28 0.72 0 0.50 0.50 0
As 0.28 0.72 0 0.16 0.83 0.01
Asg 0 1 0 0.33 0.66 0.01
Az 0.28 0.72 0 0.16 0.83 0.01
Asg 0.28 0.72 0 0.16 0.83 0.01
Ag 0 1 0 0.33 0.66 0.01
Ao 0 1 0 0.16 0.83 0.01
An 1 0 0 0.33 0.66 0.01
Axz 0 1 0 0 1 0
Az 0 1 0 0.16 0.83 0.01
A1s 0.28 0.72 0 0.50 0.50 0
Ass 1 0 0 0.50 0.50 0
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Step 5. The cost parameter matrix is given in Table 8 and the aggregation of the
thresholds by Equations (4)—(6) is represented in Table 9.

Table 8. Intuitionistic fuzzy cost parameter matrix.

X X

A » (0,1) (0.8,0.1)

A % (0.3,0.7) (0.5,0.4)

A y (0.9,0.1) (0.05,0.8)

Table 9. Thresholds for all elements.
IFPWA IFPWG
Alternatives  x1(e) 1 (e) w1 (e) x1(e) P1(e) wi(e)

A 0.719808 0.248034 0.403588 0.719808 0.248034 0.403588
Ay 0.719808 0.248034 0.403588 0.71261 0.245554 0.399552
A3 0.719808 0.248034 0.403588 0.719808 0.248034 0.403588
Ay 0.719808 0.248034 0.403588 0.719808 0.248034 0.403588
As 0.719808 0.248034 0.403588 0.71261 0.245554 0.399552
Ag 0.719808 0.248034 0.403588 0.71261 0.245554 0.399552
Az 0.719808 0.248034 0.403588 0.71261 0.245554 0.399552
Ag 0.719808 0.248034 0.403588 0.71261 0.245554 0.399552
Ag 0.719808 0.248034 0.403588 0.71261 0.245554 0.399552
Aqo 0.719808 0.248034 0.403588 0.71261 0.245554 0.399552
A11 0.719808 0.248034 0.403588 0.71261 0.245554 0.399552
A1p 0.719808 0.248034 0.403588 0.719808 0.248034 0.403588
Ajs 0.719808 0.248034 0.403588 0.71261 0.245554 0.399552
A1q 0.719808 0.248034 0.403588 0.719808 0.248034 0.403588
Ass 0.719808 0.248034 0.403588 0.719808 0.248034 0.403588

Step 6. Finally, the classification of the elements based on the decision rules presented
in Equations (16)—(18) for POS, NEG, and BND regions is shown in Table 10,

Table 10. Classification of alternatives accordingly.

IFPWA®

IFPWG®

POS(X)={A1,A15,A11}

NEG(X)={A12,A6,A13,A9,A10}
BND(X)={A3,A3,A4,A8,A7,A10}

POS(X) = {A;}
NEG(X) = {Az, As, A7, Ag, A1, A2, A13}
BND(X) = {As, Ay, As, Ag, A11, A1s, A15}

The results show that the alternatives in the POS zone have confirmed the presence
of coronavirus disease; in the NEG region alternatives are safe and in the BND region
alternatives are not confirmed. In addition, for new alternatives, we can classify them based
on the descriptions of the already evaluated alternatives. Figure 3 shows the effects on the
alternative due to the IFPWA,, and IFPWG,, operators.
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Graphical presentation of classified
participents

100

50

Al2 Al13 A14 A15

-100

e [FPA POS es===[FPA BND IFPA NEG

[FPG POS e [FPG BND e [FPG NEG

Figure 3. Graphical presentation of classification.

5.2. Benefits of the Proposed Model
In the proposed approach, there are benefits which are disclosed in the following:

(1) The most attractive and significant role of this approach is that it is a more generalized
form. This approach is a generalized form of IFSs. If the NMGs are reduced to zero
then the IFSs are converted into fuzzy sets;

(2) The power aggregation operators are very suitable and simple operators to cope with
the problem of decision making under a fuzzy environment especially; these operators
help to conclude the attribute’s values of elements. To consider the importance, these
operators are designed for novel data and used to aggregate the information;

(3) The existing approaches in the literature for TWD consist of the theories of Yao [37]
and are very traditional. In this approach, we used some new steps for TWD, such as
power aggregation operators which are designed. Moreover, interval-valued classes
are developed to classify the participants;

(4) In this medical case, diagnosing the disease is a very big issue for experts as well as
patients. To cope with this challenge, we created a model made up of many patients
with their disease’s attributes. Finally, the experts calculated the decisions.

6. Conclusions and Future Work

In the article, we firstly reviewed the basic idea of intuitionistic fuzzy sets and power
aggregation operators. Moreover, we revised the model of three-way decision based on
the Bayesian theory introduced by Yao [25]. In classical TWD models, equivalence classes
play a vital role in discretizing the information system. In this paper, we developed a novel
approach to discretize the information table. To classify the participants, interval-valued
classes are used and three zones on the bases of those classes. The Bayesian model for
minimizing risk is also revised for decision taking. Aggregation operators are used to
aggregate the results and compose the attributes values into single values. Considering the
importance of operators, we utilized power aggregation operators. Moreover, an algorithm
to identify the disease using the proposed approach was produced. We disclosed the
benefits of the approach: this approach is more general than the existing TWD model. Next,
the findings of this study will be enlarged to the extension of the fuzzy and rough data
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and some new aggregation operators to cope with real-life problems will be developed.
Moreover, we will utilize the established approach towards the existing literature [41-45].
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