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Abstract: In this paper, we propose an enhanced model for pricing vulnerable options. Specifically,
our model assumes that parameters such as interest rates, jump intensity, and asset value volatility
are governed by an observable continuous-time finite-state Markov chain. We take into account
European vulnerable options that are exposed to both default risk and rare shocks from underlying
and counterparty assets. We also consider stochastic default barriers driven by a regime-switching
model and geometric Brownian motion, thus improving upon the assumption of fixed default barriers.
The risky assets follow a related jump-diffusion process, whereas the default barriers are influenced
by a geometric Brownian motion correlated with the risky assets. Within the framework of our model,
we derive an explicit pricing formula for European vulnerable options. Furthermore, we conduct
numerical simulations to examine the effects of default barriers and other related parameters on
option prices. Our findings indicate that stochastic default barriers increase credit risk, resulting in
a decrease in option prices. By considering the aforementioned factors, our research contributes to
a better understanding of pricing vulnerable options in the context of counterparty credit risk in
over-the-counter trading.
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1. Introduction

The over-the-counter (OTC) market represents a significant portion of the financial
market, with many financial institutions actively trading options on it. Unlike exchange-
traded markets, OTC transactions are unorganized and lack transparency, which increases
the risk of counterparty default. This means that one party may fail to fulfill its contractual
obligations. Since the global financial crisis of 2007–2008, participants in the OTC market
have become increasingly concerned about the credit default risk associated with options.
The structural model, also known as the firm value model, is a key tool for pricing options
with credit risk. This article explores option pricing within the framework of the firm
value model. Johnson and Stulz [1] were the first to define options with credit risk as
vulnerable options.

There are several models for vulnerable option pricing in the literature. Klein [2,3]
proposed a model that allows for correlation between the underlying asset of the option
and the counterparty’s asset and assumes that the default barrier is the fixed liability of the
option writer. He also proposed an improved method that includes both the fixed liabilities
of the option writer and losses from vulnerable option shorts in the default barrier. Hui [4]
proposed a European vulnerable option pricing model with a stochastic default barrier
representing the option writer’s liability. Wang [5] assumed that both the counterparty’s
assets and related assets were driven by a related jump-diffusion process and derived a
pricing formula for vulnerable options. These studies suggest that the default barrier has
an impact on the pricing of European vulnerable options. However, they only consider the
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impact of barriers on options and do not take into account how a country’s economic status
at different times affects option prices.

Since the dynamics of risky asset values are not continuous, some literature introduces
jumping processes, compound Poisson processes, or self-exciting Hawkes processes to
better describe their value models. These studies discuss the pricing formula for European
vulnerable options (see XU [6], TIAN [7], Ma [8], and Zhou [9]). Wang [10] proposed
decomposing the underlying asset risk and counterparty assets into systemic and non-
systemic risks and used the obtained pricing formula to discuss the difference between
vulnerable option prices. In addition, many empirical analyses have concluded that the
volatility of risky assets is not fixed. Therefore, some literature assumes that the underlying
asset is driven by stochastic volatility models such as the Heston model and mean reversion
process and discusses the pricing formula for European vulnerable options (see Liu [11],
Yang [12], Lee [13], Wang [14]). Yoon [15] uses double Merlin transforms to obtain closed-
form pricing formulas for European vulnerable options under constant and Hull–White
interest rate models (see Liu [16]). Huang [17] investigated the pricing of European-style
vulnerable options in the presence of non-affine stochastic volatility and double exponential
jumps in the underlying asset price process.

Most option pricing models are within the framework of Brownian motion, which
makes it difficult to capture external factors such as the state of the national economy. The
literature also incorporates vulnerable option pricing under the regime-switching model.
Elliott [18,19] was the first to consider introducing regime switching into the option pricing
model. Wang [20] uses the local risk minimization method to obtain the optimal hedging
strategy for European vulnerable call options. When the option writer’s asset value is
depressed by other financial institutions due to poor sales, Yang [21] used polynomial
change numerical techniques to obtain a semi-analytical pricing formula for European
vulnerable options. Assuming that the default barrier in the vulnerable option model
is fixed, Wang [22] assumes that risk assets are driven by regime-switching geometric
Brownian motion and obtains a European vulnerable option pricing formula. NIU [23]
assumes that the value of risk assets is driven by a relevant regime-switching double
exponential jump-diffusion model and uses two-dimensional Laplace transforms to obtain
a European vulnerable option pricing formula. Han [24] assumes that the value of risk
assets is driven by a relevant regime-switching jump-diffusion model and uses the Esscher
transform to select an equivalent martingale measure to obtain a European vulnerable
option pricing formula and discusses the impact of jump risk on European vulnerable
option pricing. Capponi [25] presents an efficient method for pricing vulnerable contingent
claims in a regime-switching market using a suitable change of probability measure and
a Poisson series representation. Damircheli [26] investigated the modeling of default
probability for publicly traded companies using a synchronous-jump regime-switching
model and incorporating tempered stable processes. They proposed an efficient meshfree
collocation method to solve the partial integro-differential equations associated with the
credit risk model.

However, based on the above literature, we can see that the factors affecting the
pricing of European vulnerable options include default barriers, risk asset value models,
and national economic conditions. We found that there is currently no study on the pricing
of European vulnerable options under a regime-switching model with stochastic default
barriers. In light of this, we naturally consider proposing a model that is closer to the actual
situation. This article assumes that risky assets are driven by a relevant regime-switching
jump-diffusion model and that the default barrier follows a regime-awitching geometric
Brownian motion. We obtain an explicit solution for the European vulnerable option
pricing formula. In addition, we use numerical simulation to explore the impact of default
barriers and parameters on option prices and find that stochastic default barriers increase
credit risk, leading to lower option prices. We differ from Han [24] in that they assume
that the default barrier is constant. We assume that the dynamics of the default barrier
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are regime-switching geometric Brownian motions related to the underlying assets and
counterparty assets.

The structure of this paper is as follows: Section 2 establishes a regime-switching
model for risk assets and default barriers. Section 3 uses the Esscher transform to select an
equivalent martingale measure. Section 4 uses the risk-neutral pricing principle to obtain a
pricing formula for European vulnerable options. Section 5 presents a numerical analysis
of the proposed model using Monte Carlo simulation methods. The conclusion is given in
Section 6.

2. Model Description

We construct a continuous-time financial market on a probability space (Ω,F , P). We
assume that all risky assets can be continuously traded in time [0, T]. Let X = {Xt; t ≥ 0}
denote a continuous-time Markov process on probability space (Ω,F , P) with a finite state
space {e1, e2, · · · , eN}, where ei = (0, · · · , 1, · · · , 0)′ ∈ RN with the i-th element is ‘1’. We
assume that the states of the economy are modelled by a continuous-time Markov process
X = {Xt; t ≥ 0}. According to Elliott [27] semi-martingale decomposition for X, we have
Xt = X0 +

∫ t
0 AXsds + Mt, where A =

(
qij
)

N×N is Q- matrix of X and Mt is a RN-valued
martingale with respect to the natural filtration generated by {Xt; t ≥ 0}.

Assumption 1. The risk-free rate rt is related to the state of the economy. Let rt = 〈r, Xt〉, where
r = {r1, r2, · · · , rN}′ ∈ RN . For any i = 1, 2, 3, · · · , N, we have ri > 0; 〈, 〉 denotes the inner
product of the vector. When i 6= j,

〈
ei, ej

〉
= 0; otherwise,

〈
ei, ej

〉
= 1.

Assumption 2. Suppose that St is the market value of the underlying assets at time t, and Vt
denote the value of the counterparty’s company assets at time t. Vt and St are driven by the following
jump-diffusion processes:

dSt

St−
= [αt − k1(λt + λ1t)]dt + σ1tdW1t +

(
eZ1

t− − 1
)

dNt +
(

eZ1
t− − 1

)
dN1t (1)

dVt

Vt−
= [βt − k2(λt + λ2t)]dt + σ2tdW2t +

(
eZ2

t− − 1
)

dNt +
(

eZ2
t− − 1

)
dN2t (2)

where W1t, W2t are standard Brownian motions. N1t and N2t, respectively, indicate the
individual shocks to the value of the underlying asset St and the individual shocks to the
value of the counterparty’s company assets Vt, where N1t and N2t are pure scalar Poisson
process with intensities λ1t and λ2t, respectively. Nt refers to the common shocks to the
corresponding assets, where Nt are pure scalar Poisson process with intensity λt.

For i = 1, 2, we suppose that Zi
t− denotes the underlying asset’s jump amplitude when

the jump happens, following a normal distribution with mean µi and variance δ2
i . At any

time, s 6= t, Zi
t− and Zi

s− are independent of each other; ki = E
(

eZi
t− − 1

)
= e( µi+

1
2 δ2

i ) − 1
represents the average jump of the asset. αt and σ1t are the expected return rate of the
underlying asset St and the volatility of the underlying asset St, respectively. βt and
σ2t are the expected return rate of the value of the counterparty’s company assets Vt
and the volatility of the value of the counterparty’s company assets Vt, respectively.
We assume that αt, βt, σ1t, σ2t, λ1t, λ2t and λt all depend on the economic state X. Let
αt = 〈α, Xt〉, βt = 〈β, Xt〉, σ1t = 〈σ1, Xt〉, σ2t = 〈σ2, Xt〉, λ1t = 〈λ1, Xt〉, λ2t = 〈λ2, Xt〉,
λt = 〈λ, Xt〉, where α = (α1, · · · , αi, · · · , αN)

′ ∈ RN , β = (β1, · · · , βi, · · · , βN)
′ ∈ RN ,

σ1 = (σ11, · · · , σ1i, · · · , σ1N)
′ ∈ RN , σ2 = (σ21, · · · , σ2i, · · · , σ2N)

′ ∈ RN ,
λ = (λ1, · · · , λi, · · · , λN)

′ ∈ RN , λ1 = (λ11, · · · , λ1i, · · · , λ1N)
′ ∈ RN , and

λ2 = (λ21, · · · , λ2i, · · · , λ2N)
′ ∈ RN . For any j = 1, 2, 3, · · · , N, and i = 1, 2, there

are σij > 0.
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Assumption 3. The value of the counterparty’s company liabilities, also called the default barrier,
is represented by Dt, and Dt is driven by the following geometric Brownian motion:

dDt

Dt
= γtdt + σ3tdW3t (3)

where W3t is the standard Brownian motion, and σ3t is the volatility of the counter-
party’s company liabilities. We assume that γt and σ3t are related to the economic state X.
Let γt = 〈γ, Xt〉, σ3t = 〈σ3, Xt〉, where γ = (γ, · · · , γi, · · · , γN)

′ ∈ RN ,
σ3 = (σ31, · · · , σ3i, · · · , σ3N)

′ ∈ RN . For any i = 1, 2, 3, · · · , N, there are σ3i > 0.

Assumption 4. We assume that the covariance matrix of the Brownian motion (W1t, W2t, W3t)
on probability space (Ω,F , P) is as follows:

 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

t (4)

We assume that N1t, N2t, Nt, Z1
t− and Z2

t− are independent of each other. Moreover,
we assume that N1t, N2t, Nt, Z1

t− and Z2
t− are independent of W1t, W2t, W3t. In addition,

for the convenience of calculation in the following chapters, we express the relevant three-
dimensional Brownian motion W1t, W2t, and W3t as

W1t
W2t
W3t

 =


1 0 0

ρ12

√
1− ρ2

12 0

ρ13
ρ23−ρ12ρ13√

1−ρ2
12

√
(1−ρ2

12)(1−ρ2
13)−(ρ23−ρ12ρ13)

2

1−ρ2
12


W1t

W2t
W3t

 (5)

where W1t, W2t and W3t are independent Brownian motions.

Assumption 5. At the option maturity T, if the value of the counterparty’s company assets is
not greater than the value of the counterparty’s company liabilities, we believe that the option has
defaulted. The option holder will receive (1−ω)DT

VT
times the notional amount from the option writer,

where ω is the recovery rate. Therefore, at the maturity T, the payment function of the vulnerable
European call option with a strike price of K is as follows:

(ST − K)+
{

I{VT≥DT} +
(1−ω)VT

DT
I{VT<DT}

}
(6)

where I{·} is represented as an indicator function.

3. Selection of Equivalent Martingale Measures

Due to the presence of jumps and the uncertainty introduced by regime switching,
the market is incomplete and there are infinitely many equivalent martingale measures.
Furthermore, it is not easy to obtain an equivalent martingale measure for two jump-
diffusion processes with correlated jumps. It is important to note that while systemic risks
can be hedged, non-systematic risks are specific to individual risk assets and cannot be
hedged, so their premiums need not be considered. In this paper, we assume that the jump
component represents systemic risk and its risk premium must be taken into account. We
should measure changes in the jump component. In this section, we apply the regime-
switching Esscher transform to select equivalent martingale measures for three stochastic
processes with associated jump risks under regime switching.
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Using Ito’s theorem, the solutions of Equations (1)–(3) are given by

St

S0
= eL1t = exp

{∫ t

0

[
αs − k1(λs + λ1s)−

1
2

σ2
1s

]
ds +

∫ t

0
σ1sdW1s +

∫ t

0
Z1

s−dN1s +
∫ t

0
Z1

s−dNs

}
(7)

Vt

V0
= eL2t = exp

{∫ t

0

[
βs − k2(λs + λ2s)−

1
2

σ2
2s

]
ds +

∫ t

0
σ2sdW2s +

∫ t

0
Z2

s−dN2s +
∫ t

0
Z2

s−dNs

}
(8)

Dt

D0
= eL3t = exp

{∫ t

0

[
γs −

1
2

σ2
3s

]
ds +

∫ t

0
σ3sdW3s

}
(9)

where L1t is the return process of the underlying asset St, L2t is the return process of the
underlying asset Vt, and L3t is the return process of the underlying asset Dt. According to
the above Equations (7)–(9), we have the three process L1t, L2t, and L3t as follows:

L1t =
∫ t

0

[
αs − k1(λs + λ1s)−

1
2

σ2
1s

]
ds +

∫ t

0
σ1sdW1s +

∫ t

0
Z1

s−dN1s +
∫ t

0
Z1

s−dNs = C1t + J1t + Jt (10)

L2t =
∫ t

0

[
βs − k2(λs + λ2s)−

1
2

σ2
2s

]
ds +

∫ t

0
σ2sdW2s +

∫ t

0
Z2

s−dN2s +
∫ t

0
Z2

s−dNs = C2t + J2t + J′t (11)

L3t =
∫ t

0

[
γs −

1
2

σ2
3s

]
ds +

∫ t

0
σ3sdW3s = C3t (12)

Let
{
FX

t
}

t∈[0,T] and
{
F i

t
}

t∈[0,T] (i = 1, 2, 3) be the natural σ-filtrations generated by
{Xt}t∈[0,T] and {Lit}t∈[0,T] (i = 1, 2, 3), respectively. For any i = 1, 2, 3 and t ∈ [0, T],
define a filtration

{
Hi

t
}

t∈[0,T] such that Hi
t is the σ- algebra with Hi

t = FX
t ∨ F i

t . For any

t ∈ [0, T], let Rt = H1
t ∨ H2

t ∨ H3
t . Let Vc1

1t , Vc2
2t , Vc3

3t , V j1
1t , V j2

2t , V j
t and V j′

t be the regime-
switching Esscher transform parameters, and they are all related to the economic state
of X. For any m ∈ {c1, j1}, l ∈ {j, j′}, and n ∈ {c2, j2}, we assume that Vm

1t =
〈
Vm

1 , Xt
〉
,

Vn
2t =

〈
Vn

2 , Xt
〉
, and V l

t =
〈

V l , Xt

〉
, where Vm

1 =
(
Vm

11, · · · , Vm
1i , · · · , Vm

1N
)′ ∈ RN , Vn

2 =(
Vn

21, · · · , Vn
2i, · · · , Vn

2N
)′ ∈ RN , and V l =

(
V l

1 , · · · , V l
i , · · · , V l

N

)′
∈ RN . For the regime-

switching Esscher transform parameter Vc3
3t , we assume that Vc3

3t =
〈
Vc3

3 , Xt
〉
, where

Vc3
3 =

(
Vc3

31 , · · · , Vc3
3i , · · · , Vc3

3N
)′ ∈ RN .

Under the given condition FX
t , we use the regime-switching Esscher transform pro-

posed by Elliott [18] to select an equivalent martingale measure. Define the equivalent
measure of P as P, the Radon-Nikodym derivative of the regime-switching Esscher trans-
form can be written as follows:

dP
dP =

exp
{∫ T

0 V
c1
1t dC1t+

∫ T
0 Vc2

2t dC2t+
∫ T

0 V
c3
3t dC3t

}
EP

{
exp
[∫ T

0 V
c1
1t dC1t+

∫ T
0 Vc2

2t dC2t+
∫ T

0 V
c3
3t dC3t

]∣∣∣FX
T

}
×

exp
{∫ T

0 V
j1
1t dJ1t+

∫ T
0 V j2

2t dJ2t+
∫ T

0 V j
t dJt+

∫ T
0 V j′

t dJ′t

}
EP

{
exp
[∫ T

0 V
j1
1t dJ1t+

∫ T
0 V j2

2t dJ2t+
∫ T

0 V j
t dJt+

∫ T
0 V j′

t dJ′t
]∣∣∣FX

T

}
(13)
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By Equation (5) and calculation, we have

dP
dP = exp

{∫ T
0 Vc1

1t σ1tdW1t +
∫ T

0 Vc2
2t σ2tdW2t +

∫ T
0 Vc3

3t σ3tdW3t

}
×exp

{
− 1

2

∫ T
0

[(
Vc1

1t
)2

σ2
1t +

(
Vc2

2t
)2

σ2
2t +

(
Vc3

3t
)2

σ2
3t

]
dt +

∫ T
0

(
V j

t Z1
t− + V j′

t Z2
t−

)
dNt

}
×exp

{
−
∫ T

0

[
ρ12Vc1

1t σ1tV
c2
2t σ2t + ρ13Vc1

1t σ1tV
c3
3t σ3t + ρ23Vc3

3t σ3tV
c2
2t σ2t

]
dt
}

×exp
{
−
∫ T

0 λ1t

[
exp
(

µ1V j1
1t +

1
2

(
δ1V j1

1t

)2
)
− 1
]

dt +
∫ T

0 V j1
1t Z1

t−dN1t

}
×exp

{
−
∫ T

0 λ2t

[
exp
(

µ2V j2
2t +

1
2

(
δ2V j2

2t

)2
)
− 1
]

dt +
∫ T

0 V j2
2t Z2

t−dN2t

}
×exp

{
−
∫ T

0 λt

[
exp
(

µ1V j
t + µ2V j′

t + 1
2

(
δ1V j

t

)2
+ 1

2

(
δ2V j′

t

)2
)
− 1
]

dt
}

(14)

Delbaen [28] showed that the absence of arbitrage is essentially equivalent to the
existence of equivalent martingale measures. Under an equivalent martingale measure, the
price process of a risky asset is a martingale, which is known as the martingale condition.
Due to the uncertainty introduced by the economic state X, the discount process must be
defined on a larger filtration R. From the principles of asset pricing and no-arbitrage, it
follows that under the equivalent martingale measures P, the discount process of risky
assets is a martingale.

Theorem 1. The discounting process of risk assets satisfies the following formula:

EP

{
exp
[
−
∫ t

0
rsds

]
St|Ru

}
= exp

(
−
∫ u

0
rsds

)
Su (15)

EP

{
exp
[
−
∫ t

0
rsds

]
Vt|Ru

}
= exp

(
−
∫ u

0
rsds

)
Vu (16)

EP

{
exp
[
−
∫ t

0
rsds

]
Dt|Ru

}
= exp

(
−
∫ u

0
rsds

)
Du (17)

if and only if the regime-switching Esscher transform parameters satisfy the following conditions:

αs − k1(λs + λ1s)− rs + Vc1
1s σ2

1s + ρ12σ1sV
c2
2s σ2s + ρ13Vc3

3s σ1sσ3s + λ̃1skj1
1 + λ̃skj

1 = 0 (18)

βs − k2(λs + λ2s)− rs + Vc2
2s σ2

2s + ρ12σ1sV
c1
1s σ2s + ρ23Vc3

3s σ3s + λ̃2skj2
2 + λ̃skj′

2 = 0 (19)

γs − rs + Vc3
3s σ2

3s + ρ13σ1sV
c1
1s σ3s + ρ23Vc2

2s σ2sσ3s = 0 (20)

where λ̃1s = λ1s exp
(

µ1V j1
1s +

1
2

(
δ1V j1

1s

)2
)

, λ̃2s = λ2s exp
(

µ2V j2
2s +

1
2

(
δ2V j2

2s

)2
)

,

λ̃s = λsexp
(

µ1V j
s + µ2V j′

s + 1
2

(
δ1V j

s

)2
+ 1

2

(
δ2V j′

s

)2
)

, kj1
1 = (k1 + 1)eδ2

1V
j1
1s − 1,

kj2
2 = (k2 + 1)eδ2

2V j2
2s − 1, kj

1 = (k1 + 1)eδ2
1V j

1s − 1, kj′
2 = (k2 + 1)eδ2

2V j′
2s − 1.

Proof. By Bayes’ rule, we have

EP

{
e−
∫ t

0 rsdsSt|Ru

}
= EP

{
e−
∫ t

0 rsdsSt
dP
dP
|Ru

}
=

EP

{
e−
∫ t

0 rsdsSt
dP
dP |Ru

}
EP

{
dP
dP |Ru

}
=exp

(
−
∫ u

0
rsds

)
SuEP

{
exp
[

MA
S + MB

S + MC
S + MJ

S

]}
= exp

(
−
∫ u

0
rsds

)
Su

(21)
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So, if and only if the following formula holds, the risk asset discounting process
is martingale

αs − k1(λs + λ1s)− rs + Vc1
1s σ2

1s + ρ12σ1sV
c2
2s σ2s + ρ13Vc3

3s σ1sσ3s + λ̃1skj1
1 + λ̃skj

1 = 0

Similarly, for the risk asset Vt, the following conditions can be proved:

βs − k2(λs + λ2s)− rs + Vc2
2s σ2

2s + ρ12σ1sV
c1
1s σ2s + ρ23Vc3

3s σ2sσ3s + λ̃2skj2
2 + λ̃skj′

2 = 0

The following proves the conditions for the equivalent martingale measures of the risk
asset Dt. According to Baye’s rule, we also know

EP

{
e−
∫ t

0 rsdsDt|Ru

}
= EP

{
e−
∫ t

0 rsdsDt
dP
dP
|Ru

}
=

EP

{
e−
∫ t

0 rsdsDt
dP
dP |Ru

}
EP

{
dP
dP |Ru

}
=EP

{
exp
[∫ t

u

[
γs − rs + Vc3

3s σ2
3s + ρ13σ1sV

c1
1s σ3s + ρ23Vc2

2s σ2sσ3s

]
ds
]}

exp
(
−
∫ u

0
rsds

)
Du

=exp
(
−
∫ u

0
rsds

)
Du

(22)

We have γs − rs + Vc3
3s σ2

3s + ρ13σ1sV
c1
1s σ3s + ρ23Vc2

2s σ2sσ3s = 0.
The proof of Theorem 1 is complete. �

Theorem 2. Under the equivalent martingale measure P, St, Vt and Dt are driven by the following
formula:

log
(

St

S0

)
=
∫ t

0

[
rs − λ̃skj

1 − λ̃1skj1
1 −

1
2

σ2
1s

]
ds +

∫ t

0
σ1sdW̃1s +

∫ t

0
Z̃1

s−dÑ1s +
∫ t

0
Ẑ1

s−dÑs (23)

log
(

Vt

V0

)
=
∫ t

0

[
rs − λ̃skj′

2 − λ̃2skj2
2 −

1
2

σ2
2s

]
ds +

∫ t

0
σ2sdW̃2s +

∫ t

0
Z̃2

s−dÑ2s +
∫ t

0
Ẑ2

s−dÑs (24)

log
(

Dt

D0

)
=
∫ t

0

[
rs −

1
2

σ2
3s

]
ds +

∫ t

0
σ3sdW̃3s (25)

where W̃1s, W̃2s and W̃3s are the standard Brownian motion under the equivalent martingale
measure P, and satisfyes the following relationship:

W̃1t = W1t −
∫ t

0
Vc1

1s σ1sds−
∫ t

0

(
ρ12Vc2

2s σ2s + ρ13Vc3
3s σ3s

)
ds (26)

W̃2t = W2t −
∫ t

0
Vc2

2s σ2sds−
∫ t

0

(
ρ12Vc1

1s σ1s + ρ23Vc3
3s σ3s

)
ds (27)

W̃3t = W3t −
∫ t

0
Vc3

3s σ3sds−
∫ t

0

(
ρ13Vc1

1s σ1s + ρ23Vc2
2s σ2s

)
ds (28)

log
(

Dt

D0

)
=
∫ t

0

[
rs −

1
2

σ2
3s

]
ds +

∫ t

0
σ3sdW̃3s

The covariance matrix of the Brownian motion
(

W̃1t, W̃2t, W̃3t

)
is the same as that of (W1t, W2t, W3t).

Ñ1t, Ñ2t and Ñt are Poisson processes with respective intensities λ̃1t = λ1t exp
(

µ1V j1
1t +

1
2

(
δ1V j1

1t

)2
)

,

λ̃2t = λ2t exp
(

µ2V j2
2t +

1
2

(
δ2V j2

2t

)2
)

and λ̃t = λtexp(µ1V j
t + µ2V j′

t + 1
2

(
δ1V j

t

)2
+

1
2

(
δ2V j′

t

)2
)

, respectively. Z̃1
t−, Z̃2

t−, Ẑ1
t− and Ẑ2

t− are normal random variables, and Z̃1
t− ∼
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N
(

µ1 + V j1
1t δ2

1 , δ2
1

)
, Z̃2

t− ∼ N
(

µ2 + V j2
2t δ2

2 , δ2
2

)
, Ẑ1

t− ∼ N
(

µ1 + V j
1tδ

2
1 , δ2

1

)
and Ẑ2

t− ∼

N
(

µ2 + V j′
2tδ

2
2 , δ2

2

)
. kj1

1 = (k1 + 1)eδ2
1V

j1
1t − 1, kj2

2 = (k2 + 1)eδ2
2V j2

2t − 1, kj
1 = (k1 + 1)eδ2

1V j
1t − 1

and kj′
2 = (k2 + 1)eδ2

2V j′
2t − 1 are expressed as the average jumps of Z̃1

t−, Z̃2
t−, Ẑ1

t− and Ẑ2
t−, respectively.

Proof. According to the multi-dimensional Girsanov theorem, under the given conditions
FX

t and the equivalent martingale measure P, we know that W̃1t, W̃2t and W̃3t are Brownian
motion such that Equations (29)–(31) are established.

Using the theorem T10 [29] (p. 241), we observe that Z̃1
t−, Z̃2

t−, Ẑ1
t− and Ẑ2

t− are

normal random variables, i.e., Z̃1
t− ∼ N

(
µ1 + V j1

1t δ2
1 , δ2

1

)
, Z̃2

t− ∼ N
(

µ2 + V j2
2t δ2

2 , δ2
2

)
,

Ẑ1
t− ∼ N

(
µ1 + V j

1tδ
2
1 , δ2

1

)
and Ẑ2

t− ∼ N
(

µ2 + V j′
2tδ

2
2 , δ2

2

)
. We can calculate kj1

1 =

E
(

eZ̃1
t− − 1

)
= (k1 + 1)eδ2

1V
j1
1t − 1, kj2

2 = E
(

eZ̃2
t− − 1

)
= (k2 + 1)eδ2

2V j2
2t − 1, kj

1 =

E
(

eẐ1
t− − 1

)
= (k1 + 1)eδ2

1V j
1t − 1 and kj′

2 = E
(

eẐ2
t− − 1

)
= (k2 + 1)eδ2

2V j′
2t − 1.

The proof of Theorem 2 is complete. �

According to Theorem 1, we obtain the martingale condition, but from algebraic
knowledge, we know that there are infinite solutions to Equations (18)–(20). In order to
facilitate the numerical simulation in Section 5, we provide a set of special solutions. Let

αs − k1(λs + λ1s)− rs + Vc1
1s σ2

1s + ρ12σ1sV
c2
2s σ2s + ρ13Vc3

3s σ1sσ3s = 0
βs − k2(λs + λ1s)− rs + Vc2

2s σ2
2s + ρ12σ1sV

c1
1s σ2s + ρ23Vc3

3s σ2sσ3s = 0
γs − rs + Vc3

3s σ2
3s + ρ13σ1sV

c1
1s σ3s + ρ23Vc2

2s σ2sσ3s = 0

λ1s exp
(

µ1V j1
1s +

1
2

(
δ1V j1

1s

)2
)(

(k1 + 1)exp
(

δ2
1V j1

1s

)
− 1
)
= 0

λ2s exp
(

µ2V j2
2s +

1
2

(
δ2V j2

2s

)2
)(

(k2 + 1)exp
(

δ2
2V j2

2s

)
− 1
)
= 0

λsexp
(

µ1V j
s + µ2V j′

s + 1
2

(
δ1V j

s

)2
+ 1

2

(
δ2V j′

s

)2
)(

(k1 + 1)eδ2
1V j

s − 1
)
= 0

λsexp
(

µ1V j
s + µ2V j′

s + 1
2

(
δ1V j

s

)2
+ 1

2

(
δ2V j′

s

)2
)(

(k1 + 1)eδ2
2V j′

s − 1
)
= 0

(29)

Solving the above equation can obtain the regime-switching Esscher transform
parameters as

Vc1
1s =

π1
(
ρ2

23 − 1
)
σ3sσ2s + π2(ρ12 − ρ23ρ13)σ1sσ3s + π3(ρ13 − ρ23ρ12)σ1sσ2s

σ3sσ2sσ2
1s

[(
1− ρ2

12
)(

1− ρ2
13
)
− (ρ23 − ρ13ρ12)

2
]

Vc2
2s =

π1(ρ12 − ρ23ρ13)σ3sσ2s + π2
(
ρ2

13 − 1
)
σ1sσ3s + π3(ρ23 − ρ13ρ12)σ1sσ2s

σ3sσ1sσ2
2s

[(
1− ρ2

12
)(

1− ρ2
13
)
− (ρ23 − ρ13ρ12)

2
]

Vc3
3s =

π1(ρ13 − ρ23ρ12)σ3sσ2s + π2(ρ23 − ρ13ρ12)σ1sσ3s + π3
(
ρ2

12 − 1
)
σ1sσ2s

σ1sσ2sσ2
3s

[(
1− ρ2

12
)(

1− ρ2
13
)
− (ρ23 − ρ13ρ12)

2
]

V j1
1s = V j

s = − µ1+
1
2 δ2

1
δ2

1
, V j′

s = V j2
2s = − µ2+

1
2 δ2

2
δ2

2
, λ̃s = λsexp

(
− µ2

1
2δ2

1
+

δ2
1
8 −

µ2
2

2δ2
2
+

δ2
2
8

)
,

λ̃1s = λ1s exp
(
− µ2

1
2δ2

1
+

δ2
1
8

)
, λ̃2s = λ2s exp

(
− µ2

2
2δ2

2
+

δ2
2
8

)
, kj1

1 = kj2
2 = kj

1 = kj′
2 = 0, where

π1 = αs − k1(λs + λ1s)− rs, π2 = βs − k2(λs + λ2s)− rs and π3 = γs − rs.
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4. Pricing Vulnerable Options

In this section, we derive an explicit formula for pricing vulnerable options. Due
to the similarity between call and put options, we only provide detailed calculations for
vulnerable European call options.

Theorem 3. Under the proposed model framework, we obtain the pricing formula of European
vulnerable call options as

C (S, V, D, X) =
∫
[0,T]N

C∗ψ(J1, J2, · · · , JN)dJ1dJ2 · · · dJN (30)

where ψ(J1, J2, · · · , JN) is the joint distribution of accumulated stay time J = (J1, J2, · · · , JN)
given X0 = X under the equivalent martingale measure P. Under the equivalent martingale
measure P, the characteristic function of J = (J1, J2, · · · , JN) satisfies the following formula:

EP{exp[i〈ξ, J〉]|X0 = X } = 〈Xexp[AT + iGT], I〉 (31)

where i2 = −1, ξ = (ξ1, ξ2, · · · , ξN)
′ ∈ RN , I = (1, 1, · · · , 1)′ ∈ RN and G is a N order

diagonal matrix generated by ξ1, ξ2, · · · , ξN ;

C∗ = EP

{
e−
∫ T

0 rsds(ST − K)+
{

I{HT≥1} + (1−ω)HT I{HT<1}
}∣∣FX

T

}
=

∞

∑
n=0

∞

∑
m1=n

∞

∑
m2=n

Q
(

Ñs = n, Ñ1s = n1, Ñs = n2

)
e−T RT [A1(m1, m2) + A2(m1, m2) + A3(m1, m2) + A4(m1, m2)]

=
∞

∑
n=0

∞

∑
m1=n

∞

∑
m2=n

(
λ̃sT

)n

n!

(
λ̃1sT

)m1−n

(m1−n)!

(
λ̃2sT

)m2−n

(m2−n)! e−T(λ̃s+λ̃1s+λ̃2s+RT)

×[A1(m1, m2) + A2(m1, m2) + A3(m1, m2) + A4(m1, m2)]

(32)

Proof. According to the principle of risk-neutral pricing, under the equivalent martingale
measures P, S0 = S, D0 = D, V0 = V and the initial state of the national economy X0 = X,
the European vulnerable options C (S, V, D, X) can be written as follows:

C (S, V, D, X) = EP

{
exp
[
−
∫ T

0 rsds
]
(ST − K)+

{
I{VT≥DT} +

(1−ω)VT
DT

I{VT<DT}

}}
= EP

{
exp
[
−
∫ T

0 rsds
]
(ST − K)+

{
I{HT≥1} + (1−ω)HT I{HT<1}

}} (33)

where HT = VT
DT

. Under the equivalent martingale measure P, the expression of VT and DT
are expressed by Equations (22)–(24), and the expression of HT is

log
(

HT
H0

)
=
∫ T

0

[
1
2 σ2

3s − λ̃skj′
2 − λ̃2skj2

2 −
1
2 σ2

2s

]
ds +

∫ T
0 σ2sdW̃2s −

∫ T
0 σ3sdW̃3s

+
∫ T

0 Z̃2
s−dÑ2s +

∫ T
0 Ẑ2

s−dÑs
(34)

The model parameters we propose include the interest rate, jump intensity, and
volatility of asset value, which are governed by an observable continuous-time finite-state
Markov chain. To facilitate calculations, we need to determine the residence time of each
state in the finite-state Markov chain (which can be interpreted as the duration of “good”
and “bad” states in the market economy). We assume that Ji represents the staying time of
the market economy state {Xt}t∈[0,T] in state i within [0, T] time, we have

RT =
1
T

∫ T

0
rsds =

1
T ∑N

i=0 ri Ji, U1T =
1
T

∫ T

0
σ2

1sds =
1
T ∑N

i=0 σ2
1i Ji,

U2T =
1
T

∫ T

0
σ2

2sds =
1
T ∑N

i=0 σ2
2i Ji, U3T =

1
T

∫ T

0
σ2

3sds =
1
T ∑N

i=0 σ2
3i Ji,
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U4T =
1
T

∫ T

0
σ1sσ2sds =

1
T ∑N

i=0 σ1iσ2i Ji, U5T =
1
T

∫ T

0
σ1sσ3sds =

1
T ∑N

i=0 σ1iσ3i Ji,

U6T =
1
T

∫ T

0
σ2sσ3sds =

1
T ∑N

i=0 σ2iσ3i Ji, λ̃s =
1
T

∫ T

0
λ̃sds =

1
T ∑N

i=0 λ̃i Ji,

λ̃1s =
1
T

∫ T

0
λ̃1sds =

1
T ∑N

i=0 λ̃1i Ji, λ̃2s =
1
T

∫ T

0
λ̃2sds =

1
T ∑N

i=0 λ̃2i Ji.

We need to calculate the European call vulnerable options C (S, V, D, X) under condi-
tion S0 = S, D0 = D, V0 = V and X0 = X, and first calculate the European call vulnerable
option under the given conditions FX

T , S0 = S, D0 = D, V0 = V and X0 = X, i.e.,

C∗ = C
(

S, V, D, RT , U1T , U2T , U3T , U4T , U5T , U6T , λ̃s, λ̃1s, λ̃2s

)
= EP

{
e−
∫ T

0 rsds(ST − K)+
{

I{HT≥1} + (1−ω)HT I{HT<1}

}∣∣FX
T

} (35)

In order to calculate the European call vulnerable option under conditions S0 = S,
D0 = D, V0 = V and X0 = X, we need to know the joint conditional distribution of

RT , U1T , U2T , U3T , U4T , U5T , U6T , λ̃s, λ̃1s and λ̃2s under the equivalent martingale mea-

sure P. But RT , U1T , U2T , U3T , U4T , U5T , U6T , λ̃s, λ̃1s and λ̃2s are regulated by the observ-
able continuous-time finite state Markov chain, so the joint conditional distribution of

RT , U1T , U2T , U3T , U4T , U5T , U6T , λ̃s, λ̃1s and λ̃2s under the equivalent martingale mea-
sure P is determined by the conditional joint distribution of the cumulative stay time
J = (J1, J2, · · · , JN) under conditions S0 = S, D0 = D, V0 = V and X0 = X under the
equivalent martingale measure P. Thus, we have

C (S, V, D, X) =
∫
[0,T]N

C∗ψ(J1, J2, · · · , JN)dJ1dJ2 · · · dJN (36)

where ψ(J1, J2, · · · , JN) is the joint distribution of cumulative stay time J = (J1, J2, · · · , JN)
under the equivalent martingale measure P and X0 = X. Under the equivalent martingale
measure P, the characteristic function of J = (J1, J2, · · · , JN) satisfies the following formula:

EP{exp[i〈ξ, J〉]|X0 = X } = 〈Xexp[AT + iGT], I〉 (37)

where i2 = −1, ξ = (ξ1, ξ2, · · · , ξN)
′ ∈ RN , I = (1, 1, · · · , 1)′ ∈ RN and G is an N order

diagonal matrix generated by ξ1, ξ2, · · · , ξN . See Buffmgton [26] for proof of theoretical
properties.
We next calculate C∗, given the condition G(n, n1, n2)

T =
{

Ñs = n, Ñ1s = n1, Ñ2s = n2

}
and

FX
T , ST all jumps are m1 = n1 + n and HT all jumps are m2 = n2 + n, we have

C∗ = EP

{
e−
∫ T

0 rsds(ST − K)+
{

I{HT≥1} + (1−ω)HT I{HT<1}

}∣∣FX
T

}
=

∞

∑
n=0

∞

∑
m1=n

∞

∑
m2=n

Q
(

Ñs = n, Ñ1s = n1, Ñs = n2

)
EP

{
e−
∫ T

0 rsds(ST,m1

−K)+
{

I{HT,m2≥1} + (1−ω)HT,m2 I{HT,m2<1}

}} (38)

By calculation, we have

EP

{
e−
∫ T

0 rsds(ST,m1 − K
)+{I{HT,m2≥1} + (1−ω)HT,m2 I{HT,m2<1}

}}
= e−T RT [A1(m1, m2) + A2(m1, m2) + A3(m1, m2) + A4(m1, m2)]

(39)
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By observing A1 − A4, we find that
(

log
( ST,m1

S0

)
, log

(HT,m2
H0

))
is a bivariate normal

distribution under the equivalent martingale measure P. In order to calculate A1 − A4, we first

obtain the properties of the bivariate normal distribution
(

log
( ST,m1

S0

)
, log

(HT,m2
H0

))
as follows:

M1(m1) = EP

[
log
(

ST,m1

S0

)]
=
∫ T

0

[
rs −

1
2

σ2
1s

]
ds− 1

2
m1δ2

1 = T
(

RT −
1
2

U1T

)
− 1

2
m1δ2

1

M2(m2) = EP

[
log
(

HT,m2

H0

)]
=
∫ T

0

1
2

(
σ2

3s − σ2
2s

)
ds− 1

2
m2δ2

2 =
T
2
(

U3T −U2T
)
− 1

2
m2δ2

2

H2(m1) = Var
[

log
(

ST,m1

S0

)]
=
∫ T

0
σ2

1sds + m1δ2
1 = TU1T + m1δ2

1

H2(m2) = Var
[

log
(

HT,m2

H0

)]
= T

(
U2T + U3T − 2U6Tρ23

)
+ m2δ2

2

Cov
(

log
(

ST,m1

S0

)
, log

(
HT,m2

H0

))
=
∫ T

0
(σ1sσ2sρ12 − σ1sσ3sρ13)ds = T

(
U4Tρ12 + U5Tρ13

)

ρ1(m1, m2) = corr
(

log
(

ST,m1

S0

)
, log

(
HT,m2

H0

))
=

T
(
U4Tρ12 + U5Tρ13

)√
H2(m1)

√
H2(m2)

In order to simplify the calculation, we can rewrite
(

log
( ST,m1

S0

)
, log

(HT,m2
H0

))
as

log
(

ST,m1

S0

)
= M1(m1) +

√
H2(m1)ε1 (40)

log
(

HT,m2

H0

)
= M2(m2) +

√
H2(m2)ε2 (41)

where (ε1, ε2) is a two-dimensional standard normal distribution, and the correlation
coefficient is ρ1(m1, m2). Next, we have

A1(m1, m2) = S0exp
{

M1(m1) +
1
2

H2(m1)

}
N2(a1(m1), a2(m1, m2), ρ1(m1, m2)) (42)

A2(m1, m2) = −KN2(b1(m1), b2(m2), ρ1(m1, m2)) (43)

A3(m1, m2) =S0(1−ω)H0exp
{

M1(m1) + M2(m2) +
1
2

(
H2(m1) + H2(m2)

)
+ρ1(m1, m2)H(m1)H(m2)}N2(c1(m1, m2), c2(m1, m2), ρ1(m1, m2))

(44)

A4(m1, m2) = −K(1−ω)H0e{M2(m2)+
1
2 H2(m2)}N2(d1(m1, m2), d2(m1, m2), ρ1(m1, m2)) (45)
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Therefore, given the condition FX
T , we can obtain:

C∗ = EP

{
e−
∫ T

0 rsds(ST − K)+
{

I{HT≥1} + (1−ω)HT I{HT<1}

}∣∣FX
T

}
=

∞

∑
n=0

∞

∑
m1=n

∞

∑
m2=n

Q
(

Ñs = n, Ñ1s = n1, Ñs = n2

)
e−T RT [A1(m1, m2) + A2(m1, m2) + A3(m1, m2) + A4(m1, m2)]

=
∞

∑
n=0

∞

∑
m1=n

∞

∑
m2=n

(
λ̃sT

)n

n!

(
λ̃1sT

)m1−n

(m1−n)!

(
λ̃2sT

)m2−n

(m2−n)! e−T(λ̃s+λ̃1s+λ̃2s+RT)

×[A1(m1, m2) + A2(m1, m2) + A3(m1, m2) + A4(m1, m2)]

(46)

The proof of Theorem 3 is complete. �

5. Numerical Simulation

In this section, we present the numerical results of European vulnerable call options
prices given by Equations (1)–(3). To facilitate our analysis, we use the set of baseline
parameters given in Tables 1 and 2, and we assume that there are 252 trading days in a year.
To facilitate our simulation, we assume that for Xt there are only two regimes, i.e., N = 2.
The first regime e1 = (1, 0)′ can be interpreted as a good economic state. The second plan
e2 = (0, 1)′ can be interpreted as a bad economic state. We refer to relevant literature (such
as Han [24]) to choose the initial state of the economy X = X0 = (1, 0), and the generation
matrix of the Markov chain process Xt

A =

(
p11 p12
p21 p22

)
=

(
0.2 0.8
0.7 0.3

)
(47)

Table 1. Parameter values of vulnerable European call options in the base case.

Parameter Value Parameter Value

Strike price K = 10 Mean jump size of V µ1 = 0
Time to maturity T = 1 Mean jump size of S µ2 = 0
Initial price of S S0 = 10 correlation coefficient ρ12 = 0.7
Initial price of D D0 = 10 correlation coefficient ρ23 = 0.6
Initial price of V V0 = 10 correlation coefficient ρ13 = 0.5

Volatility of jump size of V δ2 = 0.1 Volatility of jump size of S δ1 = 0.1

Table 2. Parameter values of vulnerable European call options in the base case.

Parameter Value in State e1 Value in State e2

r r1 = 0.02 r1 = 0.02
S’s Volatility σS1 = 0.3 σS2 = 0.4
V’s Volatility σV1 = 0.3 σV2 = 0.4
D’s Volatility σD1 = 0.3 σD2 = 0.4

common jump intensity λ1 = 1 λ2 = 2
S jump intensity λS1 = 1 λS2 = 2
V jump intensity λV1 = 1 λV2 = 2

From Figure 1, it can be observed that as the initial price of the underlying asset, S_0,
increases, the price of the European fragile option also increases. This is because as the price
of the underlying asset rises, the potential profit for the option holder increases, thereby
increasing the value of the option.

Additionally, we can observe that under State 1 (good economy), the price of the call
option is relatively low, whereas under State 2 (bad economy), the price of the call option is
relatively high. This is mainly because in a bad economy, the volatility of the risky asset
increases, leading to an increase in the risk value of the option. Therefore, investors need to
pay a higher price to purchase options under adverse economic conditions.
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Furthermore, when considering a mixed state of the economy, i.e., during a transitional
period, the value of the option lies between State 1 and State 2. This is because in a mixed
state, the economic conditions are uncertain, and the value of the option is influenced
by different economic states. As a result, the price of the option falls between the prices
observed in a good economy and a bad economy.

In light of these observations, we propose the switching model to better explain the
impact of economic conditions on option valuation. In the switching model, the parameters
of the risky asset value model evolve under two different economic states, allowing for
a more accurate reflection of the changing economic conditions on option values. By
introducing the switching model, our model can more flexibly capture changes in economic
conditions, thereby better reflecting the pricing of fragile options in practice.

Now, let us turn to Figure 2. Figure 2 shows that as the initial value of the default
barrier (counterparty’s debt), D_0, increases, the price of the European fragile option
exhibits a decreasing trend. This is because a larger D_0 increases the risk of credit default,
reducing the demand for options from investors and leading to a decline in option prices.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 18 
 

 

is between 8 and 9, our model has similar prices to the Wang [22] model. However, when 
S_0 is between 9 and 12, our model has higher prices.  

 
Figure 1. Vulnerable European call option price against the initial price of the underlying assets S. 
The solid, dashed, and dot-dashed lines correspond to State 1, the proposed model, and State 2, 
respectively. 

 
Figure 2. Vulnerable European call option price against the initial price of the default barrier D. The 
solid, dashed, and dot-dashed lines correspond to State 1, the proposed model, and State 2, respec-
tively. 

 
Figure 3. Vulnerable European call option price against the initial price of the underlying assets S. 
The solid, dashed, dotted, and dot-dashed lines correspond to Hui’s [4] model, the proposed model, 
Han’s [22] model, and Wang’s [20] model, respectively. 

Figure 2. Vulnerable European call option price against the initial price of the default barrier D. The
solid, dashed, and dot-dashed lines correspond to State 1, the proposed model, and State 2, respectively.

Furthermore, by examining Figure 3, we compare the prices of the European fragile
option under four different models with the initial price of the underlying asset, S_0.
Compared to the Han [24] model, our proposed model has lower prices. This indicates that
our model, which considers the dynamic changes in the default barrier, more accurately
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reflects the increase in default risk, resulting in lower option values. Compared to the
Hui [4] model, our model has higher option prices. This is because our model incorporates
a jump process of the risky asset, increasing the prices of options and better capturing the
impact of economic conditions on options. Compared to the Wang [22] model, when S_0 is
between 8 and 9, our model has similar prices to the Wang [22] model. However, when S_0
is between 9 and 12, our model has higher prices.
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Figure 4 shows the price of European Vulnerable options plotted against the initial
value of the default barrier (D_0) for four different models. As D_0 increases, the price
of European Vulnerable options decreases. Notably, our proposed model exhibits lower
prices compared to the Han [24] model, indicating that the uncertainty of the default barrier
increases over time, resulting in higher default risk and lower option prices. To provide a
more comprehensive explanation of these findings, let us delve into the observed models,
starting with the Han [24] and Wang [22] models. In these models, as the fixed default
barrier (representing the initial value of the counterparty’s liabilities) increases, the option
holder assumes higher credit risk. This suggests that if the default barrier is significantly
smaller than the counterparty’s assets, the likelihood of default diminishes, leading to
higher option prices. Next, let us consider our proposed model and the Hui [4] model.
Both models exhibit a similar rate of decline in option prices, indicating that they share a
comparable sensitivity to changes in the default barrier. As D_0 increases, the prices of
options in both models decline proportionally. Lastly, we compare our proposed model
with the Wang [22] model. When D_0 is small, we find that the Wang [22] model yields
lower prices compared to our proposed model. This discrepancy arises because, in such
instances, the impact of the jump process on credit risk outweighs the effect of the default
barrier. These observations provide a detailed explanation of the relationship between
the price of European Vulnerable options and the initial value of the default barrier across
different models. As D_0 increases, default risk amplifies, leading to a decrease in option
prices. Moreover, the influence of the default barrier and the jump process on option prices
and credit risk varies among the different models. These findings contribute to a better
understanding and assessment of pricing and risk management for vulnerable options.

Figures 5–8 show the impact of basic parameters on vulnerable option prices, including
time to maturity, recovery rate, the correlation coefficient between the underlying asset
and the counterparty’s assets, and common jump intensity. These figures display the
option prices calculated using our proposed model plotted against the initial price of the
underlying asset S_0 from 8 to 12 with alternative basic parameters.
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Figure 7. The option price with a correlation coefficient between the underlying asset and the assets
of the counterparty forω = 0.5, λ1 = 1, λ2 = 2 and T = 1. The solid, dashed, and dot-dashed lines
correspond to ρ13 = 0.9, ρ13 = 0.5, and ρ13 = 1, respectively.
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As shown in Figure 5, as the option’s time to maturity increases, the option price also
increases. This indicates that a longer time to maturity increases the risk of counterparty
default and, therefore, increases the value of the option. Figure 6 shows that the option
price increases as the recovery rate ω increases. This is because a higher recovery rate
results in a higher return at maturity. In Figure 7, we can see that the option price de-
creases as the correlation coefficient ρ_13 increases. The correlation coefficient reflects the
relationship between two assets that move together. This means that as the initial value
of the underlying asset S_0 increases, the distance between the three lines also increases.
A stronger correlation between the underlying assets and the default barrier means that
default risk has a greater impact on vulnerable option prices and results in lower option
prices. Figure 8 shows that the option price increases as common jump intensity increases.
This result is consistent with our intuitive understanding.
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6. Conclusions

This paper discusses the pricing of vulnerable European options using a regime-
switching jump-diffusion model. In the structured model, it is assumed that the coun-
terparty’s asset-liability structure (or default barrier) is driven by a geometric Brownian
motion under a regime-switching model, and there exists a correlation among all risk assets.
By applying the Esscher transform to select an equivalent martingale measure, a pricing
formula for vulnerable options is derived. The results of numerical simulations show that
the European vulnerable option prices in the proposed model are lower than those in the
model assuming a fixed counterparty’s asset–liability structure. This result is intuitive
because the counterparty’s liability level is stochastic, increasing the risk of option default
and thus lowering the option prices.

This paper mainly investigates the pricing problem of options with random default
barriers and credit risk under a regime-switching model. Several research findings are
obtained. However, there are still some gaps between the proposed model and the real
financial market. Further research can be conducted in the following aspects:

1. More data on OTC option trading can be collected to discuss the parameter estimation
issues of the relevant pricing models for vulnerable options, referring to existing literature.

2. As both models in this paper assume fixed volatility of risk assets and risk-free interest
rates, further research directions can consider introducing stochastic volatility and
risk-free interest rates into the proposed models to make them adhere to more general
models. Additionally, with the advancement of computer performance, alternative
methods can be considered to numerically solve the option pricing formulas.
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