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Abstract: Harnessing solar energy efficiently via photovoltaic (PV) technology is pivotal for future
sustainable energy. Accurate modeling of PV cells entails an optimization problem due to the
multimodal and nonlinear characteristics of the cells. This study introduces the Multi-strategy
Gradient-Based Algorithm (MAGBO) for the precise parameter estimation of solar PV systems.
MAGBO incorporates a modified gradient search rule (MGSR) inspired by the quasi-Newton
approach, a novel refresh operator (NRO) for improved solution quality, and a crossover mecha-
nism balancing exploration and exploitation. Validated through CEC2021 test functions, MAGBO
excelled in global optimization. To further validate and underscore the reliability of MAGBO, we
utilized data from the PVM 752 GaAs thin-film cell and the STP6-40/36 module. The simulation
parameters were discerned using 44 I-V pairs from the PVM 752 cell and diverse data from the
STP6-40/36 module tested under different conditions. Consistency between simulated and ob-
served I-V and P-V curves for the STM6-40/36 and PVM 752 models validated MAGBO’s accuracy.
In application, MAGBO attained an RMSE of 9.8 × 10−4 for double-diode and single-diode mod-
ules. For Photowatt-PWP, STM6-40/36, and PVM 752 models, RMSEs were 2.4 × 10−3, 1.7 × 10−3,
and 1.7 × 10−3, respectively. Against prevalent methods, MAGBO exhibited unparalleled preci-
sion and reliability, advocating its superior utility for intricate PV data analysis.

Keywords: metaheuristic; gradient-based optimizer; photovoltaic parameter estimation; global
optimization

MSC: 68T20

1. Introduction

In recent decades, interest in renewable energy sources has become very large due to
environmental concerns resulting from fossil fuel pollution, global warming, solid waste,
the dangers of burning coal, and the instability of fossil fuel prices. Many alternative
energy sources have been found to avoid this, such as wind, water, solar energy, and
others. Moreover, solar energy is considered one of the most important energy sources for
generating electricity due to its high availability, safe and pollution-free manufacturing
methods, and noise-free manufacturing methods. In addition, the price of solar cells has
decreased in recent years.

The popularity of solar photovoltaic (PV) systems has increased nowadays because of
their use of solar cells [1]. These technologies’ ability to convert solar energy into electricity
is impressive. In order to regulate and optimize PV systems, it is crucial to build a precise
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model that incorporates observed current-voltage data, as this enables the evaluation of
the PV array’s actual behavior. Several mathematical models have been developed to shed
light on the performance and nonlinear features of PV systems [2], with single-diode and
double-diode setups being the most common and commonly used.

The reliability of the parameters is intrinsically tied to the accuracy of the photovoltaic
(PV) models. However, environmental variables such as temperature, global irradiation,
material flaws, and shifting operational conditions make it difficult to consistently achieve
these requirements. Therefore, accurate models that outline the complex relationship
between current and voltage are required for the optimization and control of PV systems [3].
In recent years, numerous parameter identification approaches have been developed to
meet this pressing requirement [4].

Recently, numerous strategies for finding the parameters of photovoltaic (PV) models
have been put forward as potential solutions. They can generally be divided into the
following three categories: (1) analytical methods, which are mainly based on the short
circuit point, open circuit point, and maximum power point; these methods are fast, simple,
and unique, but they are not accurate [5–11]. (2) Deterministic methods. These methods
are sensitive to the initial values and require a level of calculus and convexity. However,
they are still not precise enough in the same manner as Newton’s approach [12], the
Newton–Raphson approach [13], or the method of the nonlinear algorithm [14]. (3) Meta-
heuristic methods are a promising and powerful solution to extract the parameters of the
photovoltaic model, and because they are easy to implement and most of them are inspired
by the phenomena of nature, they do not need convexity conditions or the derivation of
the objective function. Despite developing a set of optimization algorithms, they fail to
provide satisfactory results, so meta-heuristic algorithms have been used to solve difficult
and complex problems [15].

Consequently, many metaheuristic algorithms have been developed and applied in
many fields and to extract the parameters of photoelectric models. The parameters of
the diode model of a polycrystalline solar module cell were extracted using the moth
optimization algorithm [16], the genetic algorithm (GA), which was derived from Dar-
win’s development theory [17], particle swarm optimization (PSO) [18], simulated anneal-
ing algorithm (SA) [19], artificial bee colony (ABC) [20], anarchic asexual reproduction
(CARO) [21], multiple learning backtracking search (MLBSA) [22], cuckoo search algo-
rithm (CS) [23], biogeography optimization (BBO) [24], MBO algorithm [25], sunflower
optimization algorithm (SFO) [26], coyote optimization algorithm (COA) [27], Bacterial
Foraging Optimization (BFO) [28], Harris haws optimization (HHO) [29], and modified
flower algorithm (MFA) [30].

As a direct consequence of this, efforts are currently being undertaken to create
more effective optimization algorithms to calculate the parameters of solar photovoltaic
cells [31,32]. In the next parts, an in-depth discussion on optimizing photovoltaic systems
will be held, focusing on previously developed and evaluated methods.

The algorithms discussed earlier have been applied to various topics, and their
results have been found to be satisfactory. However, according to the No Free Lunch
theorem [33], there is not yet a superior method of optimization in all circumstances.
Furthermore, many optimization methods have benefits and drawbacks that are compa-
rable to one another [34,35]. These approaches, for instance, have a substantial benefit
in that they can handle a diverse range of systems with nonlinear fitness functions and
restrictions [36]. This is just one example. The primary drawbacks include difficulty
adjusting their parameters, the potential for early convergence, the inability to find
global optimal solutions, the lack of diversity, and the instability in balancing explo-
ration and exploitation in the solution space [37,38]. These drawbacks can be overcome,
however, by using alternative approaches. These methods, if developed with care, have
the potential to provide extraordinary performance and versatility for solving difficult
optimization problems in the real world [39,40].



Mathematics 2023, 11, 4200 3 of 40

As per the No Free Lunch theory, existing optimization algorithms have limitations
and weaknesses [41–44] and may not be suitable for all types of problems. Thus, there is
still potential for improvement in algorithm efficiency. Recent studies have focused on
developing new ways to improve fundamental optimization procedures by integrating a
variety of initial design strategies [45–47], hybridizing optimization procedures [48,49], and
altering search patterns [50–54]. The Gradient-based Algorithm (GBO), a population-based
optimization technique, is an exciting new discovery made very recently. This technique
has demonstrated that it is effective and precise in its optimization outcomes. During the
phase of exploration and exploitation, GBO uses the information that is available to find
optimal or near-optimal solutions by randomly selecting two solutions from the population
to predict future relocation and direction based on the best search options. This helps GBO
find the best possible options. However, it has been discovered that the new optimization
method of GBO has significant drawbacks in high-dimensional and multimodal problems.
These drawbacks include getting stuck in local solutions as the size of the search space
increases and having poor convergence performance in difficult problems [55,56].

Additionally, the characteristics of the objective function have the potential to have a
negative impact on the performance of the algorithm in specific contexts. Particularly when
dealing with issues that include many modes of communication, the search method may
be hampered. It is well known that the objective function for Solar Photovoltaic Parameter
Estimation problems is multimodal and nonlinear with multiple local minimums. Because
of this, it is challenging to develop new robust optimization techniques that can produce
more accurate and faster convergence results.

This study aims to find the best values for the parameters of Photovoltaic systems.
To achieve this, this study proposes a modified gradient search rule (MGSR) based on the
quasi-Newton method, derives the MGSR factor that controls vector motion to improve
its local and global capabilities, and enhances exploration to improve the search in the
selected area. In addition, a new refresh operator (NRO) has been proposed to enhance the
algorithm’s solution quality and exploration abilities, as well as a strong crossover mech-
anism to balance exploitation and increase population diversity. The proposed method,
MAGBO, is tested for its performance on CEC2021 benchmark functions and a complex
Photovoltaic system. The results are compared with various optimization methods such as
Gradient-based Algorithm (GBO), Gradient-based optimization with ranking mechanisms
(EGBO), Slime mould algorithm (SMA), Self-adaptive differential evolution algorithm
(SADE), Equilibrium optimizer (EO), new self-organizing hierarchical PSO with jumping
time-varying acceleration coefficients (HPSO_TVAC), comprehensive learning particle
swarm optimizer (CL-PSO), Improved Jaya Algorithm (IJAYA), performance-guided JAYA
algorithm (PGJAYA), and multiple learning backtracking search MLBSAs, which shows
that MAGBO outperforms the other methods in this context. The Wilcoxon rank-sum and
Friedman statistical tests are used to confirm the validity of MAGBO.

The heart of this research revolves around the advanced development and metic-
ulous validation of the MAGBO technique, tailored for photovoltaic system parameter
identification. Specifically:

• Modified Gradient Search Rule (MGSR): utilizes the quasi-Newton method to bolster
both local and global optimization.

• Crossover Mechanism: introduced to ensure greater agent diversity and prevent
premature convergence.

• Novel Refresh Operator (NRO): enhances solution quality and strategic exploration,
balancing exploration and exploitation.

• Rigorous Validation: comprehensive evaluation of various SDMs, DDMs, and PV
modules, showcasing MAGBO’s superiority over older methods.

To organize the remainder of this paper, the second section focuses on MAGBO’s
related work. The original GBO and problem statement are presented in Section 3.
Section 4 explains the details of the proposed MAGBO. In Section 5, experimental results
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and comparisons are presented. Section 6 discusses the problematic constraints and
difficulties, and finally, Section 7 concludes with the conclusions and future work.

2. Related Work

In addition to analytical and deterministic methods, heuristic methods have also
been proposed for determining the parameters of PV models. Heuristic methods are
typically based on the principles of human reasoning and problem-solving, and they
can be used to find approximate solutions to complex problems. Some of the most
popular heuristic methods for determining the parameters of PV models include genetic
algorithms (GA), artificial bee colonies (ABC), particle swarm optimization (PSO), ant
lion optimizer (ALO), biogeography-based optimization (BBO), whale optimization
algorithm (WOA), JAYA algorithm, differential evolution (DE), teaching-learning-based
optimization (TLBO), harmony search (HS), flower pollination algorithm (FPA), and
moth flame optimization algorithm (MFO). Each of these methods has its advantages
and disadvantages, and the best method for a particular problem will depend on the
specific characteristics of the problem [22,49,57–59]. Even though it has been shown that
these methods are effective and consistent, most heuristic algorithms still struggle with
locating the best possible solution for the whole problem. Estimating parameters in PV
models is difficult since the objective function is multimodal, meaning it has numerous
local minima. This makes parameter estimation a complex task. Because of this, locating
the global minimum, which represents the optimal course of action, can be challenging.
In addition, numerous heuristic methods call for particular control parameters, in addi-
tion to population size and the number of generations, which substantially influence the
overall performance. Incorrect tuning can result in increased computation expenses as
well as software that is insensitive to user input.

As a consequence of this, the issue of establishing a trustworthy heuristic approach
for predicting PV model parameters continues to be challenging. The most recent and
applicable research approaches are outlined in Table 1, which provides an overview of
them. This study aims to give both a potential solution to the issue by way of an updated
version of the Mas algorithm, which is a method for estimating the parameters of solar PV
models, and to suggest a new version of the algorithm.

Table 1. The methodologies of the recent modification/hybridization of GBO.

Algorithm and Ref. Methodology Type of Improvement Problem Formulation Statistical Test

Modified Gradient-Based
Optimizer (MGBO) [60]

The strategy is to adjust the value of the direction
of movement (DM) by introducing a new number

D that ranges from 1 to 2 and
goes up in increments of 1.

Modification
Three Photovoltaics module

(single, double-diode),
and PV module.

none

Improved gradient-based
optimizer (IBGO) [61]

Two different approaches have been suggested as
ways to enhance the functionality of meta-heuristic

algorithms. The first tactic employs adaptive
weights to move closer to the optimal solution and
stay out of local optima during the various phases

of the method. The second tactic involves
substituting chaotic behavior for the algorithm’s
inherent unpredictability to boost the method’s

convergence speed and accuracy.

Modification
Three Photovoltaics module

(single, double-diode),
and PV module.

none

Opposition decided
gradient-based optimizer

(OBGBO) [62]

OBGBO is an enhancement over GBO, which
employs an opposition-based process to produce

more precise answers. OBGBO uses the same
technique to generate solutions,
but it does so in a different way.

Modification
Three Photovoltaics module

(single, double-diode),
and PV module.

none

Random learning gradient
based optimization

(RLGBO) [63]

To solve the issue of the GBO being stuck in local
optima and to make the convergence process faster

and more accurate, a new learning mechanism
based on randomization was added to the original

version of the GBO. The random learning
mechanism allows individuals to maintain
constant communication with one another,

ultimately resulting in improved performance.

Modification three various PV models
(KC200GT, ST40, and SM55)

Wilcoxon
ranked test
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Table 1. Cont.

Algorithm and Ref. Methodology Type of Improvement Problem Formulation Statistical Test

Sine cosine differential
gradient based optimizer

(SDGBO) [64]

The suggested method utilizes the mutation
crossover of the differential evolution algorithm in

conjunction with the sine cosine method. With either
the crossover operator or the sine cosine approach,

the new search agent is encouraged to determine the
absolute worst place to settle. By doing so, the

algorithm is freed from the confines of whatever
local optimums it might have been experiencing.

Hybridization Four various PV models,
and (KC200GT)

Wilcoxon
ranked test

Developed Version of Eagle
Strategy Gradient-Based

Optimizer (ESCGBO) [65]

Estimating the parameters of static and dynamic
photovoltaic models led to developing an updated
version of the GBO algorithm known as ESCGBO.

The ESCGBO employs a strategy known as the
chaotic eagle. The authors carried out assessments

to establish that ESCGBO is successful on
both a macro and micro level.

Hybridization 23 benchmark functions and
three various PV models None

Improved moth flame
algorithms (IMFOL) [66]

IMFOL stands for Improved Moth Flame with
Local escape operators, which is the name of the

algorithm that has been proposed. The MFO
algorithm is enhanced by adding the Local Escape

Operators method, which ultimately leads to
improved performance in terms of accuracy and

efficiency. Additionally, the LEO strategy broadens
the demographic range of the population and

improves the MFO algorithm’s ability to explore
uncharted territories efficiently.

Hybridization five various PV models None

3. Preliminaries

Within this section, the algorithm for gradient-based optimization and the problem
statement are broken down into their component parts.

3.1. Principles of Gradient-Based Optimizer (GBO)

The GBO algorithm [17] is one of the effective methods for solving complex optimiza-
tion problems due to its ability to explore, exploit, converge, and move away from the local
optimal solution. The method component has two main factors, GSR search base and LEO
local escape factor.

3.1.1. Initialization

The initial population in GBO is a matrix with N rows and d columns, where N is
the size of the population and d is the number of variables of the problem. The initial
population is randomly generated using the following equation:

Xn = Lb + rand× (Ub− Lb) (1)

where Xn represents the vector member, Lb represents the lower-bounded, Ub represents
the upper-bounded of the problem, and rand denotes a random number in the range (0, 1).

3.1.2. Gradient Search Rule (GSR)

The first factor of GBO controls the vector movement to improve the search in the field
and achieve better locations in the solution area. The GSR based on Newton’s method was
proposed according to [67]. Therefore, the GSR is defined as:

GSR = rand× ρ1 ×
2∆x× xn

ym
an − ym

bn + ε
(2)

ym
an and ym

bn are employed to search inside a population to enhance diversity and robustness.
Equations (3) and (4) display the ym

an and ym
bn formula.

ym
an = rand×

(
( un+1 − xn)

2
+ rand× ∆x

)
(3)
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ym
bn = rand×

(
( un+1 − xn)

2
− rand× ∆x

)
(4)

un+1 = xm
n − rand× ρ1 ×

2∆x× xm
n

xworst − xbest + ε
+ DM

)
(5)

where rand is a random number in the interval of [0, 1], un+1 signifies the new solution pro-
duced by the GBO, xworst and xbest represent the worst and best solutions found throughout
the optimization process, respectively, and ε denotes a small number in the [0, 0.1] range.

ρ1 = 2× rand× α− α (6)

α =

∣∣∣∣β× sin
(

3π

2

)
+ sin

(
β× 3π

2

)∣∣∣∣ (7)

β = βmin + ( βmax − βmin )×
(

1−
(

4
3

)3
) 2

(8)

where parameter ρ1 changes based on the sine function to balance exploration and exploita-
tion, βmin and βmax are 0.2 and 1.2, respectively, and ∆x the difference between the vectors,
which are define as:

∆x = rand× |τ| (9)

τ =

(
xbest − xm

d1

)
+ δ

2
(10)

δ = 2× rand×
(∣∣∣∣ xm

d1 + xm
d2 + xm

d3 + xm
d4

4
− xm

n

∣∣∣∣) (11)

where r1, r2, r3, and r4 (r1 6= r2 6= r3 6= r4 6= n) are integers randomly chosen from
{1, 2, . . . , N}, and τ denotes the step size.

Adding the (DM) limit will improve the performance of the algorithm by making
better exploitation in the vicinity of the point xn, since (DM) will make the movement of the
vector xn be in the direction of (xbest − xn). Therefore, this process creates a suitable local
search tendency to promote the convergence speed of the GBO algorithm. The proposed
DM is formulated as follows:

DM = rand× ρ2 × (xbest − xn) (12)

ρ2 = 2× rand× α− α (13)

3.1.3. Generate New Solutions

The GSR and DM techniques update the population’s position. The three new species
X1m

n , X2m
n , and X3m

n are used to determine the final population location update in order
to better balance the global search and local search. They are defined by the formulas in the
following equations:

X1m
n = xm

n − GSR + DM (14)

X1m
n = xm

n − rand× ρ1 ×
2∆x× xm

n
ym

an − ym
bn + ε

+ rand× ρ2 × (xbest − xm
n ) (15)

where m is the current of iteration. The problem’s parameters support the exploration
process given an appropriate step size. By replacing the current position with the best
position, a new value will be generated that can be generated using the following equation:
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X2m
n = xbest − rand× ρ1 ×

2∆x× xm
n

ym
an − ym

bn + ε
+ rand× ρ2 ×

(
xm

r1
− xm

r2

)
(16)

where r1, r2 are two random numbers. Accordingly, based on the positions X1m
n , X2m

n , and
the current position xm

n , the new solution at the next iteration can be defined as:

Xm+1
n = ri ×

(
rj × X1m

n +
(
1− rj

)
× X2m

n
)
+ (1− ri)× X3m

n (17)

X3m
n = xm

n − ρ1×(X2m
n − X1m

n ) (18)

where ri and rj are two random numbers in [0, 1].

3.1.4. Local Escaping Operator (LEO)

The GBO algorithm suggests a LEO method to boost the effectiveness of handling
complicated issues. With the help of this operator, the position of Xm+1

n is improved,
the population’s diversity is increased, and the algorithm is assisted in leaving the local
optimum. LEO starts by producing a random number, rand as a random number in the
interval [0, 1]. Equation (19) displays the LEO updating formula when rand is bigger than
0.5. Equation (20) displays the LEO updating formula when rand is smaller than 0.5.

Xm
LEO = Xm+1

n + q1 × (σ1 × xbest − σ2 × xm
s ) + q2 × ρ1 × (σ3 × (X2m

n − X1m
n ) + σ2 × (xm

r1 − xm
r2))/2 (19)

Xm
LEO = xbest + q1 × (σ1 × xbest − σ2 × xm

s ) + q2 × ρ1 × (σ3 × (X2m
n − X1m

n ) + σ2 × (xm
r1 − xm

r2))/2 (20)

where q1 and q2 are uniform random numbers in the interval [−1, 1] and σ2 is a random
number from a normal distribution with mean of 0 and standard deviation of 1.

σ1 =

{
2× rand i f ϕ1 < 0.5

1 otherwise
(21)

σ2 =

{
rand i f ϕ1 < 0.5

1 otherwise
(22)

σ3 =

{
rand i f ϕ1 < 0.5

1 otherwise
(23)

where rand is a random number in the interval of [0, 1] and ϕ1 is a number in the interval [0, 1].
To determine the solution xm

s in Equations (19) and (20), the following scheme is defined.

xm
s =

{
xl i f ϕ2 < 0.5
xm

l otherwise
(24)

xl = Lb + rand× (Ub− Lb) (25)

where xl is a new solution and is a randomly selected solution of the population
(l ∈ {1, 2, . . . , N}) and ϕ2 and rand are random numbers in the interval of [0, 1].

3.2. Problem Statement

This section will describe two PV models, namely SDM and DDM, as SDM depends
on the PV module (SMM) and the objective function.

3.2.1. Single-Diode Model

The SDM model is widely used because of its simple structure and high accuracy in
extracting and explaining the features of solar cells [68,69]. The SDM’s equivalent circuit
for the load current is depicted in Figure 1. The combination of the current source, the
diode, and the shunt resistor determines the current through the load. This circuit shows
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both the leakage current and the electrical resistance of the battery [70]. Here is how you
can write down the equation for SDM results:

I = Iph − Id − Ish (26)

where I stands for output current, Iph is the photo-induced current, Id is the diode current,
Ish is the shunt resistor current, and as follows:

Id = I0

[
exp

(
V + IRs

αVt

)
− 1
]

(27)

Ish =
V + IRS

Rsh
(28)

where I0 represents the diode reverse saturation current, α represents the ideal factor, Rs
represents the series resistance, Rsh represents the shunt resistance, V represents the output
voltage of the cell, and Vt is the thermal conductivity potential and is given as:

Vt =
k× T

q
(29)

where T represents the crossroads temperature in Kelvin, k refers to the Boltzmann constant
(1.3806503 × 10−23 J/K), and q is the electron charge (1.60217646 ×10−19C).
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I = Iph − I0

[
exp

(
V + IRs

αVt

)
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]
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3.2.2. Double-Diode Model

The SDM single-diode model does not consider current recombination loss in the
shading layer, which is a limitation of the model. To address this problem, researchers
proposed the DDM dual diode model [71]. The two primary diodes work in parallel with
the photovoltaic and shunt currents. These diodes can also be described as the first diode
acting as a rectifier and the second as a designer to mimic the recombination of current
charges and other factors that cannot be controlled. Figure 2 shows the DDM equivalent
circuit, and the output equation can be formulated as follows [72]:

I = Iph − Id1 − Id2 − Ish (31)

Id1 = I01

[
exp

(
V + IRs

α1Vt

)
− 1
]

(32)
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Id2 = I02

[
exp

(
V + IRs

α2Vt

)
− 1
]

(33)

where Id1 indicates the first diode current, Id2 is the second diode current, I01 indicates the
diffusion current, I02 denotes the saturation current, and α1, α2 are the first and second
diode ideality factor, sequentially. Substituting Equations (32) and (33) into Equation (34),
we obtain:

I = Iph − I01

[
exp

(
V + IRs

α1Vt

)
− 1
]
− I02

[
exp

(
V + IRs

α2Vt

)
− 1
]
− V + IRS

Rsh
(34)
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3.3. Photovoltaic Module

Figure 3 shows that we can obtain a relationship between voltage and current by using
several diodes connected in series or parallel. The photoelectric model can be formulated
based on SMM with the following formula [72]:

I = IphNp − Io Np

[
exp

(
V + IRsNs

αNsVt

)
− 1
]
−

V + IRsNs/Np

RshNs/Np
(35)

where Np denoted to the number of solar cells connected in parallel and Ns refers to the
number of solar cells connected in series. In SMM we used the series connection so that Np
equals one, and this can be expressed by the equation:

I = Iph − Io

[
exp

(
V + IRsNs

αNsVt

)
− 1
]
− V + IRsNs

RshNs
(36)
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are unknown and are to be found by differentiation.
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3.4. The Cost Functions

Parameter problems are often transformed into optimization problems by using opti-
mization algorithms [73,74]. Researchers [75] used the Root Mean Square Error (RMSE) as
the target function, as in the equation below:

RMSE =

√
1
M∑M

m=1 f (Vm, Im, x)2 (37)

The objective function for various photovoltaic models is shown in Table 2. M is
the number of estimated I-V datasets and x is considered as a vector for measuring the
extracted parameters.

Table 2. Objective function and variables of different PV models.

PV Model
Objective Function Parameters

f (V, I, x) x

SDM Iph − I0

[
exp

(
V+IRs

αVt

)
− 1
]
− V+IRS

Rsh
− I

(
Iph, Io, Rs, Rsh, α

)
DDM I = Iph − I01

[
exp

(
V+IRs

α1Vt

)
− 1
]
− I02

[
exp

(
V+IRs

α2Vt

)
− 1
]
− V+IRS

Rsh
− I (Iph, Io1, Io2, Rs, Rsh, α1, α2)

SMM I = Iph − Io

[
exp

(
V+IRs Ns

αNsVt

)
− 1
]
− V+IRs Ns

Rsh Ns
− I

(
Iph, Io, Rs, Rsh, α

)

4. Multi-Approach Gradient-Based Optimizer (MAGBO)

In this study, the GBO algorithm [17] will be improved by adding a new refresh
operator and deriving GSR depending on the quasi-Newton method used to solve the
optimization problem, while the NRO operator replaces the LEO factor.

4.1. Improve Gradient Search Rule (MGSR)

To minimize the function f then the necessary condition to make xn is a minimum
point of f (x), where f́ (x) = 0; in other words, xn is the solution of the equation f́ (x) = 0
and Newton’s method is one of the direct methods to find the roots of equation f́ (x) = 0,
which is at the same time the minimum value of f (x), now, if we use the Taylor series to
express the quadratic approximation of f (x) when x = xn, we obtain

f (x) = f (xn) + f ′(xn)(x− xn) +
f ′′ (xn)(x− xn)

2

2!
(38)

Let us make the derivative of Equation (38) equal to zero to obtain the minimum value
of f (x)

f ′(x) = f ′(xn) + f ′′ (xn)(x− xn) = 0 (39)

Now, suppose that xn is an approximation of the minimum value of f (x), then from
Equation (39) we can obtain the special formula for Newton’s iterative method,

xn+1 = xn −
f ′(xn)

f ′′ (xn)
(40)

with the necessary condition in more real-world problems, then the function being mini-
mized f (x) is not available in closed form or difficult to differentiable, then the derivatives
f ′(xn) and f ′′ (xn) in Equation (40) can be approximated by a finite difference formula as

f ′′ (xn) =
f (xn + ∆x) + f (xn − ∆x)− 2 f (xn)

2
(

∆x2
) (41)
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f ′(xn) =
f (xn + ∆x)− f (xn − ∆x)

2∆x
(42)

where ∆x is the small step size, so the Equations (41) and (42) are substituted in the equation
to obtain

xn+1 = xn −
[ f (xn + ∆x)− f (xn − ∆x)]∆x

2[ f (xn + ∆x) + f (xn − ∆x)− 2 f (xn)]
(43)

The iterative process indicated by Equation (43) is known as the quasi-Newton method,
where xn − ∆x represents the previous position and xn + ∆x represents the next position.

Then, from Equation (18) we can formulated the proposed MGSR as follows:

MGSR =
[ f (xn + ∆x)− f (xn − ∆x)]∆x

2[ f (xn + ∆x) + f (xn − ∆x)− 2xn]
(44)

In view of the ease of dealing with vectors, some modifications are necessary to deal
with population-based research, so xn − ∆x with xbest, xn + ∆x is replaced with xworst and
(xn), instead of its fitness f (xn) are inferred, and the MGSR is reformulated as follows:

MGSR =

[
ym

an − ym
bn
]
∆x

2
[
ym

an + ym
bn − 2xn

] (45)

where ∆x is shown in Equation (9), ym
an and ym

bn are computed using Equations (3) and (4),
respectively, and xn is the current solution.

4.2. The Proposed New Refresh Operator (NRO)

Utilizing the idea of Levy flight, the new refresh operator is an approach that was
developed to tackle difficult optimization problems as a local search technique. One
heuristic approach to solving tough optimization issues is local search. It constantly swaps
out the current answer for one of its neighbors to improve upon it. It is known that the
search space neighbors of solution x are limitless. As a result, figuring out how to efficiently
find a good area is crucial in local searches. It will attempt to generate a new solution at
predetermined intervals by merging two random solutions with the best position found
up to this point. Developing an efficient strategy for determining the optimal location
to conduct the search is essential to this approach. Algorithm 1 displays the new refresh
operator (NRO). During the optimization process, it will be utilized within each iteration
of the proposed algorithm to enhance the search process.

Algorithm 1: The developed new refresh operator algorithm

Sort the particles in popm according to fitness functions
For i = 1: Npop

Randomly choose two solutions xm
d1 and xm

d1 from popm

Calculate the random value z based on Levyflight for solution n by Equation (48)
Obtain for solution n by Equation (47)
Calculate the new position xm+1

n of solution n by Equation (46)
End For

At first, in each iteration m for a population popm with size of N, search agents and a
solution xm

n =
(

xm
n,1, xm

n,2, . . . xm
n,dim

)
will be generated by GSR as X1m

n and X2m
n according

to the proposed algorithm and become xm+1
n . After that, this search agent will be enhanced

by NRO to become Xm+1
n by using this formula:

xm+1
n =

{
xm+1

n + (xbest − xpm
n ) + rand×

(
xm

d1 − xm
d2

)
r1 < 0.5

xbest + (xbest − xpm
n ) + rand×

(
xm

d1 − xm
d2

)
r1 > 0.5

(46)
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where n = 1, 2, . . . , N, rand represent a random number in the range 0 and 1, m denotes to
the current iteration, and

xpt
n = xm+1

n + z× (rand× (xm
d1 − xm

d2))/2 (47)

where xm
d1 and xm

d1 are two solutions chosen randomly from the population popm (expect
the current particle xm

n ), rand is a random number in the range 0 and 1, and t is the number
of iterations. In addition, z is random numbers that are generated by the magenta method
based on Levy distribution by the following equation:

z = 0.01× b×ω

|q|
1
λ

(48)

where b and q are drawn from normal distributions as b ∼ N
(
0, λ2) and q ∼ N

(
0, λ2), λ

is constant with value 1.5, and

ω = λ

√√√√√Γ(1 + λ)× sin
(

πλ
2

)
Γ
⌈

λ+1
2

⌉
× λ× 2

λ−1
2

(49)

4.3. Generate New Solutions

Depending on the proposed MGSR in Equation (45) and the direction of movement
DM, we can generate a new position by updating the current position, and its equation can
be formulated as follows:

X1m
n = Xm

n −MGSR + DM (50)

X1m
n = xm

n –

[
ym

an − ym
bn
]
∆x

2
[
ym

an + ym
bn − 2xn

] + rand× ρ2 × ( xbest − xm
n ) (51)

X2m
n = xbest −MGSR + DM (52)

X2m
n = xbest −

[ [
ym

an − ym
bn
]
∆x

2
[
ym

an + ym
bn − 2xn

]]+ rand× ρ2 × ( xr1 − xm
n ) (53)

where r1 are particles chosen randomly from the population popm. Accordingly, based on
the positions X1m

n , X2m
n , and the current position xm

n , the new solution at the next iteration
will be generated using Equation (17).

By the proposed local search, we can explore its local region and obtain the optimal
neighborhood of this particle as described in Algorithm 1.

In the final stage of the proposed local search NRO, the particle xm
n will be recombined

(crossover) with its neighbor xm+1
n , which is obtained by Equation (46) to obtain the best

neighbor for the particle xm+1
n .

xm+1
n =

{
xm+1

n µ < 0.1
xm

n µ > 0.1
(54)

The proposed algorithm pseudo-code is shown in Algorithm 2, and Figure 4 shows
the MAGBO essential steps. Figure 5 illustrates the main idea of problem formulation.
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Algorithm 2: The MAGBO

Define the set of parameters, N, Tmax, dim, lb and ub bounds of feasible region.
Initialize a population of N random solutions.
Calculate Fitness, BestX, Best_Cost, WorstX, Worst_Cost
While (Termination condition not satisfied) Do

Compute α by Equation (7) and β by Equation (8)
For i = 1: N

Compute X1m
n by Equation (51)

Compute X2m
n by Equation (53)

For j = 1: dim
Calculate Xm+1

n by Equation (17)
If rand < 0.5

Apply local search technique as Algorithm (1)
End if

Apply Crossover operator as equation Equation (54)
Update Fitness, BestX, Best_Cost, WorstX, Worst_Cost

End for
End while
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5. Computer Results and Simulations

In this section, the primary objective centers around an in-depth examination of the
newly proposed MAGBO algorithm. To ensure a comprehensive analysis, we juxtapose
MAGBO against several state-of-the-art algorithms, utilizing the challenging functions
from the IEEE CEC 2021 test suite. This rigorous benchmarking offers a solid foundation
for assessing MAGBO’s optimization capabilities. To supplement the numerical findings,
the Wilcoxon signed-rank test, a robust statistical method, is incorporated, lending further
weight to the comparative performance claims. Additionally, a qualitative review delves
into the intricacies and unique advantages inherent in the MAGBO algorithm. Further
fortifying our analysis, MAGBO is applied to the practical task of solar photovoltaic model
parameter identification, the results of which are scrutinized through statistical outputs
and convergence curve presentations. In the subsequent Section 6, we transition to an
introspective reflection on potential challenges and limitations faced during our research,
ensuring that the reader is provided a balanced and holistic view of our work, while also
hinting at avenues for future improvements.

All of the evaluations for this investigation were carried out on a personal computer
operating under the Windows operating system and including a 2.50 GHz Intel Core
i5-7300U processor along with 8 gigabytes of random-access memory (RAM). Python
was utilized in the implementation of both MAGBO and its rivals.

MAGBO’s efficiency was evaluated concerning shifted, rotated, and biased functions
using the IEEE CEC 2021 test suite in 20 dimensions. This was done so that MAGBO’s
performance could be thoroughly investigated by comparing it experimentally to that of
rival algorithms. Additional details on the IEEE CEC 2021 test suite may be found in [76].

The experimental data used for the statistical analysis were obtained by carrying
out 30 sets of replicated runs, each consisting of 2500 iterations. The MAGBO algorithm
will terminate once the maximum number of iterations has been completed. We evalu-
ate the algorithm’s performance by comparing the average solution (Avg), the median
solution (Med), and the standard deviation. All of this is done without compromising
generality (std).

In order to investigate the results of both the MAGBO and the competitors, a pair of
non-parametric statistical hypothesis tests called the Friedman test and the Wilcoxon signed-
rank test are utilized. The Wilcoxon signed-rank test is used to compare the performance of
MAGBO and its competitors across several different metrics, such as how effectively they
handle specific tasks, to draw conclusions about which of the two is the superior option. In
addition, the Friedman test’s final rankings for algorithms on all functions can be used to
examine the substantial differences in overall performance between different algorithms.

The effectiveness of the MAGBO is analyzed and compared to that of eight other algo-
rithms throughout the course of this research project. These techniques include GBO [17],
EGBO [77], SMA [78], PSO [79], EO [80], SADE [81], CL-PSO [82], and HPSO_TVAC [83].
In this section, we have decided to adhere to the suggestions made by the authors of those
other publications concerning the important aspects of competition, and we have outlined
them in Table 3.

Table 3. Parameter settings for the competitors.

Algorithm Parameter Setting

GBO eps = 0.005 × 10−3 × random();

EGBO LC = 0.7, eps = 5 × 10−20 × random()

SMA z = 0.03

PSO Vmax = 6, wMax = 0.9, wMin = 0.2, c1 = c2 = 2

EO V = 1, a1 = 2, a2 = 1, GP = 0.5

SADE probability = 50, cr = 5m, crm = 0.5, p1 = 0.5
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Table 3. Cont.

Algorithm Parameter Setting

JADE miu_f = 0.5, miu_cr = 0.5, p = 0.1, c = 0.1

CL-PSO c_local = 1.2, w_min = 0.4, w_max = 0.9, max_flag = 7

HPSO_TVAC Ci = 0.5, cf = 0.0

MFO T = [−1, 1], b = 1

LNMHGS VC2 = 0.03, NP = 50

SSA c1 = [2/e, 2]

MAGBO eps = 0.005 × 10−3 × random();

5.1. Comparison of MAGBO with State-of-the-Art Competitors Using the IEEE CEC 2021 Test Suite

MAGBO was thoroughly evaluated using the IEEE CEC 2021 test suite, and its results
were compared to those of eight other algorithms. The results, shown in Table 4, indicate
that MAGBO performed well in terms of average values for most of the test functions,
except for f5, f7, and f10. In terms of standard deviation, MAGBO performed significantly
better than the other algorithms in almost all cases. These results suggest that MAGBO is
a stable, robust, and scalable optimization algorithm that performs well compared to the
other algorithms included in the comparison.

The results of the Wilcoxon signed-rank test, which was conducted with a significance
level of 0.05, are summarized in Table 5. These results show that MAGBO outperformed
several other algorithms, including HPSO_TVAC, CL-PSO, and PSO, in all CEC 2021 test
functions. In addition, MAGBO outperformed EGBO, GBO, SMA, and EO on nine functions
and SADE on seven functions. These results suggest that MAGBO is a strong performer
among the algorithms included in the comparison.

According to Table 4, the convergence rate of the algorithm is improved by using
a GBO with a crossover mechanism, the NRO local search technique, and a modified
gradient search rule based on the quasi-Newton. Together, the presented methods enable
the MAGBO algorithm to generate novel solutions by fusing the properties of two or more
existing solutions. This increases the likelihood of finding superior solutions by introducing
variety into the solution pool. Keeping the algorithm from settling on a locally optimal
solution also facilitates exploration and exploitation. Crossover also makes it easier to
probe a wider region of the search space. This is of utmost significance in optimization
problems involving complicated and rough landscapes, in which the global optimum may
be hidden in a previously undiscovered region. Additionally, the MAGBO algorithm seeks
to find a middle ground between exploitation (enhancing the best-known solutions) and
exploration (looking for new and perhaps superior answers). While some operators, such
as mutation, aid in exploitation, the suggested NRO aids exploration by producing more
candidate solutions. In addition, the MAGBO algorithm’s convergence can be hastened
with the help of a modified gradient search rule based on the quasi-Newton, which may
ultimately lead to the generation of superior solutions.

The Wilcoxon signed-rank test showed that MAGBO is a highly reliable optimization
technique compared to eight other algorithms. Figure 6 illustrates the convergence behav-
iors of MAGBO and its competitors on the CEC 2021 test functions. It can be observed
that MAGBO significantly outperforms the other algorithms in both initial and final itera-
tions, indicating that it has strong exploration (using swarm intelligence) and exploitation
(using quadratic functions) capabilities. In addition, as shown in Figure 6, MAGBO can
find the global optimal solution and avoid getting stuck in local optima thanks to its new
local search feature. This feature allows the algorithm to explore the solution space more
thoroughly and find the best possible solution.
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Table 4. Comparison of MAGBO with basics and advanced algorithms.

Algorithm Criteria F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Friedman Avg/Rank

GBO
Avg 9.217×102 1.122× 103 1.183× 105 1.907× 103 1.946× 104 2.115× 103 7.997×103 2.332× 103 2.642× 103 3.216× 103

4.
44

4.
00

0

Std 1.415× 103 6.650× 10 6.442× 105 0.366× 10 1.119× 104 5.474× 102 5.292× 103 0.809× 10 1.117× 102 6.647× 10
Med 4.134× 102 1.101× 103 7.000× 102 1.906× 103 1.944× 104 2.013× 103 7.122× 103 2.334× 103 2.600× 103 3.213× 103

EGBO
Avg 1.499× 102 1.398× 109 1.183× 105 1.908× 103 1.280×104 3.107× 103 4.270× 104 2.337× 103 2.622× 103 3.208× 103

4.
02

3.
00

0

Std 2.704× 102 7.657× 109 6.442× 105 5.142 × 100 1.259× 104 3.569× 103 9.986× 104 0.4241× 10 8.419× 10 8.238× 10
Med 1.000× 102 1.100× 103 7.000× 102 1.907× 103 7.881× 103 2.341× 103 8.697× 103 2.336× 103 2.600× 103 3.183× 103

SMA
Avg 7.679× 103 9.045× 105 9.370× 103 1.904× 103 1.073× 105 2.309× 103 5.924× 104 2.333× 103 2.614× 103 3.160× 103

5.
71

6.
00

0

Std 3.384× 103 7.804× 105 1.662× 104 0.1525× 10 4.806× 103 8.531× 102 2.737× 104 0.6499× 10 4.880× 10 4.418× 10
Med 8.933× 103 6.705× 105 1.305× 103 1.903× 103 1.053× 105 2.006× 103 5.601× 104 2.300× 103 2.601× 103 3.149× 103

PSO
Avg 2.137× 103 2.590× 105 2.991× 104 1.905× 103 5.173× 104 1.788× 103 1.203× 104 2.362× 103 2.715× 103 3.278× 103

4.
84

5.
00

0

Std 2.187× 103 3.880× 105 1.418× 105 0.1161× 10 2.961× 104 2.248× 102 6.035× 103 5.505× 10 3.634× 102 1.597× 102

Med 1.453× 103 1.351× 105 7.000× 102 1.903× 103 4.306× 104 1.677× 103 1.063× 104 2.342× 103 2.600× 103 3.232× 103

EO
Avg 4.280× 107 6.700× 109 1.897× 109 1.907× 103 8.561× 104 6.070× 103 2.166× 105 2.320× 103 3.014× 103 3.035×103

6.
52

8.
00Std 1.346× 108 1.369× 1010 2.781× 109 1.179× 10 4.972× 104 2.584× 103 6.129× 105 1.135× 10 5.436× 102 7.140× 10

Med 4.233× 103 2.509× 106 5.883× 107 1.903× 103 6.680× 104 5.359× 103 6.654× 104 2.324× 103 2.738× 103 3.017× 103

SADE
Avg 1.000× 102 1.100× 103 7.000× 102 1.905× 103 5.156× 104 1.672× 103 2.068× 104 2.318× 103 2.615× 103 3.164× 103

3.
45

2.
00

0

Std 0.000 0.000 0.000 7.25× 10−1 2.661× 104 1.763× 102 1.239× 104 1.442× 10 3.009× 10 4.642× 10
Med 1.000× 102 1.100× 103 7.000× 102 1.905× 103 4.570× 104 1.604× 103 1.719× 104 2.328× 103 2.600× 103 3.158× 103

CL-PSO
Avg 6.292× 106 1.753× 108 1.913× 103 5.718× 104 2.920× 103 2.040× 108 2.328× 103 2.739× 103 3.423× 103

6.
70

9.
00

0

Std 2.358× 107 5.861× 108 3.641× 108 3.100× 10 2.007× 104 1.306× 103 7.703× 105 0.2165× 10 3.289× 102 9.664 × 101

Med 7.389× 104 9.251× 105 7.717× 106 1.906× 103 5.562× 104 2.649× 103 1.648× 104 2.328× 103 2.602× 103 3.443× 103

HPSO_TVAC
Avg 1.754× 104 1.575× 108 1.554× 103 1.926× 103 5.280× 104 2.163× 103 1.678× 104 2.339× 103 2.647× 103 3.298× 103

6.
03

7.
00

0

Std 6.309× 104 8.617× 108 3.196× 103 1.612× 10 2.411× 104 7.765× 102 8.566× 103 0.8417× 10 1.382× 102 1.214× 102

Med 2.327× 103 1.646× 104 7.000× 102 1.922× 103 4.808× 104 2.000× 103 1.326× 104 2.338× 103 2.600× 103 3.281× 103

MAGBO
Avg 1.000×102 1.100×103 7.000×102 1.905×103 2.000× 104 1.659×103 8.714× 103 2.300×103 2.614×103 3.237× 103

Std 0.000 0.000 0.000 0.2648× 10 1.103× 104 1.329× 102 5.893× 103 1.059× 10 4.880× 10 7.765× 10
Med 1.000× 102 1.100× 103 7.000× 102 1.904× 103 2.080× 104 1.606× 103 7.324× 103 2.329× 103 2.601× 103 3.222× 103 2.

96

1.
00

0
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Table 5. Wilcoxon rank-sum of the MAGBO vs. basic and advanced recent algorithms on CEC2021.

Algorithms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

MAGBO vs. GBO <0.050 <0.050 <0.050 <0.050 0.222171 <0.050 0.680259 <0.050 <0.050 0.266174
MAGBO vs. EGBO <0.050 <0.050 0.993796 <0.050 <0.050 <0.050 0.379592 <0.050 <0.050 0.070029
MAGBO vs. SMA <0.050 <0.050 <0.050 0.137504 <0.050 <0.050 <0.050 <0.050 1 <0.05
MAGBO vs. PSO <0.050 <0.050 0.80952 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 0.498735
MAGBO vs. EO <0.050 <0.050 <0.050 0.479204 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050
MAGBO vs. SADE 1 1 1 0.331072 <0.050 <0.050 <0.050 0.063115 <0.050 <0.050
MAGBO vs. CL-PSO <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 0.379592 0.114461 <0.050
MAGBO vs. HPSO_TVAC <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050
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According to Table 4, the convergence rate of the algorithm is improved by using a 
GBO with a crossover mechanism, the NRO local search technique, and a modified gradi-
ent search rule based on the quasi-Newton. Together, the presented methods enable the 
MAGBO algorithm to generate novel solutions by fusing the properties of two or more 
existing solutions. This increases the likelihood of finding superior solutions by introduc-
ing variety into the solution pool. Keeping the algorithm from settling on a locally optimal 
solution also facilitates exploration and exploitation. Crossover also makes it easier to 
probe a wider region of the search space. This is of utmost significance in optimization 
problems involving complicated and rough landscapes, in which the global optimum may 
be hidden in a previously undiscovered region. Additionally, the MAGBO algorithm seeks 
to find a middle ground between exploitation (enhancing the best-known solutions) and 
exploration (looking for new and perhaps superior answers). While some operators, such 
as mutation, aid in exploitation, the suggested NRO aids exploration by producing more 
candidate solutions. In addition, the MAGBO algorithm’s convergence can be hastened 
with the help of a modified gradient search rule based on the quasi-Newton, which may 
ultimately lead to the generation of superior solutions. 

The Wilcoxon signed-rank test showed that MAGBO is a highly reliable optimization 
technique compared to eight other algorithms. Figure 6 illustrates the convergence behav-
iors of MAGBO and its competitors on the CEC 2021 test functions. It can be observed that 
MAGBO significantly outperforms the other algorithms in both initial and final iterations, 
indicating that it has strong exploration (using swarm intelligence) and exploitation (us-
ing quadratic functions) capabilities. In addition, as shown in Figure 6, MAGBO can find 
the global optimal solution and avoid getting stuck in local optima thanks to its new local 
search feature. This feature allows the algorithm to explore the solution space more thor-
oughly and find the best possible solution. 
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5.2. Qualitative Analysis of MAGBO

The researchers in this article combined a multi-strategy—the modified gradient search
rule (MGSR) derived from the quasi-Newton method to improve its local and global capabil-
ities, a new refresh operator (NRO) to enhance solution quality and algorithm exploration
abilities, and a crossover mechanism to balance exploitation and boost the population’s
variety—to create a novel approach (MAGBO) that overcomes the shortcomings of the
standard GBO.

MAGBO is a new method for dealing with GBO-related problems such as uneven
exploration and exploitation, premature convergence, and population heterogeneity. Func-
tions 1, 2, 3, 8, and 9 are chosen as exemplary examples from the CEC 2021 set for this study.
These procedures were picked because they effectively demonstrate both unimodal and
multimodal features.

As part of a qualitative study of the system’s performance, Figure 7 gives an in-
depth look at how MAGBO acts when looking for solutions in unimodal and multimodal
functions. The graph makes it easy to see where MAGBO stands and how fit it is at any
given time during the search. This shows the average global fitness level of MAGBO over
the exploration and exploitation phases. MAGBO’s location in the first dimension is also
shown on the graph, along with its evolution through time. The variations in MAGBO’s
global best fitness (mean) throughout the iterations show how its normal fitness level varies.
This visual depiction accurately depicts the research and development stages of MAGBO
throughout the entire refinement process.
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Figure 7. (a) MAGBO qualitative analysis (Cec2021_functions). (b) MAGBO qualitative analysis
(first-dimensional trajectory). (c) MAGBO qualitative analysis (phase of exploration and exploitation).
(d) MAGBO qualitative analysis (global best fitness—average). (e) MAGBO qualitative analysis
(diversity analysis—average).
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MAGBO’s primary purpose of exploration is best illustrated by the fact that its first-
dimensional trajectory can represent multiple regions of the search space. The MAGBO
particle can quickly and correctly find the optimal solution thanks to its rapid oscillation
during the prophase and moderate oscillation during the anaphase. Figure 7b shows that
MAGBO’s location curve has a fairly large amplitude early on, which could cover as much
as half of the exploration zone. The position amplitude of a MAGBO particle diminishes
with time if the function is smooth. However, the position amplitude also shows substantial
changes when the function amplitudes are in flux. This exemplifies the flexibility and
dependability of MAGBO in many contexts. Depending on the point of view, the changes
in amplitude can seem either spectacular or subtle. MAGBO’s substantial early fluctuations
attest to the strength of its search skills, while the subtle alterations later on attest to the
persistence with which it seeks to locate the ideal solution.

Figure 7c is a graphical representation of MAGBO’s discovery and development
processes. The graph has two curves, one blue for the exploration phase and one orange
for the exploitation phase of the method. Due to a smaller percentage of exploration
relative to exploitation, the initial MAGBO displays a larger exploration ratio, as illus-
trated in Figure 7c. However, as the iteration count rises, the algorithm begins to shift its
attention from exploration to exploitation for the vast majority of the chosen functions.
This continuous pattern guarantees that MAGBO always keeps the right balance between
exploration and exploitation.

Figure 7d, which depicts an average global fitness curve, shows that MAGBO’s fitness
varies when using the iterative method. The curve has a lot of wiggle room, as can be seen
by looking at it closely. The average fitness value drops monotonically with increasing
iterations, as does the frequency of oscillation. This indicates that MAGBO searches
exhaustively during the anaphase and quickly converges on a solid solution.

The outcomes of diversity analysis on the CEC2021 dataset using the MAGBO algo-
rithm are presented in Figure 7e. The depicted graph illustrates the relationship between the
number of iterations and the diversity measure, with the horizontal axis representing the
former and the vertical axis representing the latter. The process commences by initializing
the population with a random generation, leading to increased levels of diversity during
the initial phases. As the iterations go, diversity gradually decreases. It is important to
acknowledge that the CEC2021 dataset has a wide range of functions, including unimodal,
multimodal, hybrid, and composition functions.

The visual representation presented in Figure 7e clearly demonstrates that MAGBO
regularly displays a more pronounced decrease in average diversity across different func-
tions. The aforementioned finding indicates the overall accelerated convergence rate of the
MAGBO algorithm. Moreover, the findings highlight the general dominance of MAGBO
in terms of its performance, making it a viable option for a diverse range of purposes.
The primary cause of this phenomenon can be traced to the integration of a “Crossover
mechanism” as outlined in Equation (54) within the MAGBO algorithm.

The inclusion of this mechanism in the MAGBO algorithm grants it the capacity to
produce innovative solutions through the amalgamation of attributes derived from two or
more parent solutions. As a result, the introduction of variation within the population of
solutions serves to prevent early convergence and increases the likelihood of finding supe-
rior solutions. Furthermore, the integration of crossover facilitates a thorough investigation
of the solution space. This characteristic is of great importance in optimization issues that
are characterized by complex and uneven terrains, where the global optimum solution may
be located in a distant and unexplored area.

However, it is crucial to emphasize that the effectiveness of crossover depends on the
particular problem being addressed and the design of the crossover operator. In specific
cases, the use of unsuitable crossover operators or parameter settings can hinder the
effectiveness of bio-inspired algorithms. Therefore, it is crucial to carefully design and
refine every aspect of the algorithm, such as the crossover mechanism, to correspond with
the unique characteristics of the optimization problem being addressed.
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5.3. The Suggested Approach for Identification of Solar Photovoltaic Model Parameters

In this study, MAGBO is applied to three different models to show its efficiency: the
single, double, and PV models. The benchmark data used in this study from [84] were
collected from 36 polycrystalline PV cells and a monocrystalline STM6-40/36 module, both
under conditions of 1000 W/m2 irradiation and at different temperatures. These data
have been widely used to evaluate different methods for estimating PV model parameters.
In previous research, the parameter ranges for PV cells and modules have been kept
constant across all studies to ensure a consistent search space. As shown in Table 6, the
parameter ranges for PV cells and modules are provided. Eight algorithms were selected for
comparison; the population size N is 30, the maximum frequency is 600 (18,000 maximum
evaluation), and the number of independent runs is 30.

Table 6. The parameter search ranges.

Parameter
Single/Double Diode PV Module STM6-40/36Module

Lower Upper Lower Upper Lower Upper

Iph(A) 0 1 0 2 0 2
Isd, Isd1, Isd2(µA) 0 1 0 50 0 50

Rs(Ω) 0 0.5 0 2 0 0.36
Rsh(Ω) 0 100 0 2000 0 1000
n, n1, n2 1 2 1 50 1 60

5.3.1. The Single-Diode Model

The single-diode module’s current-voltage (I-V) and voltage-current (P-V) curves
are displayed. Figure 8 illustrates the MAGBO mistake that was present on the diode.
As shown in Table 7, MAGBO achieved the best results compared to other algorithms;
therefore, it is reasonable to conclude that MAGBO possesses the potential to be an effective
instrument for the identification of SDM. In addition, Figure 9 illustrates the absolute and
relative differences in current value that are shown by making a comparison between the
data that were simulated and the data that were observed.
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Figure 8. Experimental and simulated current-voltage I−V (a) and power-voltage (P−V) characteris-
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Figure 8. Experimental and simulated current-voltage I–V (a) and power-voltage (P–V) characteristics
(b) for a single diode by MAGBO.

The values of five parameters and the RME are presented in Table 8, demonstrating
that the suggested method generates superior results compared to other algorithms already
in use. The findings above suggest that the proposed method could be utilized as an
efficient approach to the localization of single-diode models (SDM).
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Table 7. Absolute MAGBO error (IAE) on the single-diode SDM.

Item
Measured Data Simulated Current Data Simulated Power Data

V(V) I(A) Isim(A) IAEI(A) Psim(W) IAEP(W)

1 −0.2057 0.7640 0.7640877040 0.0000877040 −0.1571728407 0.0000180407
2 −0.1291 0.7620 0.7626630860 0.0006630860 −0.0984598044 0.0000856044
3 −0.0588 0.7605 0.7613553070 0.0008553070 −0.0447676921 0.0000502921
4 0.0057 0.7605 0.7601539910 0.0003460090 0.0043328777 0.0000019723
5 0.0646 0.7600 0.7590552080 0.0009447920 0.0490349664 0.0000610336
6 0.1185 0.7590 0.7580423450 0.0009576550 0.0898280179 0.0001134821
7 0.1678 0.7570 0.7570916530 0.0000916530 0.1270399794 0.0000153794
8 0.2132 0.7570 0.7561413640 0.0008586360 0.1612093388 0.0001830612
9 0.2545 0.7555 0.7550868720 0.0004131280 0.1921696089 0.0001051411

10 0.2924 0.7540 0.7536638780 0.0003361220 0.2203713179 0.0000982821
11 0.3269 0.7505 0.7513909660 0.0008909660 0.2456297068 0.0002912568
12 0.3585 0.7465 0.7473538510 0.0008538510 0.2679263556 0.0003061056
13 0.3873 0.7385 0.7401172220 0.0016172220 0.2866474001 0.0006263501
14 0.4137 0.7280 0.7273822250 0.0006177750 0.3009180265 0.0002555735
15 0.4373 0.7065 0.7069726520 0.0004726520 0.3091591407 0.0002066907
16 0.4590 0.6755 0.6752801530 0.0002198470 0.3099535902 0.0001009098
17 0.4784 0.6320 0.6307582750 0.0012417250 0.3017547588 0.0005940412
18 0.4960 0.5730 0.5719283620 0.0010716380 0.2836764676 0.0005315324
19 0.5119 0.4990 0.4996070240 0.0006070240 0.2557488356 0.0003107356
20 0.5265 0.4130 0.4136487990 0.0006487990 0.2177860927 0.0003415927
21 0.5398 0.3165 0.3175101190 0.0010101190 0.1713919622 0.0005452622
22 0.5521 0.2120 0.2121549510 0.0001549510 0.1171307484 0.0000855484
23 0.5633 0.1035 0.1022513260 0.0012486740 0.0575981719 0.0007033781
24 0.5736 −0.0100 −0.0087175240 0.0012824760 −0.0050003718 0.0007356282
25 0.5833 −0.1230 −0.1255073910 0.0025073910 −0.0732084612 0.0014625612
26 0.5900 −0.2100 −0.2084723020 0.0015276980 −0.1229986582 0.0009013418
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3 −0.0588 0.7605 0.7613553070 0.0008553070 −0.0447676921 0.0000502921 
4 0.0057 0.7605 0.7601539910 0.0003460090 0.0043328777 0.0000019723 
5 0.0646 0.7600 0.7590552080 0.0009447920 0.0490349664 0.0000610336 
6 0.1185 0.7590 0.7580423450 0.0009576550 0.0898280179 0.0001134821 
7 0.1678 0.7570 0.7570916530 0.0000916530 0.1270399794 0.0000153794 
8 0.2132 0.7570 0.7561413640 0.0008586360 0.1612093388 0.0001830612 
9 0.2545 0.7555 0.7550868720 0.0004131280 0.1921696089 0.0001051411 

10 0.2924 0.7540 0.7536638780 0.0003361220 0.2203713179 0.0000982821 
11 0.3269 0.7505 0.7513909660 0.0008909660 0.2456297068 0.0002912568 
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16 0.4590 0.6755 0.6752801530 0.0002198470 0.3099535902 0.0001009098 
17 0.4784 0.6320 0.6307582750 0.0012417250 0.3017547588 0.0005940412 
18 0.4960 0.5730 0.5719283620 0.0010716380 0.2836764676 0.0005315324 
19 0.5119 0.4990 0.4996070240 0.0006070240 0.2557488356 0.0003107356 
20 0.5265 0.4130 0.4136487990 0.0006487990 0.2177860927 0.0003415927 
21 0.5398 0.3165 0.3175101190 0.0010101190 0.1713919622 0.0005452622 
22 0.5521 0.2120 0.2121549510 0.0001549510 0.1171307484 0.0000855484 
23 0.5633 0.1035 0.1022513260 0.0012486740 0.0575981719 0.0007033781 
24 0.5736 −0.0100 −0.0087175240 0.0012824760 −0.0050003718 0.0007356282 
25 0.5833 −0.1230 −0.1255073910 0.0025073910 −0.0732084612 0.0014625612 
26 0.5900 −0.2100 −0.2084723020 0.0015276980 −0.1229986582 0.0009013418 
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that the suggested method generates superior results compared to other algorithms al-
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Table 8. A comparison of various algorithms applied to the model of a single-diode SDM.

Algorithm Iph(A) Isd(µA) Rs(Ω) Rsh(Ω) n RMSE

MAGBO 7.60775530×10−7 3.23020770×10−7 3.63770933×10−2 5.37185214×10 0.148118358×10 9.860218779287832×10−4

PSO 7.60830725× 10−1 2.97833118× 10−7 3.67049082× 10−2 5.15209651× 10 0.147305453× 10 9.981852770215333× 10−4

PGJAYA 7.60777374× 10−1 3.22628317× 10−7 3.63818340× 10−2 5.36737322× 10 0.148106137× 10 9.860248538038482× 10−4

IJAYA 7.60656504× 10−1 3.29562058× 10−7 3.62293998× 10−2 5.37054978× 10 0.148323279× 10 9.963586798743776× 10−4

MLBSA 7.60774976× 10−1 3.23425701× 10−7 3.63719322× 10−2 5.37466051× 10 0.148130985× 10 9.860248926943814× 10−4

CL-PSO 7.60360878× 10−1 5.44600932× 10−7 3.48181218× 10−2 9.60050380× 10 0.153544041× 10 1.6631313822752311× 10−3

HPSO_TVA 7.60711254× 10−1 3.48500520× 10−7 3.60688873× 10−2 5.60201199× 10 0.148886781× 10 9.967934554405249× 10−4

PSO_W 7.60768649× 10−1 3.24287287× 10−7 3.63625558× 10−2 5.38923057× 10 0.148157655× 10 9.860565785062050× 10−4

GBO 7.60776465× 10−1 3.22245709× 10−7 3.63871340× 10−2 5.36607682× 10 0.148094154× 10 9.860328319688564× 10−4
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5.3.2. Double-Diode Module Results (DDM)

Figure 10 compares the actual observed data and the estimated model properties
that MAGBO provided. Figure 11 presents a graphical representation of a double-diode
module’s RE and IAE values. The simulated current-voltage (I-V) and power-voltage
(P-V) characteristic curves are an excellent match for the experimental data collected. The
simulation results are presented in Table 9, which includes the current, power, IAE, and
RE numbers. The results presented in Table 9 demonstrate that MAGBO’s double-diode
module successfully reproduces the primary properties of solar cells. Table 10 presents
the results of comparisons between the performance of MAGBO and that of alternative
algorithms. Table 10 presents the RMSE comparison findings and the values of the seven
extracted parameters taken out of the model. Compared to the other seven methods, the
Root Mean Square Error (RMSE) for the suggested MAGBO is as low as possible. Table 10
presents the results of comparisons between the performance of MAGBO and that of
alternative algorithms. Table 10 presents the RMSE comparison findings and the values of
the seven extracted parameters taken out of the model. When contrasted with the other
seven approaches, the RMSE for the proposed MAGBO is the lowest it can be.
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Table 9. Absolute MAGBO error (IAE) on the double-diode DDM.

Item
Measured Data Simulated Current Data Simulated Power Data

V(V) I(A) Isim(A) IAEI(A) Psim(W) IAEP(W)

1 −0.2057 0.7640 0.7639834360 0.0000165640 −0.1571513928 0.0000034072
2 −0.1291 0.7620 0.7626041160 0.0006041160 −0.0984521914 0.0000779914
3 −0.0588 0.7605 0.7613377140 0.0008377140 −0.0447666576 0.0000492576
4 0.0057 0.7605 0.7601738000 0.0003262000 0.0043329907 0.0000018593
5 0.0646 0.7600 0.7591076900 0.0008923100 0.0490383568 0.0000576432
6 0.1185 0.7590 0.7581214260 0.0008785740 0.0898373890 0.0001041110
7 0.1678 0.7570 0.7571886170 0.0001886170 0.1270562499 0.0000316499
8 0.2132 0.7570 0.7562436060 0.0007563940 0.1612311368 0.0001612632
9 0.2545 0.7555 0.7551772970 0.0003227030 0.1921926221 0.0000821279

10 0.2924 0.7540 0.7537223450 0.0002776550 0.2203884137 0.0000811863
11 0.3269 0.7505 0.7513991210 0.0008991210 0.2456323727 0.0002939227
12 0.3585 0.7465 0.7473014250 0.0008014250 0.2679075609 0.0002873109
13 0.3873 0.7385 0.7400106390 0.0015106390 0.2866061205 0.0005850705
14 0.4137 0.7280 0.7272469310 0.0007530690 0.3008620554 0.0003115446
15 0.4373 0.7065 0.7068502790 0.0003502790 0.3091056270 0.0001531770
16 0.4590 0.6755 0.6752105300 0.0002894700 0.3099216333 0.0001328667
17 0.4784 0.6320 0.6307607540 0.0012392460 0.3017559447 0.0005928553
18 0.4960 0.5730 0.5719947380 0.0010052620 0.2837093900 0.0004986100
19 0.5119 0.4990 0.4997061470 0.0007061470 0.2557995766 0.0003614766
20 0.5265 0.4130 0.4137336890 0.0007336890 0.2178307873 0.0003862873
21 0.5398 0.3165 0.3175462240 0.0010462240 0.1714114517 0.0005647517
22 0.5521 0.2120 0.2121230160 0.0001230160 0.1171131171 0.0000679171
23 0.5633 0.1035 0.1021632990 0.0013367010 0.0575485863 0.0007529637
24 0.5736 −0.0100 −0.0087917210 0.0012082790 −0.0050429312 0.0006930688
25 0.5833 −0.1230 −0.1255433950 0.0025433950 −0.0732294623 0.0014835623
26 0.5900 −0.2100 −0.2083715350 0.0016284650 −0.1229392057 0.0009607943

5.3.3. PV Module (PV)

Figure 12 illustrates the high degree of consistency between the simulated and collected
data, with I-V and P-V curves that are realistic approximations of the properties of the
Photowatt-PWP 201 module model. Figure 13 displays the experimentally gathered and
computer-generated representations of observed currents for the IAE and RE of the PV
module model. Table 11 presents the findings of this experiment, including the current,
power, IAR, and RE values, which support the idea that the values proposed by MAGBO
for the model parameters of the PV modules are reliable. Table 12 lists the best RMSE score
and the five extracted parameter values from each of the seven techniques’ total of 30 tests.
In conclusion, the proposed MAGBO performs better than other methods in forecasting the
parameters of PV module models compared to other methods.

5.3.4. Statistical Results and Convergence Curves

Table 13 provides a summary of the statistical information on competing algorithms.
(after carrying out 30 separate runs, each of which consisted of 600 iterations) The statistical
data are presented in Table 13 as best, worst, Avg, std, and Rank values. By examining these
numbers, we can deduce that MAGBO achieves the best results within 30 independent
trials with a Rank (Friedman test) of 1. On a single-diode module, a double-diode module,
and a PV module, MAGBO performs at a generally competitive level with the most recent
robust algorithm. Figure 14 displays the convergence curves of the MAGBO method and
those of its competitors.
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Table 10. A comparison of various algorithms applied to the model of a double-diode DDM.

Algorithm Iph(A) Isd1(µA) Isd2(µA) Rs(Ω) Rsh(Ω) n1 n2 RMSE

MAGBO 7.60781094 × 10−1 2.25969455 × 10−7 3.67404535×10−2 5.54852834×10 0.145101498×10 7.49386194×10−7 0.200000000×10 9.82484851996943×10−4

PSO 7.60818668× 10−1 1.92236886× 10−7 3.70214586× 10−2 5.49831144× 10 0.143704875× 10 9.69884458× 10−7 0.199958878× 10 9.860071193600016× 10−4

PGJAYA 7.60751928× 10−1 2.91525289× 10−7 3.65535114× 10−2 5.51135412× 10 0.176996546× 10 2.27698207× 10−7 0.145498866× 10 9.852611722895091× 10−4

IJAYA 7.60787349× 10−1 1.66868484× 10−7 3.65910355× 10−2 5.36663167× 10 0.170854351× 10 2.41944586× 10−7 0.145998738× 10 9.860914205884810× 10−4

MLBSA 7.60780345× 10−1 2.86499791× 10−7 3.64993221× 10−2 5.42564433× 10 0.147096561× 10 2.63125416× 10−7 0.199999784× 10 9.840561693493248× 10−4

CL-PSO 7.62937590× 10−1 1.80424338× 10−7 3.55917202× 10−2 4.77950471× 10 0.144959311× 10 4.20720089× 10−7 0.167893978× 10 1.6430906963831881× 10−4

HPSO_TVA 7.60769273× 10−1 3.83641383× 10−7 3.56754579× 10−2 5.80624538× 10 0.149871283× 10 0.00000000 0.178885865× 10 1.0402286091084594× 10−4

PSO_W 7.60770205× 10−1 3.23613029× 10−7 3.63706958× 10−2 5.38189735× 10 0.148136716× 10 3.29665828× 10−12 0.186219871× 10 9.860319283422937× 10−4

GBO 7.60777595× 10−1 3.23396195× 10−7 3.63727942× 10−2 5.37457057× 10 0.148129998× 10 1.33799831× 10−12 0.190873826× 10 9.860264229026566× 10−4

Table 11. Absolute MAGBO error (IAE) on the PV module model.

Item
Measured Data Simulated Current Data Simulated Power Data

V(V) I(A) Isim(A) IAEI(A) Psim(W) IAEP(W)

1 0.12480 1.03150 1.0291191620 0.0023808380 0.1284340714 0.0023808380
2 1.80930 1.03000 1.0273810740 0.0026189260 1.8588405772 0.0026189260
3 3.35110 1.02600 1.0257417980 0.0002582020 3.4373633393 0.0002582020
4 4.76220 1.02200 1.0241071560 0.0021071560 4.8770030983 0.0021071560
5 6.05380 1.01800 1.0222918060 0.0042918060 6.1887501352 0.0042918060
6 7.23640 1.01550 1.0199306820 0.0044306820 7.3806263872 0.0044306820
7 8.31890 1.01400 1.0163631070 0.0023631070 8.4550230508 0.0023631070
8 9.30970 1.01000 1.0104961520 0.0004961520 9.4074160263 0.0004961520
9 10.21630 1.00350 1.0006289710 0.0028710290 10.2227257564 0.0028710290

10 11.04490 0.98800 0.9845483790 0.0034516210 10.8742383912 0.0034516210
11 11.80180 0.96300 0.9595216770 0.0034783230 11.3240829276 0.0034783230
12 12.49290 0.92550 0.9228388180 0.0026611820 11.5289330694 0.0026611820
13 13.12310 0.87250 0.8725996630 0.0000996630 11.4512126375 0.0000996630
14 13.69830 0.80750 0.8072742630 0.0002257370 11.0582850369 0.0002257370
15 14.22210 0.72650 0.7283364770 0.0018364770 10.3584742095 0.0018364770
16 14.69950 0.63450 0.6371379980 0.0026379980 9.3656100016 0.0026379980
17 15.13460 0.53450 0.5362130600 0.0017130600 8.1153701779 0.0017130600
18 15.53110 0.42750 0.4295113210 0.0020113210 6.6707832776 0.0020113210
19 15.89290 0.31850 0.3187744780 0.0002744780 5.0662509014 0.0002744780
20 16.22290 0.20850 0.2073895000 0.0011105000 3.3644591196 0.0011105000
21 16.52410 0.10100 0.0961671640 0.0048328360 1.5890758347 0.0048328360
22 16.79870 −0.00800 −0.0083253950 0.0003253950 −0.1398558130 0.0003253950
23 17.04990 −0.11100 −0.1109364920 0.0000635080 −1.8914560950 0.0000635080
24 17.27930 −0.20900 −0.2092472760 0.0002472760 −3.6156464562 0.0002472760
25 17.48850 −0.30300 −0.3008635980 0.0021364020 −5.2616530336 0.0021364020
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Table 12. A comparison of various algorithms applied to a single-diode DDM model.

Algorithm Iph(A) Isd(µA) Rs(Ω) Rsh(Ω) n RMSE

MAGBO 1.03051430 × 10 3.48226289 × 10−6 0.120127101×10 9.81982284×102 4.86428348×10 2.425074868100019×10−3

PSO 0.143559362× 10 0.00000000 0.00000000 1.46242721× 10 0.100000000× 10 2.742507777740578100× 10−1

PGJAYA 0.103079770× 10 3.30962024× 10−6 0.120648712× 10 9.30403403× 102 4.84489889× 10 2.4291524524006703× 10−3

IJAYA 0.103041596× 10 3.50647703× 10−6 0.120112652× 10 1.00002657× 103 4.86687509× 10 2.4256537082842510× 10−3

MLBSA 0.103051756× 10 3.48211561× 10−6 0.120128062× 10 9.81736099× 102 4.86426751× 10 2.4250751724230210× 10−3

CL-PSO 0.102600504× 10 4.74880673× 10−6 0.124732241× 10 7.81089319× 102 4.99392076× 10 1.49624138566545101× 10−2

HPSO_TVA 0.105173347× 10 5.05107355× 10−8 0.153633461× 10 2.05631823× 102 3.64672902× 10 1.11282483130807390× 10−2

PSO_W 0.103032474× 10 3.54993442× 10−6 0.119961187× 10 1.01326705× 102 4.87162092× 10 2.4258587696614703× 10−3

GBO 0.103066014× 10 3.42682201× 10−6 0.120289483× 10 9.60567724× 102 4.85816052× 10 2.4255399509107550× 10−3

Table 13. MAGBO and other competitors for various PV models.

PV Module Algorithm
RMSE

Significant Wilcoxon Test Friedman Test/Rank
Min Max Avg. Std

Single-diode model of
RTC France

MAGBO 9.8602×10−4 9.8602×10−4 9.86022×10−4 8.41862×10−17 1.206897 1
PSO 9.94813× 10−4 3.8151316× 10−2 2.34396× 10−2 5.40938× 10−2 + 8.103448 8

PGJAYA 9.86025× 10−4 1.033627× 10−3 9.94721× 10−4 1.26863× 10−5 + 3.482759 3
IJAYA 9.96359× 10−4 1.482295× 10−3 1.13907× 10−3 1.48842× 10−4 + 5.586207 6

MLBSA 9.86022× 10−4 1.00735× 10−3 9.88786× 10−4 4.85071× 10−6 + 2.241379 2
CL-PSO 1.663131× 10−3 3.606517× 10−3 2.46597× 10−3 5.03603× 10−4 + 8.448276 9

HPSO_TVA 9.96793× 10−4 2.170638× 10−3 1.49135× 10−3 3.40663× 10−4 + 6.448276 7
PSO_W 9.86057× 10−4 3.8151316× 10−2 2.47509× 10−3 6.74863× 10−3 + 5.517241 5

GBO 9.86033× 10−4 3.015336× 10−3 1.11602× 10−3 4.22836× 10−4 + 3.965517 4

Double-diode model of
RTC France

MAGBO 9.8248×10−4 9.9667×10−4 9.84729×10−4 2.94950×10−6 1.655172 1
PSO 9.86007× 10−4 3.8151316× 10−2 1.23483× 10−2 1.56943× 10−2 + 8.241379 9

PGJAYA 9.85261× 10−4 1.368534× 10−3 1.03260× 10−3 8.03099× 10−5 + 3.551724 4
IJAYA 9.86451× 10−4 1.492106× 10−3 1.18338× 10−3 1.73319× 10−4 + 5 5

MLBSA 9.84056× 10−4 1.130151× 10−3 1.00554× 10−3 4.14601× 10−5 + 2.827586 2
CL-PSO 1.643091× 10−3 4.408675× 10−3 2.61184× 10−3 7.56568× 10−4 + 8.137931 8

HPSO_TVA 1.040229× 10−3 2.686124× 10−3 1.76918× 10−3 4.45671× 10−4 + 7.103448 7
PSO_W 9.86032× 10−4 0.03339187 2.38006× 10−3 5.86805× 10−3 + 5.482759 6

GBO 9.82733× 10−4 2.073028× 10−3 1.06864× 10−3 2.28955× 10−4 + 3 3
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Table 13. Cont.

PV Module Algorithm
RMSE

Significant Wilcoxon Test Friedman Test/Rank
Min Max Avg. Std

PV module model of
Photo Watt-PWP 201

MAGBO 2.42507×10−3 2.42507×10−3 2.42507×10−3 6.15834×10−16 1 1
PSO 2.74250778× 10−1 7.83911954× 10−1 3.19336× 10−1 9.37310× 10−2 + 8.017241 9

PGJAYA 2.42507× 10−3 3.17454× 10−3 2.46388× 10−3 1.37087× 10−4 + 2.965517 3
IJAYA 2.425654× 10−3 2.662246× 10−3 2.46927× 10−3 5.20336× 10−5 + 3.758620 4

MLBSA 2.42507× 10−3 2.74250778× 10−1 2.06983× 10−2 6.89281× 10−2 + 2.655172 2
CL-PSO 1.4962413× 10−2 311203745× 10−1 1.18115× 10−1 8.93019× 10−2 + 5.482758 5

HPSO_TVA 1.1128248× 10−2 2.74250778× 10−1 2.32335× 10−1 9.53834× 10−2 + 6.793103 6
PSO_W 2.425859× 10−3 4.42058515× 10−1 2.86844× 10−1 9.92052× 10−2 + 7.482758 8

GBO 2.42554× 10−3 2.74250778× 10−1 2.47187× 10−1 8.2581072× 10−2 + 6.844827 7
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Figure 12. Experimental and simulated current-voltage I-V (a) and power-voltage (P-V) characteristics
(b) for a PV module model by MAGBO.
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5.3.4. Statistical Results and Convergence Curves 

Table 13 provides a summary of the statistical information on competing algorithms. 
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tical data are presented in Table 13 as best, worst, Avg, std, and Rank values. By examining 
these numbers, we can deduce that MAGBO achieves the best results within 30 

Figure 13. Experimental and simulated current data error-index values of a PV module model:
(a) IAE; (b) RE.

5.4. Tests MAGBO on a Wide Selection of Solar Cells and Modules

Data from the PVM 752 GaAs thin-film cell at 25 ◦C and total irradiation (1000 W/m2)
and the STP6-40/36 module are used to prove the validity and reliability of MAGBO,
a method for detecting the properties of both the SDM and DDM of photovoltaic
modules. The simulation parameters were determined using 44 pairs of I-V points
from the PVM 752 cell [85] and data from the STP6-40/36 module, which consisted of
36 series-connected polycrystalline cells and were tested at temperatures of 51 ◦C and
55 ◦C, along with measurements at varying temperatures and irradiance levels. Table 6
details how we used actual data from STM6-40/36 and PVM 752 GaAs thin-film modules
to determine the simulation experiment’s settings. The parameters of the compared
algorithms are listed in Table 3. Each issue runs using the same maximum number of
iterations (600) across all methods.
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CL-PSO 1.663131 × 10ିଷ 3.606517 × 10ିଷ 2.46597 × 10ିଷ 5.03603 × 10ିସ + 8.448276 9 

HPSO_TVA 9.96793 × 10ିସ 2.170638 × 10ିଷ 1.49135 × 10ିଷ 3.40663 × 10ିସ + 6.448276 7 
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GBO 9.86033 × 10ିସ 3.015336 × 10ିଷ 1.11602 × 10ିଷ 4.22836 × 10ିସ + 3.965517 4 
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ode model of 
RTC France 

MAGBO 𝟗. 𝟖𝟐𝟒𝟖 × 𝟏𝟎ି𝟒 𝟗. 𝟗𝟔𝟔𝟕 × 𝟏𝟎ି𝟒 𝟗. 𝟖𝟒𝟕𝟐𝟗 × 𝟏𝟎ି𝟒 𝟐. 𝟗𝟒𝟗𝟓𝟎 × 𝟏𝟎ି𝟔  1.655172 1 
PSO 9.86007 × 10ିସ 3.8151316 × 10ିଶ 1.23483 × 10ିଶ 1.56943 × 10ିଶ + 8.241379 9 
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IJAYA 9.86451 × 10ିସ 1.492106 × 10ିଷ 1.18338 × 10ିଷ 1.73319 × 10ିସ + 5 5 

MLBSA 9.84056 × 10ିସ 1.130151 × 10ିଷ 1.00554 × 10ିଷ 4.14601 × 10ିହ + 2.827586 2 
CL-PSO 1.643091 × 10ିଷ 4.408675 × 10ିଷ 2.61184 × 10ିଷ 7.56568 × 10ିସ + 8.137931 8 

HPSO_TVA 1.040229 × 10ିଷ 2.686124 × 10ିଷ 1.76918 × 10ିଷ 4.45671 × 10ିସ + 7.103448 7 
PSO_W 9.86032 × 10ିସ 0.03339187 2.38006 × 10ିଷ 5.86805 × 10ିଷ + 5.482759 6 

GBO 9.82733 × 10ିସ 2.073028 × 10ିଷ 1.06864 × 10ିଷ 2.28955 × 10ିସ + 3 3 

PV module 
model of 

Photo Watt-
PWP 201 

MAGBO 𝟐. 𝟒𝟐𝟓𝟎𝟕 × 10ିଷ 𝟐. 𝟒𝟐𝟓𝟎𝟕 × 𝟏𝟎ି𝟑 𝟐. 𝟒𝟐𝟓𝟎𝟕 × 𝟏𝟎ି𝟑 𝟔. 𝟏𝟓𝟖𝟑𝟒 × 𝟏𝟎ି𝟏𝟔  1 1 
PSO 2.74250778 × 10ିଵ 7.83911954 × 10ିଵ 3.19336 × 10ିଵ 9.37310 × 10ିଶ + 8.017241 9 

PGJAYA 𝟐. 𝟒𝟐𝟓𝟎𝟕 × 𝟏𝟎ି𝟑 3.17454 × 10ିଷ 2.46388 × 10ିଷ 1.37087 × 10ିସ + 2.965517 3 
IJAYA 2.425654 × 10ିଷ 2.662246 × 10ିଷ 2.46927 × 10ିଷ 5.20336 × 10ିହ + 3.758620 4 

MLBSA 𝟐. 𝟒𝟐𝟓𝟎𝟕 × 10ିଷ 2.74250778 × 10ିଵ 2.06983 × 10ିଶ 6.89281 × 10ିଶ + 2.655172 2 
CL-PSO 1.4962413 × 10ିଶ 311203745 × 10ିଵ 1.18115 × 10ିଵ 8.93019 × 10ିଶ + 5.482758 5 

HPSO_TVA 1.1128248 × 10ିଶ 2.74250778 × 10ିଵ 2.32335 × 10ିଵ 9.53834 × 10ିଶ + 6.793103 6 
PSO_W 2.425859 × 10ିଷ 4.42058515 × 10ିଵ 2.86844 × 10ିଵ 9.92052 × 10ିଶ + 7.482758 8 

GBO 2.42554 × 10ିଷ 2.74250778 × 10ିଵ 2.47187 × 10ିଵ 8.2581072 × 10ିଶ + 6.844827 7 
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Figure 14. MAGBO and other competitors’ convergence curves for three models: (a) Single-diode 
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5.4.1. Results Obtained Using the STM6-40/36 Simulation Model

In order to evaluate how well the proposed method compares to preexisting algo-
rithms, we publish the results from the STM6-40/36 model [86]. Figure 15 shows that the
I-V and P-V curves generated by the simulation and the observations are highly consistent
with one another. This supports the idea that MAGBO’s projections about the STM6-40/36
model’s characteristics are accurate. The STM6-40/36 model’s IAE and RE are also de-
picted in Figure 16. The complete experimental results, including current, power, and
corresponding IAR and RE values, are shown in Table 14. It was found that IAE is less
than 6.08803600 ×10−3, which verifies that MAGBO’s determination of the STM6-40/36
model’s parameters is accurate. Table 15 displays the best RMSE values for each of the
seven approaches and the five most significant extracted parameter values based on a total
of 30 tests. Table 15 provides the RMSE values that are the most accurate, in addition to the
five extracted parameter values that are the most significant, for each of the seven methods
evaluated using a total of 30 tests. Table 15 shows that MAGBO produces the best results
with an RMSE value of 1.72981457 ×10−3, the lowest possible value. Compared to other
methods, the proposed MAGBO method is superior in terms of its performance when
estimating the parameters of the STM6-40/36 model.
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Figure 16. Experimental and simulated current data error-index values of an STM6-40/36 model:
(a) IAE; (b) RE.

5.4.2. Results Obtained Using the PVM 752 GaAs Thin-Film Simulation Model

Using the SDM, we analyzed the suggested MAGBO technique to learn more about
the characteristics of a PVM 752 GaAs thin-film cell. Tables 16 and 17 detail the exper-
iment outcomes, such as the current, power, IAE, and RE measured values. Table 17
displays the simulated current data alongside the IAE and RE error measurements. The
optimization method was found to be more challenging when applied to calculating
the parameters of the PVM 752 thin-film cell than the RTC France solar cell. Table 16
shows that despite this, the MAGBO approach is effective. Table 17 displays the out-
comes of different algorithms’ attempts to estimate the SDM parameters, and it can be
observed that MAGBO fared best, with the lowest RMSE value. Figure 17 shows the IAE
and RE currents, both experimentally and as measured, for the PVM 752 thin-film cell
model. Figure 18 demonstrates that the I-V and P-V curves generated by the simulation
and the measurements are highly consistent with one another, proving that MAGBO’s
predictions for the PVM 752 thin-film model are correct.
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Table 14. Absolute MAGBO error (IAE) on the STM6-40/36 model.

Item
Measured Data Simulated Current Data Simulated Power Data

V(V) I(A) Isim(A) IAEI(A) Psim(W) IAEP(W)

1 0 1.663 1.663458258 0.000458258 0.0000000000 0.0000000000
2 0.118 1.663 1.66325231 0.00025231 0.1962637726 0.0000297726
3 2.237 1.661 1.659550809 0.001449191 3.7124151597 0.0032418403
4 5.434 1.653 1.653914699 0.000914699 8.9873724744 0.0049704744
5 7.26 1.65 1.650565914 0.000565914 11.9831085356 0.0041085356
6 9.68 1.645 1.645430605 0.000430605 15.9277682564 0.0041682564
7 11.59 1.64 1.639233537 0.000766463 18.9987166938 0.0088833062
8 12.6 1.636 1.633712696 0.002287304 20.5847799696 0.0288200304
9 13.37 1.629 1.627285808 0.001714192 21.7568112530 0.0229187470

10 14.09 1.619 1.618313576 0.000686424 22.8020382858 0.0096717142
11 14.88 1.597 1.603090045 0.006090045 23.8539798696 0.0906198696
12 15.59 1.581 1.581588376 0.000588376 24.6569627818 0.0091727818
13 16.4 1.542 1.542330591 0.000330591 25.2942216924 0.0054216924
14 16.71 1.524 1.521192634 0.002807366 25.4191289141 0.0469110859
15 16.98 1.5 1.499194744 0.000805256 25.4563267531 0.0136732469
16 17.13 1.485 1.48527527 0.00027527 25.4427653751 0.0047153751
17 17.32 1.465 1.465654242 0.000654242 25.3851314714 0.0113314714
18 17.91 1.388 1.387589368 0.000410632 24.8517255809 0.0073544191
19 19.08 1.118 1.118391376 0.000391376 21.3389074541 0.0074674541
20 21.02 0 −0.000024814 0.000024814 −0.0005215903 0.0005215903

Table 15. A comparison of a variety of algorithms applied to the model of an STM6-40/36.

Algorithm Iph(A) Isd(µA) Rs(Ω) Rsh(Ω) n RMSE

MAGBO 1.6639078 1.73865682×10−6 1.53855769×10−1 5.73418580×102 5.57630767×10 1.72981457×10−3

SEDE 1.66390478 1.73865696× 10−6 1.53855761× 10−1 5.73418588× 102 5.57630770× 10 1.72981371× 10−3

MLBSA 1.66390478 1.73865694× 10−6 1.53855762× 10−1 5.73418594× 102 5.57630770× 10 1.72981371× 10−3

IJAYA 1.66820359 2.71000974× 10−7 3.53241396× 10−1 3.85497843× 102 4.91485938× 10 4.69534212× 10−3

JADE 1.66390478 1.73870000× 10−6 4.27377120× 10−3 1.59282939× 10 1.52030292 1.72981371× 10−3

PGJAYA 1.66390506 1.73854219× 10−6 1.53863151× 10−1 5.73403658× 102 5.57628110× 10 1.72981372× 10−3

SSA 1.86482388 3.13491034× 10−7 1.35532499× 10−1 3.31630801× 10 5.11425353× 10 1.78578316× 10−1

MFO 1.86239751 0.00000000 0.00000000 3.28634387× 10 2.70424691× 10 3.10757409× 10−1

LNMHGS [87] 1.66345338 2.08416563× 10−6 1.32775299× 10−1 6.08102259× 102 5.65036041× 10 1.78155207× 10−3

HSOA [85] 1.66298248 2.51123031× 10−6 1.10621018× 10−1 6.49583949× 102 5.72859543× 10 1.93518826× 10−3
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Table 16. Absolute MAGBO error (IAE) on the PVM 752 GaAs thin-film model.

Item
Measured Data Simulated Current Data Simulated Power Data

V(V) I(A) Isim(A) IAEI(A) Psim(W) IAEP(W)

1 −0.1659 0.1001 0.103313 0.003213 −0.01661 0.00053298
2 −0.1281 0.1000 0.102935 0.002935 −0.01281 0.00037599
3 −0.0888 0.0999 0.102543 0.002643 −0.00887 0.00023467
4 −0.0490 0.0999 0.102145 0.002245 −0.0049 0.00010999
5 −0.0102 0.0999 0.101757 0.001857 −0.00102 0.00001894
6 0.0275 0.0998 0.10138 0.00158 0.002745 0.00004345
7 0.0695 0.0999 0.10096 0.00106 0.006943 0.00007364
8 0.1061 0.0998 0.100594 0.000794 0.010589 0.00008426
9 0.1460 0.0998 0.100195 0.000395 0.014571 0.00005769

10 0.1828 0.0997 0.099828 0.000128 0.018225 0.00002332
11 0.2230 0.0997 0.099426 0.000274 0.022233 0.00006120
12 0.2600 0.0996 0.099056 0.000544 0.025896 0.00014145
13 0.3001 0.0997 0.098654 0.001046 0.02992 0.00031383
14 0.3406 0.0996 0.098249 0.001351 0.033924 0.00046004
15 0.3789 0.0995 0.097866 0.001634 0.037701 0.00061913
16 0.4168 0.0994 0.097486 0.001914 0.04143 0.00079786
17 0.4583 0.0994 0.097067 0.002333 0.045555 0.00106936
18 0.4949 0.0993 0.096694 0.002606 0.049144 0.00128985
19 0.5370 0.0993 0.096255 0.003045 0.053324 0.00163542
20 0.5753 0.0992 0.095837 0.003363 0.05707 0.00193487
21 0.6123 0.0990 0.095399 0.003601 0.060618 0.00220516
22 0.6546 0.0988 0.094808 0.003992 0.064674 0.00261315
23 0.6918 0.0983 0.094128 0.004172 0.068004 0.00288618
24 0.7318 0.0977 0.093039 0.004661 0.071497 0.00341085
25 0.7702 0.0963 0.091297 0.005003 0.07417 0.00385325
26 0.8053 0.0937 0.088559 0.005141 0.075457 0.00413981
27 0.8329 0.0900 0.08511 0.00489 0.074961 0.00407271
28 0.8550 0.0855 0.081137 0.004363 0.073103 0.00373058
29 0.8738 0.0799 0.076712 0.003188 0.069817 0.00278586
30 0.8887 0.0743 0.072388 0.001912 0.06603 0.00169898
31 0.9016 0.0683 0.068057 0.000243 0.061579 0.00021924
32 0.9141 0.0618 0.063224 0.001424 0.056491 0.00130153
33 0.9248 0.0555 0.058613 0.003113 0.051326 0.00287915
34 0.9344 0.0493 0.054089 0.004789 0.046066 0.00447473
35 0.9445 0.0422 0.048938 0.006738 0.039858 0.00636414
36 0.9533 0.0357 0.044051 0.008351 0.034033 0.00796108
37 0.9618 0.0291 0.038987 0.009887 0.027988 0.00950938
38 0.9702 0.0222 0.033685 0.011485 0.021538 0.01114278
39 0.9778 0.0157 0.028601 0.012901 0.015351 0.01261445
40 0.9852 0.0092 0.023347 0.014147 0.009064 0.01393780
41 0.9926 0.0026 0.017738 0.015138 0.002581 0.01502608
42 0.9999 0.0040 0.005465 0.001465 0.004 0.00146486
43 1.0046 0.0085 0.00681 0.015307 0.008539 0.01537696
44 1.0089 0.0124 0.0193 0.031703 0.01251 0.03198466

Table 17. A comparison of various algorithms applied on the model of a PVM 752 GaAs thin-film.

Algorithm Iph(A) Isd(µA) Rs(Ω) Rsh(Ω) n RMSE

MAGBO 1.021541340×10−1 4.912951570×10−10 5.000000000×10−1 1.000000000×102 2.000000000 7.498895770×10−3

SEDE 1.021541340× 10−1 4.912951570× 10−10 5.000000000× 10−1 1.000000000× 102 2.000000000 7.498895770× 10−3

MLBSA 1.021541340× 10−1 4.912951570× 10−10 5.000000000× 10−1 1.000000000× 102 2.000000000 7.498928370× 10−3

IJAYA 1.021541340× 10−1 4.912951570× 10−10 5.000000000× 10−1 1.000000000× 102 2.000000000 7.498895770× 10−3

JADE 1.021541340× 10−1 4.912951570× 10−10 5.000000000× 10−1 1.000000000× 102 2.000000000 7.498895770× 10−3

PGJAYA 1.021541340× 10−1 4.912951560× 10−10 5.000000000× 10−1 1.000000000× 102 2.000000000 7.498895770× 10−3

SSA 1.025574810× 10−1 3.993709460× 10−10 1.706274330× 10−2 6.503079280× 10 1.972598610 9.017017310× 10−3

MFO 1.021541340× 10−1 4.912951570× 10−10 5.000000000× 10−1 1.000000000× 102 2.000000000 7.498895770× 10−3

LNMHGS [87] 1.021541340× 10−1 4.912951560× 10−10 5.000000000× 10−1 1.000000000× 102 2.000000000 7.498895770× 10−3

HSOA [85] 1.021541340× 10−1 4.912951570× 10−10 5.000000000× 10−1 1.000000000× 102 2.000000000 7.498895770× 10−3
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Figure 18. Experimental and simulated current-voltage I−V (a) and power–voltage (P−V) character-
istics (b) for PVM 752 GaAs thin-film model by MAGBO. 
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MAGBO 𝟏. 𝟎𝟐𝟏𝟓𝟒𝟏𝟑𝟒𝟎 × 10ିଵ 𝟒. 𝟗𝟏𝟐𝟗𝟓𝟏𝟓𝟕𝟎 × 𝟏𝟎ି𝟏𝟎 𝟓. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 × 𝟏𝟎ି𝟏 𝟏. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 × 𝟏𝟎𝟐 𝟐. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 𝟕. 𝟒𝟗𝟖𝟖𝟗𝟓𝟕𝟕𝟎 × 𝟏𝟎ି𝟑 
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PGJAYA 1.021541340 × 10ିଵ 4.912951560 × 10ିଵ 5.000000000 × 10ିଵ 1.000000000 × 10ଶ 2.000000000 7.498895770 × 10ିଷ 
SSA 1.025574810 × 10ିଵ 3.993709460 × 10ିଵ 1.706274330 × 10ିଶ 6.503079280 × 10 1.972598610 9.017017310 × 10ିଷ 
MFO 1.021541340 × 10ିଵ 4.912951570 × 10ିଵ 5.000000000 × 10ିଵ 1.000000000 × 10ଶ 2.000000000 7.498895770 × 10ିଷ 

LNMHGS [87]  1.021541340 × 10ିଵ 4.912951560 × 10ିଵ 5.000000000 × 10ିଵ 1.000000000 × 10ଶ 2.000000000  7.498895770 × 10ିଷ 
HSOA [85] 1.021541340 × 10ିଵ 4.912951570 × 10ିଵ 5.000000000 × 10ିଵ 1.000000000 × 10ଶ 2.000000000 7.498895770 × 10ିଷ 
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Even if it performs better than certain other algorithms already on the market for the 
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and is utilized to optimize the process of extracting parameters from static models of solar 
photovoltaic systems. In addition, the report completely ignores the difficulties associated 
with the dynamic model. Finally, while selecting multi-objective real-world issues, it is a 
good idea to consider a mix of computing time, complexity, stability, and scalability. This 
is because these factors all play a role in the solution. 

  

Figure 18. Experimental and simulated current-voltage I–V (a) and power–voltage (P–V) characteris-
tics (b) for PVM 752 GaAs thin-film model by MAGBO.

6. Problem Limitation

Even if it performs better than certain other algorithms already on the market for the
chosen tests, MAGBO has a few drawbacks. The following are some of our ideas regarding
the primary restrictions imposed by the algorithm: to begin, the research does not address
a large-scale optimization problem that involves more than 500 choice variables related to
scalability. Second, the suggested method can successfully obtain optimal global solutions
and is utilized to optimize the process of extracting parameters from static models of solar
photovoltaic systems. In addition, the report completely ignores the difficulties associated
with the dynamic model. Finally, while selecting multi-objective real-world issues, it is a
good idea to consider a mix of computing time, complexity, stability, and scalability. This is
because these factors all play a role in the solution.



Mathematics 2023, 11, 4200 37 of 40

7. Conclusions and Future Work

Solar energy is one of the most important forms of renewable energy that has the po-
tential to replace fossil fuels. Unlike fossil fuels, solar energy does not release any harmful
gaseous emissions that are a major factor in the degradation of the natural environment
and a consequent risk to the well-being of all forms of life. The vital activity of parameter
extraction is a component of the optimization process for solar power systems. In this
research, optimal solutions can be discovered by utilizing a more recent and improved
algorithm known as MAGBO. The modified gradient search rule (MGSR), which was
derived from the quasi-Newton method to improve its local and global capabilities, a new
refresh operator (NRO), which was designed to improve solution quality and algorithm
exploration abilities, and a crossover mechanism, which was designed to balance exploita-
tion and boost the population’s variety, were all combined by MAGBO to create a novel
approach that overcomes the shortcomings of the standard GBO. A precise evaluation of
MAGBO’s usefulness was made possible thanks to the successful extraction of parameters
from various PV models, such as single and double-diode (DDM), PV modules, as well as
the CEC2021 test suite. The results revealed that the recently developed MAGBO algorithm
performed better than its contemporaries, including the first version of the GBO algorithm.
According to the findings, MAGBO can compete with numerous other algorithms already
in use, establishing it as a viable alternative approach for determining the parameters of
solar models. Further study will present additional strategies to complement the suggested
algorithm to address other energy-related optimization difficulties, particularly the dy-
namic models. This will be done to improve the overall quality of the proposed solution. In
addition, the technique that has been described can be utilized to address large-scale global
optimization issues without compromising diversity. In addition, MAGBO has not been
considered from a medical point of view at any step in this process. As a direct consequence,
the MAGBO that has been proposed will conduct an experiment on this subject.
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