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Abstract: Urban rail transit offers advantages such as high safety, energy efficiency, and environmental
friendliness. With cities rapidly expanding, travelers are increasingly using rail systems, heightening
demands for passenger capacity and efficiency while also pressuring these networks. Passenger
flow forecasting is an essential part of transportation systems. Short-term passenger flow forecasting
for rail transit can estimate future station volumes, providing valuable data to guide operations
management and mitigate congestion. This paper investigates short-term forecasting for Suzhou’s
Shantang Street station. Shantang Street’s high commercial presence and distinct weekday versus
weekend ridership patterns make it an interesting test case, making it a representative subway station.
Wavelet denoising and Long Short Term Memory (LSTM) were combined to predict short-term flows,
comparing the results to those of standalone LSTM, Support Vector Regression (SVR), Artificial
Neural Network (ANN), and Autoregressive Integrated Moving Average Model (ARIMA). This study
illustrates that the algorithms adopted exhibit good performance for passenger prediction. The LSTM
model with wavelet denoising proved most accurate, demonstrating applicability for short-term
rail transit forecasting and practical significance. The research findings can provide fundamental
recommendations for implementing appropriate passenger flow control measures at stations and offer
effective references for predicting passenger flow and mitigating traffic pressure in various cities.
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1. Introduction

The modern development of the city constantly promotes the rapid growth of traffic
demand [1]. Urban rail transit, as an important part of urban public transportation, is
greatly significant for improving urban passenger flow and transportation efficiency, as well
as alleviating traffic congestion. Scientific passenger flow prediction plays an extremely
important role in feasibility studies for urban rail transit, layout planning of urban rail
transit networks, and decision-making around urban rail transit construction scales and
levels. On the one hand, it is conducive to dredging passengers, rationally arranging
the flow lines of passengers in the station, and improving the quality of passenger flow
organization. On the other hand, it helps the urban transportation system take timely
response measures and ensure public safety [2,3].

Short-time passenger flow forecasting is a dynamic control method that mainly fore-
casts passenger flow in the future based on existing passenger flow data [4]. The research
on the traditional forecasting model of rail transit passenger flow is quite mature. The
passenger flow prediction models of rail transit mainly include time series models, regres-
sion models, and some related linear and nonlinear models. Roos [5] proposed a dynamic
Bayesian network approach to forecast the short-term passenger flows of the urban rail
network of Paris, which could deal with the incompleteness of the data caused by failures
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or a lack of collection systems. Zhao [6] used a support vector machine to predict the pas-
senger flow of Xinzhuang subway station and concluded that the nonlinear support vector
machine model can predict the working day better. Anl [7] developed a long short-term
memory-based (LTSM-based) deep learning model to predict short-term transit passenger
volume on transport routes in Istanbul using a dataset that included the number of people
who used different transit routes at a one-hour interval between January and December
2020 and compared that with popular models such as random forest (RF), support vector
machines, autoregressive integrated moving average, multilayer perceptron, and convolu-
tional neural networks. Taking the passenger flow of Chengdu East Railway Station as an
example, Tan [8] verified the higher prediction accuracy and better prediction performance
of the GRNN neural network model based on parameter optimization (GA) compared
with other models. Pekel [9] developed two hybrid forecasting methods, POA-ANN and
IWD-ANN, to forecast passenger demand, compared the forecasting results with GA-ANN,
and concluded that the new algorithm had a good effect on passenger prediction.

In order to improve prediction accuracy, many scholars have studied the applica-
tion of neural networks and combined models to short-term passenger flow prediction.
Alghamdi [10] proposed an end-to-end deep learning-based framework with a novel ar-
chitecture to predict multi-step-ahead real-time travel demand along with uncertainty
estimation. Asce [11] presented a novel nonparametric dynamic time-delay recurrent
wavelet neural network model for forecasting traffic flow that exploited the concept of
wavelet in the model to provide flexibility and extra adaptable translation parameters in the
traffic flow forecasting model. Nagaraj [12] used a greedy layer-wise algorithm to enter the
processed cluster data into the long- and short-term memory models and a recurrent neural
network to solve the passenger flow prediction problem in public transport. Ermagun [13]
examined spatiotemporal dependency between traffic links, proposed a two-step algorithm
to search and identify the best look-back time window for upstream links, and indicated
the best look-back time window depends on the travel time between two study detectors.
Dong [14] used a genetic algorithm to optimize the BP model, which significantly improved
the prediction accuracy of short-term passenger flow on Beijing Line 4. Mirzahossein [15]
proposed a novel hybrid method based on deep learning to estimate short-term traffic vol-
ume at three adjacent intersections, combined with a time window and normal distribution
of WND-LSTM for traffic flow prediction, and the MAPE obtained was 60–90% lower than
that of ARIMA, LR, and other models.

The current research primarily focuses on the global prediction of passenger flow
for all stations or the entire subway line. However, there is a lack of sufficient precise
prediction research that takes into account the specific characteristics of individual stations.
Furthermore, there are a limited number of prediction models available for comparison,
and the existing models do not achieve a high level of accuracy. In general, the accuracy of
passenger flow prediction is greatly influenced by the changing trends observed in previous
data. Therefore, it is crucial to conduct a detailed analysis of the characteristics of subway
stations and evaluate multiple prediction models to enhance the accuracy and effectiveness
of the predictions [16]. The combination of wavelet denoising and the LSTM model in
this study has several benefits and innovations. Wavelet denoising enhances data quality
by reducing noise interference, while the LSTM model effectively handles the time-series
relationships and dynamic characteristics of non-stationary data. For complex AFC data,
by combining them and comparing them with other related models, the future trend of
non-stationary data can be predicted more accurately, and the accuracy and stability of
prediction results can be improved. In addition, this method is innovative and provides
a new idea and solution for the prediction and analysis of non-stationary data related
to subway passenger flow. Different suitable models are selected for different types of
stations to predict. Based on the cluster analysis of subway stations, this paper carries
out detailed prediction analysis for typical stations. This paper examines Shantang Street
station in Suzhou, chosen for its high commercial nature and weekday/weekend passenger
differences. Wavelet denoising processed the short-term flow data, which an LSTM model
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used to predict volumes versus standalone LSTM, SVR, ANN, and ARIMA. The wavelet-
denoised LSTM model [17–19] significantly improved accuracy, indicating effectiveness for
real-world rail transit forecasting.

2. Research Methods
2.1. Wavelet Denoising Analysis
2.1.1. Principle of Wavelet Denoising Analysis

Wavelet denoising analysis [20–22] has been successfully utilized in many fields. Due
to the irregularity of short-term passenger flow data at stations, the prediction error for
short-term rail transit passenger flow may be substantial.

The short-term passenger flow data of rail transit stations fluctuates constantly, with a
certain level of noise. High-frequency signals can be denoised through threshold values,
and then data can be reconstructed to achieve denoising. The traffic signal for short-term
traffic volume containing noise can be formulated as follows:

S(x) = f (x) + σe(x) (1)

f (x): data after noise removal
e(x): contained noise
σ: noise intensity
S(x): short-term passenger flow data of rail transit with noise signal

2.1.2. Wavelet Denoising Process

The basic process of wavelet denoising analysis is shown in Figure 1 below:
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Therefore, when utilizing wavelet denoising to analyze short-term passenger flow
data for rail transit, it can be simplified into five processes: selecting the wavelet function,
wavelet base order, threshold function, decomposition layer, and wavelet reconstruction.

2.2. Basic Principles of Long Term Memory Networks
2.2.1. LSTM Process

The LSTM neural network [23] has four structures: forgetting gate, input gate, output
gate, and memory unit. The cell structure of the unit is controlled through the forgetting
and input gates. The LSTM process is (Figure 2):
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The arrows in the figure above represent vectors, showing input from the previous
node to the node the arrows point to. LSTM controls information flow through three gate
structures, consisting of sigmoid activation functions and a multiplicative structure with an
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output of 0 or 1. The sigmoid activation function in the gate is Equations (2) and (3), with
the tanh functions being (4) and (5).

σ(z) = y =
1

1 + e−z (2)

σ′(z) = y(1− y) (3)

tanh(z) = y =
ez − e−z

ez + e−z (4)

tanh′(z) = 1− y2 (5)

Ct−1: The cell state passed in at the previous time.
xt: The new value of information that is read at the present moment causes the module

to generate a new memory.
ht−1: The output value of the previously hidden neuron module.
Ct: Belongs to the current time output information, to the next time transmitted

unit state.
ht: New output at the current time.

2.2.2. Calculation of LSTM Forward Propagation

The LSTM forward propagation calculation process is from the forgetting gate to the
input gate, updating the unit state, and finally to the output gate [24].

The forgetting gate determines how much information can be retained from the
previous moment to the current one. After ht−1 and xt are activated by activation function,
ft is obtained, representing the degree of retention of the previous hidden neuron state.
The activation function is sigma, with the ft expression being:

ft = σ(W f ht−1 + U f xt + b f ) (6)

W f : Represents the weight of the input forgetting gate of the previous hidden neuron
module.

U f : The information value of the input layer flows into the weight of the forgetting gate.
b f : Calculate the bias parameters of the forgetting door.
The input gate determines how much information will be received and can determine

the new information generated and what percentage of the new information will be used.
The calculation process is as follows:

it = σ(Wi[ht−1, xt] + bi) (7)

∼
Ct = tanh(Wc[ht−1, xt]+bc) (8)

After passing through the input gate, the output of the input gate is: it × Ct.
The updating of memory cell state means that the output ft of the forgetting gate is

multiplied by the cell state Ct−1 at the previous time and combined with the output of the
input gate to obtain a new cell state Ct. The expression of Ct is as follows:

Ct = ft × Ct−1 + it ×
∼
Ct (9)

Finally, we need to go through the output door, which is composed of two parts of
calculation, partly by the current information combined with short-term memory thus
calculated, and ot, another part is calculated combined with long-term memory and con-
cluded ht, ot by the module of a hidden neurons on the output value of ht−1 combined
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with the current input value xt and activated by sigma function. The calculation process is
as follows:

ot = σ(Wo[ht−1, xt] + bo) (10)

The final output after LSTM model is as follows:

ht = ot ◦ (tanh((Ct)) (11)

2.2.3. Reverse Calculation of LSTM

After LSTM model forward propagation, the weight set and relevant bias terms must
be updated; therefore, reverse calculation can be performed by propagating the error up
the layer.

2.3. Principles of Support Vector Machine Regression

The training samples of the SVR model [25–27] are D = {(x1, y1), (x2, y2). . ., (xn, yn)},
with yi∈R. The goal is to learn a model f (x) with a value close to y. When model f (x) exactly
matches y, the final loss is 0. In the SVR model, the deviation between f (x) and y is set at
most to ε. When the difference between f (x) and y is greater than ε, the loss is calculated;
otherwise, the loss is ignored. This is equivalent to establishing a 2εwide tolerance band
centered on f (x). The red horizontal line is the standard data cable. The two dashed lines in
the figure represent the soft interval. The data between the soft interval is represented by a
blue dot, and the data outside the soft interval is represented by a white dot. If sample data
falls within the tolerance bands, the prediction is accurate, as shown (Figure 3):
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Parameters involved in support vector machine (SVM) regression include ε and C.
ε is the loss function and affects model precision and training speed. Parameter C is a
penalty factor, aiming to balance the model. The smaller C means a lower model complexity
and penalty. The choice of C should not be too large or small; otherwise, overfitting or
underfitting may occur.

2.4. Principles of Artificial Neural Networks

An Artificial Neural Network (ANN) consists of an input layer, a hidden layer(s), and
an output layer [28,29]. The state of the hidden layer remains unaffected by external factors;
however, its state changes can lead to variations in the output. The back propagation
algorithm is commonly utilized in ANN. It involves forward propagation, where the input
layer is sequentially propagated through each layer, followed by back propagation, which
adjusts the weights and related thresholds. This iterative process aims to minimize the
error until the desired outcome is achieved. The calculation process is illustrated in the
diagram [30] (Figure 4).
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(1) Forward propagation process The output value of the input layer is denoted as O. The
connection weights between the input layer and the hidden layer are represented as
wij. The output value of the input layer is multiplied by the corresponding weights
wij. The resulting values are then passed through an activation function, typically
the sigmoid function, to obtain the output values of the hidden layer. This process is
repeated for each subsequent layer until the output layer is reached [31].

(2) Backward propagation process The backward propagation process involves adjusting
the parameters of the artificial neural network model to optimize its performance. The
connection weights and cell thresholds are then modified accordingly to minimize the
error. This adjustment is performed iteratively to refine the model’s performance.

(3) Training termination conditions The training process can be terminated based on
certain conditions. Once these conditions are met, the training process is concluded.

2.5. Basic Principles of Time Series Model

The ARIMA model is a statistical model used for analyzing and predicting time
series data [32,33]. It is particularly effective in forecasting future values based on past
observations and the autocorrelation within the series. The model consists of three main
components: the autoregressive (AR) part, the differencing (I) part, and the moving average
(MA) part. These components work together to capture the patterns and trends in the data,
allowing for accurate predictions [34].

(1) Autoregressive Model (AR) The autoregressive model utilizes historical data to con-
struct a predictive model for its own data. It is important to note that the autoregres-
sive model assumes the data to be stationary. The formula for a p-order autoregressive
model is as follows:

yt = µ+
p

∑
m=1

rmyt−m + εt (12)

yt: The current value of the variable µ: Constant term p: Order γm: Autocorrelation
coefficient εt: Residual

(2) Moving Average Model (MA) The moving average model utilizes the past values of
the residual to represent the linear relationship, aiming to observe the magnitude of
its fluctuations. The formula for a p-order moving average model is as follows:

yt = µ+
q

∑
m=1

θmεt−m + εt (13)

(3) Auto-Regression and Moving Average Model (ARMA) The ARMA model combines
the autoregressive (AR) model and the moving average (MA) model. It expresses the
relationship between the current value and both past values and past residuals. The
formula for the ARMA model is as follows:

yt = µ+ ∑p
m=1 rmyt−m + εt + ∑q

m=1 θmεt−m + εt (14)
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(4) Integrated (I) Before determining the parameters p and q in the ARIMA model, it
is necessary to conduct a stationarity test on the data. If the data fails the test, dif-
ferencing is performed. After differencing, the data should meet the stationarity
condition.

3. Empirical Study
3.1. Data Preprocessing

This article examines short-term traffic predictions for the Shantang Street station of
the Suzhou Rail Transit system. The AFC system data used in this article is collected from
the automatic ticket machines at various stations in the rail transit system, which record the
card swipes of people entering and exiting the stations. The data utilized in this study were
obtained from the Suzhou Rail Transit AFC system and include transaction time, ticket ID
and type, inbound and outbound station codes and names, and inbound and outbound
times. The experiments in this article were conducted on a Windows 10 64-bit operating
system. The hardware used includes an AMD Ryzen 7 5800H with a Radeon Graphics
3.20 GHz processor and 16 GB of memory. The programming language used is Python 3.7,
and the Matplotlib 3.0.2 plotting tool was utilized for generating plots.

MySQL was used to clean the raw data. Relevant database rules were applied to
extract the required information, resulting in over 14 million data points for the month
of July that were used in this analysis. Given the high commercial nature and distinct
weekday versus weekend ridership patterns, outbound passenger traffic from Shantang
Street station was selected as the prediction target. The 1–27 July inbound passenger flow
was used as the training set, while the 28–29 July (Monday and Sunday) data were held
out as the test set. Based on the extracted swipe card data from Shantang Street station in
MySQL, the inbound passenger flow at Shantang Street is calculated with a time interval
of 1 h. Each column represents the inbound passenger flow at Shantang Street every hour
throughout the day. The processed Shantang Street passenger flow data are summarized,
and a portion of the hourly passenger flow data are shown in Table 1 below:

Table 1. Hourly passenger flow data for Shantang Street station (person/hour).

Time Station Monday Tuesday Wednesday Thursday Friday Saturday Sunday

5:00:00 Shantang Street 4 2 4 12 3 9 10
6:00:00 Shantang Street 220 235 203 250 237 198 133
7:00:00 Shantang Street 472 471 495 470 471 432 410
8:00:00 Shantang Street 519 491 467 543 491 601 513
9:00:00 Shantang Street 497 525 595 596 552 655 572

10:00:00 Shantang Street 461 538 537 531 516 583 656
18:00:00 Shantang Street 415 360 317 382 409 527 621
19:00:00 Shantang Street 391 396 400 425 466 640 636
20:00:00 Shantang Street 407 479 536 497 494 845 772
21:00:00 Shantang Street 306 365 371 431 463 703 551
22:00:00 Shantang Street 77 81 129 94 149 100 171

3.2. LSTM Model Construction and Prediction Analysis

The training dataset for the LSTM network consists of the inbound passenger flow data
at Shantang Street for the month of July. The objective is to predict the outbound passenger
flow at Shantang Street. The training set includes the inbound passenger flow data from
1–27 July, while the test set comprises the inbound passenger flow data from 28–29 July
(which corresponds to Monday and Sunday). The LSTM model is trained on each subset,
and the validation subset is used to evaluate the model’s performance. According to the
size of the passenger flow data set and the limitation of computing resources, K = 5 was
determined, 5-fold cross-validation was selected, and the training set was divided into
5 subsets, of which 4 subsets were used to train the model and the remaining 1 subset was
used to verify the model, and the performance index of each fold number was recorded.
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Root Mean Squared Error (RMSE) was selected as the evaluation index, and the parameters
were constantly evaluated and optimized. Ultimately, the output layer is set to have a
dimension of 1, the hidden layer is set to 4, the number of iterations is set to 1000, and the
historical time step length is set to 30. To capture traffic patterns, a historical time step of
30 was used. A batch size of 10 and dropout layers were incorporated to improve accuracy
and prevent overfitting. Sigmoid activation functions were utilized for all fully connected
layers during training; the prediction results are compared in the final summary figure.

Compare the forecast results with the chart, and analyze the result index values. This
model configuration was trained and used to predict the test set ridership. The results
were compared to the actual values using the RMSE, MAE, and MAPE metrics for both
weekdays and weekends. As seen in the figure, the LSTM model predictions did not match
the true values very closely, indicating poor performance that needs improvement across
all accuracy metrics.

3.3. LSTM Model Construction and Prediction Analysis of Wavelet Denoising
3.3.1. Steps of Model Construction and Prediction

To address these limitations, a wavelet denoising approach was applied prior to LSTM
modeling. The key steps were:

1. Perform a 3-level discrete wavelet transform on the time series data using the db6
wavelet.

2. Decompose the signal into low- and high-frequency components.
3. Apply soft thresholding denoising to the three high-frequency signals.
4. Reconstruct the denoised signal.
5. Split the data into training and test sets.
6. Train the LSTM model on denoised training data.
7. Validate model performance on denoised test data.

The visualizations below depict the original noisy data versus the smoothed denoised
signal after wavelet decomposition and thresholding.

3.3.2. Predictive Analysis

Based on the aforementioned basic prediction steps, continuous validation is per-
formed to determine the wavelet base function and conduct wavelet decomposition. First,
the db6 wavelet basis function is selected to decompose the three-layer wavelet of July
inbound passenger flow data of Shantang Street station with a time interval of 10 min, and
the results are shown in Figure 5 below.
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After wavelet decomposition and soft threshold denoising, the denoised data and the
original data are visualized, as shown in Figure 6. It can be seen that the denoised data are
smoother. The blue curve in the Figure 6 represents the original data, and the orange curve
represents the data after noise removal.
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Figure 6. Comparison between denoised data and original data.

The inbound short-time passenger flow training set data of Shantang Street station
after noise removal is used as the input of the LSTM network. Considering the data
features and model performance after wavelet decomposition, RMSE is again selected as
the evaluation metric. Cross-validation is employed to continuously assess and optimize
the parameters. Ultimately, the following parameter settings are determined: the input
layer has a dimension of 1, the time step length is set to 1, the output layer has a dimension
of 1, the hidden layer is set to 8, the number of iterations is set to 3000, and the historical
time step length is set to 30. For accurate training, the batch_size is set to 10, and the
dropout layer is added. It is better to set the probability to 0.1. Based on the above settings,
the training of the model is expanded, and the prediction results are compared in the final
summary figure.

Compare the forecast results with the chart, and analyze the result index values. It can
be seen that there is almost no difference between the prediction results of the test set data
and the data after noise removal, and the prediction model effect of the processed data are
more significant.

With the denoised data, the LSTM model was re-trained using the same configuration
described previously. As evident in the figure, the predictions closely matched the denoised
test set values, demonstrating significantly improved model performance compared to
the non-denoised data. The RMSE, MAE, and MAPE were substantially lower for both
weekday and weekend results, confirming the benefits of preprocessing with wavelets
prior to LSTM modeling for this application. It has great significance for forecasting.

3.4. SVR Model Construction and Prediction Analysis

According to the existing experimental results, it can be concluded that the SVR model
has good fitting ability and has a good effect on solving some complex nonlinear problems.
The short-term passenger flow of rail transit has the characteristic of complexity; therefore,
a support vector machine model can be used to deal with the problem of short-term
passenger flow prediction.

3.4.1. Steps of SVR Model Construction and Prediction

1. Separate the data into training (1–27 July) and test sets (28–29 July).
2. Train support vector machines (SVMs) with different kernels, selecting RBF based on

best fit.
3. Initialize hyperparameter values for penalty factors C and gamma.
4. Refine hyperparameters via grid search cross-validation to minimize MSE.
5. Assess the model on test data.

3.4.2. Predictive Analysis

The step of prediction is set to 1. It is proven that the first 30 data points are used
to predict the next data points, and the calculated error is relatively small. Firstly, the
penalty factor parameter C was set as 1, 5, 10, 30, 100, and the parameter gamma was set
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as 0.1, 0.12, 0.01, 0.05, 0.001, 1, 0.5, and 0.9. The rbf function was selected as the kernel
function. In the prediction, RMSE is chosen as the evaluation metric to continuously assess
the model’s performance using cross-validation and evaluate the model’s generalization
ability. The parameters are continuously evaluated and optimized to select the optimal
hyperparameters. Finally, C = 5 and gamma = 0.1 were determined to predict the test
set data based on the parameters, and the prediction results are compared in the final
summary figure.

Compare the forecast results with the chart, and analyze the result index values. By
calculating the predicted results, it can be seen that the predicted results do not deviate
much from the actual values; however, there is still a certain gap compared with the LSTM
model of wavelet denoising. However, in general, the SVR model is relatively reasonable
for the prediction of short-term passenger flow.

3.5. ANN Model Construction and Prediction Analysis

Using the sklearn library in Python, an artificial neural network model was called
to implement the backpropagation algorithm. The model was evaluated using the Root
Mean Squared Error (RMSE) metric. Cross-validation was performed to determine the
relevant parameters, and parameter tuning was conducted to optimize the model. After
experimentation, it was found that setting the number of iterations to 100 and the batch
size to 1 yielded relatively ideal results. The prediction step was set to 1, the network layer
had 12 neurons, and the activation function used was sigmoid. The prediction results are
compared in the final summary figure.

The forecast results were evaluated using RMSE, MAE, and MAPE. Compare the fore-
cast results with the chart, and analyze the result index values. However, upon analyzing
the prediction result graph, it was observed that the artificial neural network model did not
perform exceptionally well. It failed to accurately predict sudden fluctuations in passenger
flow and exhibited lower prediction accuracy. The predicted values were generally higher
than the actual values

3.6. ARIMA Model Construction and Prediction Analysis
3.6.1. Steps of ARIMA Model Construction and Prediction

Step 1: The Augmented Dickey-Fuller test (ADF test) can be utilized to test for sta-
tionarity [35,36]. The ADF test examines the presence of a unit root in the model, which
implies that b = 1 in an autoregressive equation yt = byt−1 + c + εt. This phenomenon can
create spurious relationships between independent and dependent variables. The ADF
test assumes the existence of a unit root and evaluates the significance test statistic at three
confidence levels (1%, 5%, and 10%).

White noise [37,38] is characterized by data that lacks any discernible patterns, with
mean values fluctuating around zero and no clear trend. It follows a normal distribution
with a mean of 0 and a variance of σˆ2. If the data contains white noise after testing,
it indicates that there is no useful information, and modeling would be meaningless.
Conversely, if there is no white noise, it suggests that the data can be modeled.

Step 2: Determine the values of pmax and qmax. This can be achieved by examining
the autocorrelation and partial autocorrelation plots of the original time series data. Table 2
can be used as a guide to determine the appropriate values for pmax and qmax in the
ARIMA model.

Step 3: Determine the final values of p and q by considering the maximum likelihood
function value and the minimum number of parameters. The higher the likelihood function
value, the better the model is. Additionally, a model with fewer parameters has lower com-
plexity and computational requirements. The optimal values of p and q can be determined
by calculating the Bayesian Information Criterion (BIC) [39,40].

The BIC is a criterion based on Bayesian theory that provides a more accurate judgment,
particularly for large sample sizes, compared to the Akaike Information Criterion (AIC) [41].
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The BIC is calculated as BIC = ln(n) (number of parameters in the model) − 2ln (maximum
likelihood function value of the model).

Table 2. pmax, qmax judgment table.

Model ACF PACF

AR After decay approaches 0 p-order truncation (after a value greater
than a rapid approach to 0)

MA q order back truncated After decay approaches 0

ARMA Attenuation tends to 0 after
order q Attenuation tends to 0 after order p

Step 4: Test the model’s validity using the Durbin-Watson (DW) test [42,43] and the
QQ plot test [44]. The DW test assesses the autocorrelation of a dataset by calculating the
DW value of the residual from the established model. A DW value close to 0 or 4 indicates
the presence of autocorrelation in the residual, while a value approaching 2 suggests no
autocorrelation.

3.6.2. Predictive Analysis

First of all, we need to check the short-time passenger flow data series of Shantang
Street to judge whether the time series data of the inbound passenger flow of Shantang
Street is stable (Figure 7).
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It can be seen from the figure above that the data are basically stable, and then the unit
root and stationarity tests of the data are carried out. By calculating ADF, the test results
are as follows: (−9.19, 2.11e−15, 18, 2986, {‘1%’: −3.43, ‘5%’: −2.86, ‘10%’: −2.57}, 25241.09).
All of these calculations are reserved for two decimal places. The statistical value is lower
than the original hypothesis at the 1%, 5%, and 10% significance levels, indicating that the
data does not have a unit root and there is no white noise present. Therefore, the data are
stable and suitable for ARIMA modeling analysis. Additionally, the calculated p-value of
2.11e−15 is less than 0.05, further supporting the conclusion that the data does not have a
unit root.

The autocorrelation and partial autocorrelation plots of the original sequence data for
the Shantang Street inbound passenger flow training set were used to determine the values
of p and q in the ARIMA model (Figure 8).

From the autocorrelation plot, it can be observed that the values approach 0 after the
10th order. Similarly, the partial autocorrelation plot shows that the values mostly approach
0 after the 4th order. Based on these observations, pmax = 10 and qmax = 5 were selected.
The final values of p and q were determined using the Bayesian Information Criterion (BIC).
The BIC calculation indicated that the smallest value was obtained when p = 3 and q = 3.
Therefore, the ARIMA (3,0,3) model was established.
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Figure 8. Autocorrelation and partial autocorrelation diagram.

The residuals of the ARIMA (3,0,3) model were tested using the Durbin-Watson (DW)
test and QQ plot. The calculated DW test value was 2.008262490962122, which is close to 2.
The red line is the standard data cable. The QQ plot also showed that the data points were
approximately on a straight line. The blue dots in the figure are the index values of the test
results. These results indicate that the model is reasonable (Figure 9).
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Figure 9. QQ diagramtest results.

After conducting the DW and QQ graph tests, it can be concluded that the established
model is reasonable. The trained model is then utilized to predict the short-term passenger
flow of Suzhou Metro on 28–29 July, and the results are compared in the final summary fig-
ure. Compare the forecast results with the chart, and analyze the result index values. Based
on the calculated MAE index, it can be observed that the error in predicting short-term
passenger flow on weekdays is relatively small, with an average MAPE value of around
20%. Overall, the ARIMA model demonstrates relatively good prediction performance.

3.7. Comparison of Results

By utilizing various models to forecast the short-term passenger flow of Shantang
Street station, the prediction results can be visually displayed, and the corresponding
prediction indices can be summarized. First, a visual representation of the predicted results
is presented. Subsequently, the RMSE, MAE, and MAPE indices of the predicted results
for Sunday (28 July) and Monday (29 July) are calculated based on different feature days,
allowing for an analysis of the accuracy of each model’s predictions. The comparison
of the prediction results of different models on 28 July is shown in Figure 10. And the
comparison of the prediction results of different models on 29 July is shown in Figure 11.
Xiaobo_predict in the figure below is a Chinese noun for the prediction results of the LSTM
model based on wavelet denoising.
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The forecast result chart displays the number of input indicators on the x-axis and
the passenger flow, measured in terms of the number of people, on the y-axis. The green
curve represents the true value, and the other curves in different colors represent the
predicted value of the different models. This visual representation effectively demonstrates
the model’s prediction accuracy and effectiveness.

The Shantang Street station predictions reveal that the estimated volumes from all
methods stayed relatively close to their true values. This suggests the selected techniques
were appropriate for modeling this station’s ridership. Across both weekday and weekend
results, the denoised LSTM predictions aligned most tightly with the real data. The index
values of prediction results of different models are shown in Table 3 below.

Upon analyzing the calculated results in the aforementioned table, it can be observed
that the LSTM method, which incorporates wavelet analysis for denoising, yields lower
RMSE and MAE indices compared to other methods. Furthermore, the MAPE index is also
significantly reduced. Consequently, it can be concluded that this method exhibits certain
advantages in terms of prediction accuracy. In the absence of wavelet denoising, the LSTM
model demonstrates superior performance, followed by SVR and ARIMA, while the ANN
model exhibits relatively poorer performance when predicting short-term passenger flow
on weekdays. When it comes to predicting short-term passenger flow on Sundays, both the
LSTM and ARIMA models outperform the ANN model. As Sundays typically experience
higher station traffic compared to Mondays, it is expected that the prediction errors will
be higher on Sundays compared to Mondays. Considering both predictive power and
practicality, integrated wavelet denoising with LSTM emerges as the superior methodology,
demonstrating its applicability to real-world forecasting.
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Table 3. Index values of prediction results under different models.

Method Index Monday (29 July) Sunday (28 July)

LSTM
RMSE 12.86 19.78
MAE 10.27 15.35

MAPE 18% 31%

The wavelet + LSTM
RMSE 8.94 12.32
MAE 7.22 9.88

MAPE 12% 19%

SVR
RMSE 14.15 19.25
MAE 11.78 14.72

MAPE 21% 38%

ANN
RMSE 15.29 20.82
MAE 12.40 16.62

MAPE 22% 29%

ARIMA
RMSE 14.04 17.68
MAE 10.92 13.52

MAPE 18% 24%

4. Conclusions

The focus of this study is to apply different short-term forecasting techniques to
predict the passenger flow at Shantang Street Station of Suzhou Rail Transit. The goal was
to analyze whether the proposed denoised LSTM method provided higher accuracy and
effectiveness.

This paper examines Shantang Street station in Suzhou, chosen for its high commercial
nature and weekday/weekend passenger differences. For short-term prediction research,
wavelet denoising processed the time series data before LSTM modeling. Based on signal-
to-noise ratios and rail transit passenger flow characteristics, 3-level decomposition via soft
thresholding and the db6 wavelet filtered out noise. This denoised data were used to train
the LSTM model and compare its forecasts against the original noisy LSTM, SVR, ANN,
and ARIMA results. This study confirms the necessity of selecting appropriate methods
for predicting rail transit passenger flow. The wavelet-enhanced LSTM significantly im-
proved prediction quality, providing a new perspective for rail transit volume forecasting.
Leveraging big data and scientific modeling in this manner can produce practical gains,
demonstrating the value of this integrated approach.

In this paper, single-step prediction is adopted when using the model to forecast
short-term passenger flow, and multi-step prediction can be carried out in future research,
which may save the time of model calculation. When forecasting short-term passenger flow,
only the time series data of passenger flow is used in this paper. In the next forecasting
study, features such as weather and geographical location can be added so that the factors
considered will be more comprehensive, which will be helpful in improving the forecasting
accuracy.
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