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Abstract: (1) Background: Voiceprint recognition technology uses individual vocal characteristics
for identity authentication and faces many challenges in cross-scenario applications. The sound
environment, device characteristics, and recording conditions in different scenarios cause changes
in sound features, which, in turn, affect the accuracy of voiceprint recognition. (2) Methods: Based
on the latest trends in deep learning, this paper uses the perceptual wavelet packet entropy (PWPE)
method to extract the basic voiceprint features of the speaker before using the efficient channel
attention (ECA) block and the Res2Net block to extract deep features. The PWPE block removes
the effect of environmental noise on voiceprint features, so the perceptual wavelet packet entropy-
guided ECA–Res2Net–Time-Delay-Neural-Network (PWPE-ECA-Res2Net-TDNN) model shows
an excellent robustness. The ECA-Res2Net-TDNN block uses temporal statistical pooling with a
multi-head attention mechanism to weight frame-level audio features, resulting in a weighted average
of the final representation of the speech-level feature vectors. The sub-center ArcFace loss function is
used to enhance intra-class compactness and inter-class differences, avoiding classification via output
value alone like the softmax loss function. Based on the aforementioned elements, the PWPE-ECA-
Res2Net-TDNN model for speaker recognition is designed to extract speaker feature embeddings
more efficiently in cross-scenario applications. (3) Conclusions: The experimental results demonstrate
that, compared to the ECAPA-TDNN model using MFCC features, the PWPE-based ECAPA-TDNN
model performs better in terms of cross-scene recognition accuracy, exhibiting a stronger robustness
and better noise resistance. Furthermore, the model maintains a relatively short recognition time
even under the highest recognition rate conditions. Finally, a set of ablation experiments targeting
each module of the proposed model is conducted. The results indicate that each module contributes
to an improvement in the recognition performance.

Keywords: voiceprint recognition; perceptual wavelet packet entropy; efficient channel attention;
Res2Net; TDNN

MSC: 92-08

1. Introduction

A voiceprint refers to the spectrum of sound waves that convey speech information
and is a biometric feature characterized by uniqueness and stability. The technology used to
identify speaker identities with voiceprints is known as voice recognition technology. This
technology is currently one of the popular methods for identity authentication. It has been
applied in the judiciary, finance, and security fields, among others [1,2]. However, it still
has a long way to go before achieving widespread implementation, particularly considering
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that engineers frequently encounter significant discrepancies in the performance of voice
recognition systems in real-world scenarios compared to their performance on standard
test sets. For instance, the prevalent mainstream x-vector model generally exhibits an
equal error rate of approximately 2% on the SITW test set, but the rates of false acceptance
and false rejection significantly increase in real-life applications [3–5]. The cause of this
phenomenon is cross-environmental recognition. If the domain from which the training
data for voice recognition are collected is the source domain, and the domain where the
test data are collected is the target domain, then, if there are notable disparities between
the source and target domains regarding the feature space, the class space, or marginal
distribution, then the efficiency of voice recognition models trained on the source domain
will significantly degrade when applied to the target domain [6]. This makes it challenging
for voice recognition technology to achieve large-scale applications. Cross-environment
recognition is likely to be the most prevalent form of recognition in practical systems, as
users tend to register their voiceprints in quiet environments where they can produce
relatively stable and clear pronunciations, while, during verification, they may encounter
various complex environments where environmental noises interfere with the recognition
effectiveness. Most studies adopt scenarios that are overly simplistic, such as HI-MIA,
which categorizes scenarios based on the distance between the recording device and the
speaker [7–9]. These excessively idealistic research findings fail to reflect the true level of
complexity involved in cross-environment recognition [10].

To investigate the problem of cross-environment recognition in practical settings,
Tsinghua University’s Center for Speech and Language Technology has recently launched
CNCeleb, a database of Chinese celebrity voiceprints. This database comprises voice clips
that have been publicly accessible on the internet from 3000 Chinese celebrities. An essential
aspect of this database is its varied range of settings, covering singing, interviews, speeches,
vlogs, and eleven other different scenarios [11,12]. It includes abundant cross-environment
data, as speakers are exposed to varying levels of interference noise and may use different
recording devices in each scene, as depicted in Figure 1.
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gorithms and investigating speaker modeling [13]. 

Figure 1. Speaker and noise sources in vlog, singing, interview, and speech scenes.

In the singing scene, the sound of various musical instruments being played may
interfere with speaker recognition. In the speech scene, applause from the audience
may impact the recognition of the speaker. In vlog and interview scenes, car horns and
background noise can potentially affect speaker recognition, and so on.

So far, cross-environment recognition remains one of the most important aspects in
speaker recognition research. The improvement of cross-environment recognition can
be approached from two perspectives: conducting research on speech feature extraction
algorithms and investigating speaker modeling [13].
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1. Speech feature extraction algorithms are one of the key technologies in voiceprint
recognition. They are used to extract speech features from speech signals. Currently,
the most widely used feature extraction methods are MFCC [14] and Fbank [15].
However, these traditional feature extraction methods have limited expressiveness for
non-stationary signals and are sensitive to noise [16]. Some researchers have proposed
using wavelet transform (WT) for extracting features from speech signals. Algo-
rithms based on wavelet analysis, such as cepstral features, eliminate the need for Mel
filtering and compress the spectral information of speech using the perceptual charac-
teristics of wavelet transform. This simplifies the feature extraction process [17,18].
Additionally, utilizing Shannon entropy, which has a good stability, discriminability,
and resistance to interference, researchers have further proposed the use of Shannon
entropy extraction algorithms based on wavelet packet transform (WPT). This type of
feature is composed of the entropy of the sub-band power spectrum of the signal’s
wavelet, which is capable of representing abrupt changes in the signal and has a low
dimensionality, making it suitable for representing non-stationary signals [19,20]. To
enhance the analysis capability of WPT for speech signals and reduce its computa-
tional complexity, researchers have also introduced the perceptual wavelet packet
entropy (PWPE) feature extraction algorithm. It accurately analyses speech informa-
tion, suppresses acoustic noise, reduces the number of parameters, and shortens the
feature extraction time [21–23].

2. The objective of the research on speaker modeling is to develop speaker models capa-
ble of extracting speaker identity information from speech features. Popular speaker
recognition models, such as ECAPA-TDNN utilizing time-delay neural networks and
r-vector models employing deep residual networks, have demonstrated outstanding
performances in text-independent speaker recognition tasks [24,25]. ECAPA-TDNN,
proposed by Desplanques et al. from the University of Mons in Belgium in 2020,
introduced the squeeze-excitation (SE) module and the channel attention mechanism
for the first time [26–28]. This approach won first place in the international speaker
recognition competition. However, ECAPA-TDNN is susceptible to noise interference,
leaving room for improvement. Firstly, integrating noise reduction techniques can be
beneficial in pre-processing speech features during feature extraction. Additionally,
feature enhancement techniques can be employed to enhance the characteristics of
the speech. Moreover, enhancing the network depth and attention pooling in the
ECAPA-TDNN model can further improve its robustness. These enhancements strive
to mitigate the impact of noise on the model’s performance.

In light of the aforementioned analysis, this paper proposes two improvements to
the existing voiceprint recognition models to make them more robust. Firstly, it employs
perceptual wavelet entropy (PWE) for feature extraction and applies threshold denoising
to the extracted features [29]. Voiceprint feature extraction methods such as MFCC and
Fbank have a limited expressive ability for non-stationary signals and are sensitive to noise.
However, the speech features processed via PWE can compensate for the shortcomings
of MFCC and Fbank and improve the recognition performance robustly [30]. Secondly,
this paper makes improvements to the classical speaker recognition model. It combines
the non-dimensional-reducing efficient channel attention (ECA) block with Res2Net to
assign weights to feature channels and introduces a multi-head attention mechanism. This
allows the model to learn different behaviors without focusing attention excessively on its
own position. The paper also introduces the sub-center ArcFace loss function module to
mitigate the effects of noise in the data and enhance the robustness of the model. Based
on these designs, a perceptual wavelet packet entropy-guided ECA–Res2Net–Time-Delay-
Neural-Network (PWPE-ECA-Res2Net-TDNN) speaker recognition model is developed,
and improves the model’s recognition performance and robustness. Extensive experiments
have been conducted to validate these improvements. The major contribution of this work
is summarized as follows:
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1. The ECAPA-TDNN model is improved, utilizing denoised PWPE features as input.
This effectively reduces the noise interference in the model’s input features and
enhances its ability to resist noise.

2. The ECAPA-TDNN model structure is improved through increasing the network
depth and learning channel weights, incorporating attention-based statistical pooling,
and optimizing the loss function. These modifications result in a model with a
better robustness. This paper conducts speaker recognition experiments in different
scenarios using the proposed method and model. The results of the experiments
demonstrate that the improved model outperforms the baseline ECAPA-TDNN model
based on MFCC features in terms of robustness in cross-scene recognition.

3. In order to investigate the recognition performance of the current mainstream models
in different scenarios, a set of experiments is designed for both single- and multi-
scene conditions. Based on the experimental results, improvements are made to
the ECAPA-TDNN model, which shows a better cross-scene recognition perfor-
mance. The ECAPA-TDNN model is used as the baseline for comparison with the
designed model.

The organization of this paper is as follows. In Section 2, the overall architecture of the
proposed model is depicted. Furthermore, a detailed description of the implementation
process for each component is provided. In Section 3, the dataset is introduced, and
comparative experiments on different feature extraction methods and models are conducted.
In Section 4, the conclusion summarizes the findings, with an overview of the advantages
and limitations of the study, and gives recommendations for further research.

2. Methods

In this section, an overview of the model’s overall architecture is provided. It is compared
with the ECAPA-TDNN model that uses MFCC as the input feature in Section 3.1. Then,
in Sections 3.2 and 3.3, the extraction process for the PWPE and the feature enhancement
procedure is explained. Finally, in Section 3.4, the structure of the proposed ECA-Res2Net-
TDNN model is described.

2.1. Model Architecture

Inspired by Section 1, the PWPE-ECA-Res2Net-TDNN model is proposed, and its
architecture and comparison with the MFCC-ECAPA-TDNN structure are illustrated in
Figure 2.

The pre-processed speech signal undergoes feature extraction; for this, traditional
methods such as MFCC extract spectral features by applying discrete Fourier transform
(DFT) and Mel filter banks. However, these processes result in the loss of some information
from the original audio signal. In particular, MFCC has weak capturing capabilities for
detailed information in the high-frequency range and is sensitive to noise. When noise is
present in the audio, the reliability of the MFCC coefficients decreases, which can have a
negative impact on subsequent speech processing tasks.

On the other hand, PWPE is a feature extraction method specifically designed for
speech. It prunes the WPT features based on the auditory range of human hearing, applies
threshold denoising, and calculates the non-normalized Shannon entropy (NSE) coefficients
to obtain PWPE feature vectors. These PWPE features are then fed into a TDNN layer
for feature enhancement. Furthermore, the model incorporates a Res2Net structure that
includes lightweight attention mechanisms such as the SE block and the ECA block, which
is a non-reducing dimension channel attention mechanism. The SE net, which compresses
channels, can result in data information loss. To address this issue, the non-reducing
dimension ECA is utilized to avoid such problems. The outputs of the four ECA-Res2Net
modules are concatenated and fed into the TDNN network for multi-feature fusion. In
ECAPA-TDNN, attention pooling is used to weight the input features. Unlike single-
attention pooling, this paper uses multi-attention pooling to simultaneously capture the
relationships between different feature subspaces and fuse this information during the
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pooling process. This increases the expressiveness of the model and extracts richer feature
representations. The model also includes a sub-center ArcFace loss function layer, which
is commonly used in large-scale datasets with noise. It requires intra-class cohesion and
inter-class separability, while not being overly influenced by the noise in the dataset.
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Figure 2. The structure of the PWPE-ECA-Res2Net-TDNN model and its comparison with the
ECAPA-TDNN model.

2.2. The Feature Extraction Method for PWPE

Before the extraction of acoustic features from speech signals, a series of preprocessing
operations are usually applied to the input one-dimensional speech signal, known as
speech signal preprocessing. The purpose is to remove interfering information and obtain
relatively clean and pure speech signals [31]. After preprocessing, the speech signals are
subjected to acoustic feature extraction, which is also a crucial step in speaker recognition
systems. The extracted feature parameters should describe speaker characteristics as much
as possible and offer strong discriminative and high stability properties. In the case of
speech recorded in complex environments, it is desirable to extract feature vectors with a
good noise robustness and discriminability.

Wavelet transform uses a wavelet basis, which has a finite length and decaying func-
tion. Its advantage is that it can analyze any part of the signal by adjusting it through
scaling and translation, thereby obtaining frequency and time information [32]. In con-
trast, the Fourier transform uses trigonometric basis functions and does not provide time
information during signal analysis. The scaling of wavelet basis corresponds to the signal
frequency, while the translation corresponds to the signal time. Due to this characteristic
of the wavelet transform, it has been used as an alternative to the Fourier transform for
signal processing. Wavelet denoising techniques can effectively suppress global noise,
while the localized nature of wavelets limits the impact of local noise. However, wavelet-
based cepstral feature extraction algorithms have high-dimensional features and are not
suitable for combining with speaker models to form speaker recognition systems [33–35].
To reduce the influence of noise during feature extraction and computational complexity,
researchers have proposed the perceptual wavelet entropy short-time spectral feature based
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on wavelet transform, specifically designed for analyzing speech signals. This feature is
composed of the entropy of the power spectrum of wavelet sub-bands of the signal and
is good at representing sudden changes in the signal. It also has a low dimensionality,
making it suitable for representing non-stationary signals. Commonly used entropy feature
extraction algorithms include Shannon entropy, energy entropy, and threshold entropy
based on wavelet packet transform. Among them, the Shannon-entropy-based feature
extraction algorithm is widely used due to its good stability, discriminability, and resistance
to interference [36,37].

The PWPE method utilizes perceptual wavelet packet transform (PWPT) to analyze
speech signals while employing threshold denoising techniques and the auditory properties
of PWPT to suppress both global and local noise. The essence of PWPT lies in pruning
the decomposition process of wavelet packet transform using an auditory model. The
decomposition process is as follows:

Ψm,n(t) = 2−m/2ψ
(
2−mt− n

)
, m, n ∈ Z (1)

where ψ(t) represents a square-integrable function. To reduce the computational complexity,
only the sound features within the human auditory range are retained. A mathematical
model of the cochlear auditory filter bank is used to prune the WPT. The model can be
expressed as follows:

fc = A(10αx − k) (2)

where fc represents the center frequency of the auditory filter, and A, α, and k are constant
and related to the specific biological species. For humans, the value of k is set to 0.88. The
values of A, α are determined based on the auditory range of the specific biological species.

A =
fmin

1− k
(3)

α = log10

(
fmax

A
+ 1
)

(4)

where [ƒmin, ƒmax] represents the auditory range of the biological species. For humans,
ƒmin = 20 Hz and ƒmax = 20 kHz, and the frequency range is generally from 30 Hz to 4 kHz.
Using the auditory model, 16 auditory filters are constructed within this range. To construct
PWPT, a seven-layer WPT is created, and its decomposition tree is shown in Figure 3a.
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W represents the decomposed signal, and each node’s left and right branches represent
the low-pass and high-pass filtering processes, respectively. Their definitions are as follows:

W2p
j [n] =

n=+∞
∑

n=−∞
Wp

j [n]h[n− 2p]

W2p+1
j [n] =

n=+∞
∑

n=−∞
Wp

j [n]g | [n− 2p] j = 0, 1, 2, . . . , J, p = 0, 1, 2, . . . , 2j − 1

W0
0 [n] = s[n]

(5)

where J represents the total number of decomposition levels in the wavelet transform. In
Figure 3a, J = 6, h represents the high-pass filter, and g represents the low-pass filter. Then,
a “pruning” operation is performed via selecting nodes based on whether their center
frequency is close to the center frequency of the auditory filter, and whether their energy is
greater than 20% of the total energy of the node. For a node Wp

j with center frequency fc
and energy E, the calculation is given by the following equation:

fc =

[
2000

2j

]
+

[
4000

2j

]
p (6)

E =

Lj

∑
n=1

∣∣∣Wp
j [n]

∣∣∣2 (7)

where Li represents the length of signal Wp
j . After the “pruning” operation, WPT is

transformed into PWPT, and its decomposition tree is shown in Figure 3b, where the leaf
nodes represent the 16 sub-signals obtained from the PWPT decomposition, denoted as
W1 ∼ W16. These sub-signals have center frequencies that approximate the 16 critical
frequencies obtained from the auditory model.

2.3. Speech Enhancement Based on Wavelet Thresholding

To enhance the resistance of entropy features to environmental noise, denoising is
applied to each subframe. This paper chooses the wavelet thresholding method, where
the low-frequency component mainly contains the transformed coefficients of the original
speech signal, while the high-frequency component contains the transformed coefficients of
the noise. This is based on the correlation characteristics between noise and the useful signal,
which are approximately separated after scale transformation. The next step is to process
the wavelet coefficients of the two components by comparing them with a pre-determined
threshold. It can be considered that the wavelet coefficients smaller than the threshold
in either component represent the noise to be removed. A significant amount of noise
can be removed by performing a multi-scale wavelet transform. Further decomposition
of the selected signal from the first decomposition stage with a second or multi-scale
decomposition results in a cleaner useful signal. The key to this process is the selection of
an appropriate threshold, as the choice of threshold directly affects the final enhancement
performance. Different threshold functions can be selected based on different environments
to effectively remove noise signals while preserving useful signals [38,39]. Commonly used
threshold functions include:

1. The hard thresholding function; the denoising process can be represented as follows:

Dj[i] =
{

Wj[i],
∣∣Wj[i]

∣∣ < λ

0,
∣∣Wj[i]

∣∣ > λ
j = 1, 2, 3, . . . , 16 (8)

where Wj[i] represents the coefficients of the subframe Wj, Dj[i] represents the coeffi-
cients after denoising, and λ represents the denoising threshold. It can be observed
that the function is discontinuous in the interval (−λ, +λ). The discontinuity of the
hard thresholding function in this interval can lead to oscillations in the resulting
signal after inverse wavelet transform.
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2. The soft thresholding function; the denoising process can be represented as follows:

Dj[i] =
{

sgn
(∣∣wj[i]

∣∣− λ
) ∣∣wj[i]

∣∣ >= λ

0
∣∣wj[i]

∣∣ < λ
(9)

where sgn() represents the sign function. The soft thresholding function is continuous
within the specified interval. However, during the wavelet reconstruction process, the
soft thresholding function may result in an incomplete representation of the useful
signal, leading to significant differences between the reconstructed signal and the
original function and, thus, causing signal distortion.

3. The compromise thresholding function, represented in the denoising process, is
expressed as follows:

Dj[i] =
{

sgn
(∣∣wj[i]

∣∣− aλ
) ∣∣wj[i]

∣∣ >= λ

0
∣∣wj[i]

∣∣ < λ
(10)

In Equation (10), a ∈ [0, 1]. The threshold selection methods mainly include unbiased
likelihood estimation, fixed threshold estimation, and heuristic threshold estimation. These
methods aim to find a compromise between two thresholding functions to improve the
performance of wavelet denoising [40,41]. However, there is still significant room for
improvement in the denoising performance. In this case, an improved threshold function is
chosen, with the following mathematical form:

Dj[i] =

µwj[i] + (1− µ)sgn
(
wj[i]

)[∣∣wj[i]
∣∣− λ−

aλ log λ
wj [i]

1+e(wj [i]
2−λ2)

] ∣∣wj[i]
∣∣ >= λ

0
∣∣wj[i]

∣∣ < λ

(11)

where Dj[i] represents wavelet coefficients, and a is the adjustment factor. µ = 1− e−a(|wj [i]|−λ)2
.

The commonly used general threshold is represented as:

λ =
M
(
Wj
)

C

√
2 ln
(

L
(
Wj
))

(12)

where L(Wj) represents the length of Wj, M(Wj) represents the absolute median deviation of
Wj, and C = 0.675 is the noise coefficient. In the general threshold, the threshold is positively
correlated with the number of signal sampling points. The larger the number of sampling
points, the larger the threshold. However, a high threshold can cause signal distortion,
indicating a significant flaw in the general threshold. In order to tackle this limitation, some
researchers have optimized it [42,43], as represented by:

λj =
M
(
Wj
)

C

√
2 ln
(

L
(
Wj
))

ln(j + 1)
(13)

where λj is the threshold for the j-th layer of wavelet coefficients. This threshold function
optimizes the selection of thresholds. When there is a large number of sampling points,
increasing the decomposition level helps to mitigate the rate at which the threshold rises,
ensuring that λj does not become excessively large. We compute the NSE coefficient for Dj
(j = 1, 2, 3, . . .. . ., 16) after denoising:

H
(

Dj
)
= −

I

∑
i=1

∣∣Dj[i]
∣∣2 log

∣∣Dj[i]
∣∣2 (14)

where I represents the length of Dj. The feature vector of PWPE is computed as follows:

vpwpe = [H(D1), H(D2), . . . , H(D16)] (15)
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2.4. Speaker Recognition Model ECA-Res2Net-TDNN

The ECAPA-TDNN model captures global properties by introducing the SE module
and the channel attention mechanism. Through multi-layer feature aggregation and sum-
mation, as well as channel- and context-dependent statistics pooling, the output features of
all SE-Res2Blocks are concatenated and used to generate attention-based statistical pooling
features. ECAPA-TDNN has achieved state-of-the-art results on several benchmark speech
recognition datasets and is considered one of the most effective approaches to speech
recognition currently available [44,45]. However, ECAPA-TDNN is noise-sensitive, and its
performance can be affected by acoustic noise, such as environmental noise.

This paper improves the ECAPA-TDNN model to enhance its robustness. Firstly,
instead of using MFCC features as the input, it replaces them with the proposed perceptual
wavelet entropy features that have undergone speech enhancement. Meanwhile, ECAPA-
TDNN utilizes SE-Net to weight the feature channels, which involves compression that
leads to the loss of some features. As the input features have already been pruned, the
parameter size is reduced by 75%. In this case, feature compression is avoided, and the ECA
network is utilized to learn channel weights, thus mitigating the impact of dimensionality
reduction on channel attention learning. The ECA network consists of non-reduced GPA-
aggregated convolutional features, where the kernel size ‘k’ can be determined adaptively
and implemented using fast one-dimensional convolution [46]. Finally, the channel atten-
tion mechanism is acquired through the utilization of the sigmoid function. The structure
is illustrated in Figure 4a.
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When the ECA network is connected to Res2Net, the structure of ECA-Res2Net is
shown in Figure 4b. The first layer performs convolutional operations with a kernel size of
1, which transforms the feature channels at each pixel. Then, the first layer’s feature maps
are evenly divided into n identical feature maps in terms of the feature channels. In the
second layer, the first feature map remains unchanged, while each subsequent feature map
undergoes convolutional operations with a kernel size of 3. Each output is then connected
through residual connections. Finally, the last layer uses a convolutional operation with a
kernel size of 1 to restore the feature channels for each pixel.

The integration of the ECA-Block layer improves the performance of the system while
significantly reducing the number of model parameters. In the ECAPA-TDNN architecture,
the SE-Res2Net is replaced with ECA-Res2Net, and the network depth is increased. In
the ECAPA-TDNN network structure with ECA-Res2Block, the fourth expansion factor
dilation = 5 is added to improve the performance of the model in complex scenarios.



Mathematics 2023, 11, 4205 10 of 20

Instead of using attentive stat pooling in ECAPA-TDNN, this paper modifies it to
a structure with a multi-head attention pooling and batch normalization (BN) structure.
Multi-query multi-head attention pooling is a time-series pooling with multiple attention
heads, dividing the model into multiple subspaces, each of which can obtain a better
expressive power. The multi-head attention mechanism can also enhance the robustness of
the model, so that even if some features are not well represented in some subspaces, they
can still be well represented in other subspaces.

The structure of the multi-head attention is shown in Figure 5. First, it calculates
attention separately in four different attention heads. X is multiplied with the weight
matrices. Then, the attention is calculated using the resulting Q/K/V matrices. Finally, the
resulting Z matrices are calculated and multiplied with weight matrix W0 to produce the
output of the layer.

Figure 5. The structure of the multi-head attention.

In ECAPA-TDNN, the AAM-softmax loss function is used. This paper modifies it to
the sub-center ArcFace loss function layer, which is not affected by noise in the data. The
weight matrix W consists of rows representing the learned center points of each speaker.
Out of the K center points, one is designated as the dominant center point, while the K-1
center points represent non-dominant noise samples. The cosine distance is calculated
between each center point and the embedding code to derive a similarity matrix. During
the training, a penalty strategy is applied to the angle between the embedding code and
the speaker center points, promoting inter-class separability and intra-class compactness.
The similarity matrix is pooled along each row, and then the softmax loss is computed. The
formula of the loss computing is as follows:

L = − log

 es cos θj

N
∑

i=0
es cos θi

 (16)
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The proposed structure of the ECA-Res2Net TDNN model is shown in Figure 6. The
first TDNN layer consists of one-dimensional convolution, the ReLU activation function,
and batch normalization, with the structural parameters k = 5 and d = 1. The second, third,
fourth, and fifth layers adopt the Res2Net structure with an ECA lightweight attention
mechanism. The outputs of the four modules are concatenated along the feature dimension.
The sixth layer is a structure with multi-head attention statistical pooling. The seventh
layer is a fully connected layer with batch normalization, used for the linear transformation
of the final features. The last layer is the sub-center ArcFace loss function layer.
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3. Results and Discussion

This section first introduces the construction and partitioning of the dataset, analyzing
single-scene and cross-scene voiceprint recognition for each scenario separately. Based
on the recognition results and the noise decibels of each scene, they are categorized into
three noise levels: low, medium, and high. The cross-scene recognition performance of the
different models is compared using the data from each noise level. Finally, the recognition
time of each model is compared, and ablation experiments are conducted on the individual
modules of the proposed model.

3.1. Dataset Construction and Analysis

In order to study cross-scene recognition problems, this paper used a Chinese celebrity
voiceprint database called CNCeleb, published by the Center for Speech and Language
Technology at Tsinghua University. This database collects voice clips of 3000 Chinese
celebrities published on the Internet. One notable characteristic of this database is its diverse
range of scenes, including singing, interviews, speeches, entertainment, and 11 other scenes.
It provides a rich dataset for cross-scene analysis because celebrities are more likely to
appear in multiple scenes. For example, a singer may also participate in interviews, and a
comedian may also act in movies. To evaluate the performance of state-of-the-art voiceprint
recognition models on the CNCeleb database, this paper conducted separate tests for each
individual scene with EER, a widely used performance metric in speaker recognition tasks.
It represents the point at which the false acceptance rate (FAR) equals the false rejection rate
(FRR) in a recognition system. The calculation method for the TPR and FPR is as follows:

TPR =
TP

TP + FN
(17)

FPR =
FP

FP + TN
(18)
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where TP stands for true positive, which refers to the instances where the model correctly
identifies positive samples as positive. FN stands for false negative, which indicates cases
where the model incorrectly classifies positive samples as negative.

The results are shown in Table 1. It can be observed that the recognition rates vary
significantly across different scenes. Clear and simple scenes, such as speeches, interviews,
and live broadcasts, perform well (EER ≈ 5%), while the recognition rates for movies
and songs are much lower (EER ≈ 10–20%). However, when the models are trained and
tested on a mixture of overall scenes, the results are not satisfactory. Despite achieving a
good performance in individual scenes, the performance in mixed scenes is subpar. This
performance discrepancy is attributed to the challenge of cross-scene recognition.

Table 1. The data partition of the CNCeleb dataset and the single/mixture scene recognition perfor-
mance (EER%) of the ECAPA-TDNN and x-vector.

Genres Speakers Utterances ECAPA-TDNN x-Vector

Advertisement 75 781 8.16 9.37
Drama 377 4521 10.22 11.70

Entertainment 1020 18,931 6.75 7.31
Interview 1253 41,586 6.12 6.98

Live broadcast 496 154,249 4.87 5.42
Movie 165 1495 10.35 11.47
Play 170 5476 10.61 11.56

Recitation 259 58,839 15.66 16.55
Singing 683 32,279 19.12 20.86
Speech 331 39,792 3.10 3.21
Vlog 524 120,812 4.63 5.31

Overall 3000 485,361 26.78 27.43

From Table 1, it can be observed that the singing scene has the highest EER, while the
speech scene has the best recognition rate. This could be related to the different noise levels
in each scene. Then, the noise decibel range is calculated for each scene, and the results are
shown in Figure 7.
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3.2. Dataset Partitioning and Recognition Performance of Different Scenes 

Figure 7. The distribution of noise levels in different scenes.

It can be observed that the singing scene has the highest noise levels, while the speech
scene has the lowest noise levels. This is in line with expectations, as higher noise levels tend
to result in a lower recognition accuracy. The points below the box plot represent outliers.
In addition to the single-scene speaker recognition discussed above, cross-scene recognition
holds greater significance. The CNCeleb database provides abundant cross-scene speech
data. In the CNCeleb database, there are 558 celebrities who appear in two different scenes,
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405 celebrities who appear in three different scenes, 361 celebrities who feature in four
different scenes, and 79 celebrities who appear in five or more scenes.

Figure 8 presents the cross-scene recognition performance of the ECAPA-TDNN
system on the CNCeleb test set. Each column represents a registration scene, each row
represents a verification scene, and the numbers in each cell represent the corresponding
EER results for registration and verification scenes. It can be observed that the cross-
scene recognition performance is significantly lower than the single-scene recognition
performance in almost all recognition tasks. For example, when registered in the speech
scene and verified in the same speech scene, the EER is 3.1%. However, when verified in
the singing scene, the EER increases to 20.24% and, when verified in the advertisement
scene, the EER reaches 23.12%. The singing testing scene, which has the highest noise
levels, exhibits the highest EER.
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3.2. Dataset Partitioning and Recognition Performance of Different Scenes

The division of noise decibel levels is typically determined based on specific ap-
plications, domains, and regulations. Therefore, there is no standardized international
classification for noise decibel levels. In general, the noise levels in various environments
can be described as follows:

1. Quiet environments, such as normal indoor conversations and silent libraries, are
typically around 40–60 decibels. At this point, speech can be heard clearly.

2. Normal conversations, TV volume, office noise, city traffic noise, etc., are generally
around 60–70 decibels, and speech can be heard normally at this level.

3. High-volume music, vehicle noise, construction site noise, etc., are typically around
70–100 decibels, making it difficult to hear speech clearly at this level.

Based on the analysis above, the 11 scenes were divided into three levels: low noise,
medium noise, and high noise, as shown in Table 2.

Scenes with low noise have clearer pronunciation and a better recognition performance,
while scenes with high noise have more background noise, making recognition relatively
difficult. All the scenes were tested with the proposed PWPE-ECA-Res2Net-TDNN model,
and the results are shown in Figure 9. In the figure, the cases where “Speech” is used as
the registration scene, and “Advertisement” is used as the verification scene, as well as
the cases where “Advertisement” is used as the registration scene, and “Speech” is used
as the verification scene, have the highest EER. At the same time, speech recognition in a
single scene has the lowest EER, which contradicts previous finding that higher noise levels
lead to a lower accuracy. It can be observed that the EERs of the test scenes with medium
and high noise levels are relatively consistent, indicating that the proposed model has a
certain level of robustness for robust recognition in noisy cross-scene scenarios. Another
set of experiments was designed to validate the advantages of the proposed model at a
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high level of noise. The 11 scenes were merged into low, medium, and high noise levels,
and the EER and accuracy of the PWPE-ECA-Res2Net-TDNN model and the traditional
MFCC-ECAPA-TDNN model were tested through registering and verifying scenes with
the three noise levels. Accuracy is a commonly used performance metric in classification
tasks. The formula to calculate accuracy is:

Accuracy =
TP + TN

TP + TN + FP + FN
(19)

where TP represents true positive and denotes the number of correctly predicted positive
samples. TN represents true negative and denotes the number of correctly predicted
negative samples. FP represents false positive and denotes the number of negative samples
incorrectly predicted as positive. FN represents false negative and denotes the number of
positive samples incorrectly predicted as negative.

Table 2. Noise level classification of the different scenes.

Scenes Noise Level Decibel Interval

Speech

Low 40–60 db
Vlog

Live broadcast
Interview

Entertainment

Medium 60–70 db
Advertisement

Drama
Movie
Play

Recitation High >70 dbSinging

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 21 
 

 

 
Figure 9. The recognition performance (EER%) of different scenes using the PWPE-ECA-Res2Net-
TDNN model. 

The results are shown in Figures 10 and 11. It can be seen that both models achieve 
good recognition results in the low-noise scenes. However, in the medium- and high-noise 
test scenes, the traditional MFCC-based ECAPA-TDNN model with feature extraction ex-
periences a significant drop in recognition performance, with an EER reduction of approx-
imately 10%. On the other hand, the PWPE-ECA-Res2Net-TDNN model, which uses 
PWPE as the feature extraction, maintains an EER of less than 8%, indicating that the pro-
posed model is more suitable for cross-scene recognition in medium- and high-level noise 
scenarios than the traditional model. 

 
(a)  (b)  (c)  

Figure 10. The recognition EER (%) and accuracy (%) of the PWPE-ECA-Res2Net-TDNN model in 
low-, medium-, and high-level noise scenes for three different scenarios. (a) Low-level noise, (b) 
medium-level noise, and (c) high-level noise. 

A
cc

ur
ac

y

Low Medium High0

5

10

15

20

25

30

EE
R

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0
EER(%) Accuracy(%)

Low Medium High0

5

10

15

20

25

30

EE
R

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

A
cc

ur
ac

y

EER(%) Accuracy(%)

Low Medium High0

5

10

15

20

25

30

EE
R

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

A
cc

ur
ac

y

EER(%) Accuracy(%)

Figure 9. The recognition performance (EER%) of different scenes using the PWPE-ECA-Res2Net-
TDNN model.
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The results are shown in Figures 10 and 11. It can be seen that both models achieve
good recognition results in the low-noise scenes. However, in the medium- and high-noise
test scenes, the traditional MFCC-based ECAPA-TDNN model with feature extraction
experiences a significant drop in recognition performance, with an EER reduction of
approximately 10%. On the other hand, the PWPE-ECA-Res2Net-TDNN model, which
uses PWPE as the feature extraction, maintains an EER of less than 8%, indicating that the
proposed model is more suitable for cross-scene recognition in medium- and high-level
noise scenarios than the traditional model.
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Figure 10. The recognition EER (%) and accuracy (%) of the PWPE-ECA-Res2Net-TDNN model
in low-, medium-, and high-level noise scenes for three different scenarios. (a) Low-level noise,
(b) medium-level noise, and (c) high-level noise.
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Figure 11. The recognition EER (%) and accuracy (%) of the MFCC-ECAPA-TDNN model in low-,
medium-, and high-level noise scenes for three different scenarios. (a) Low-level noise, (b) medium-
level noise, (c) high-level noise.

3.3. Ablation Experiments on Different Feature Extraction Methods and Models

Based on the above analysis, comparative experiments on several representative
scenarios were conducted to validate the effectiveness of the proposed modules in cross-
scene recognition. The speech and advertisement scenes were selected as the registration
speech, and then the advertisement, speech, and singing scenes were chosen as validation
scenes. The recognition performance (EER%) of the ECAPA-TDNN model using MFCC as
the input features was compared with the ECAPA-TDNN model using PWPE as the input
features, both with speech enhancement. And they were also compared with the proposed
ECA-Res2Net-TDNN model using PWPE as the enhanced input features. The results are
shown in Table 3.

Based on the above results, it can be observed that the ECAPA-TDNN model with
PWPE extracted features has an EER reduction of approximately 1% compared to the
ECAPA-TDNN model with MFCC extracted features. This indicates that PWPE is more
suitable for feature extraction in noisy environments. Furthermore, the proposed ECA-
Res2Net-TDNN model outperforms the ECAPA-TDNN model with the same PWPE feature
extraction. It is also evident that the proposed model exhibits significant improvement in
cross-scene scenarios, with an increase of approximately 2% in EER. However, the improve-
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ment in recognition performance is not substantial in single-scene scenarios, reaffirming
that the model is particularly suitable for cross-scene recognition.

Table 3. Comparison of recognition performance (EER%) in typical cross-scene scenarios for ECAPA-
TDNN with MFCC and PWPE input features, and ECA-Res2Net-TDNN with PWPE input features.

Enroll Speech Speech Speech Advertisement Advertisement

Test Advertisement Singing Speech Advertisement Singing

MFCC/ECAPA-TDNN 28.36 23.43 3.10 8.16 23.66
PWPE/ECAPA-TDNN 26.78 22.69 3.02 8.06 21.27

PWPE/ECA-Res2Net-TDNN 25.50 21.52 2.99 7.98 20.45

3.4. Model Complexity and Recognition Time of Different Models

The ECA-Res2Net-TDNN model proposed in this paper consists of a total of 214 layers
in the network, comprising 9024 neurons. The TDNN layer consists of four layers in total:
an input layer, two hidden layers, and an output layer, with a total of 64 neurons. There are
four ECA-Res2Net modules, each containing 50 layers in each block, with 2048 neurons
per block. The second TDNN layer has three network layers, totaling 128 neurons. The
multi-head attention module comprises four attention heads, with each head including
64 neurons, totaling 256 neurons. The fully connected and batch normalization layers,
together, comprise 256 neurons. The sub-center ArcFace has a total of 128 neurons.

While the complexity of this model has increased compared to the ECAPA-TDNN
model with 163 layers, this increase in complexity allows us to better capture the rich fea-
tures in the voiceprint data and, thus, further improve the recognition accuracy. Although
this may result in some additional computational costs and resource consumption, from a
performance perspective, it is justifiable, as it leads to significant performance improve-
ments. In practical applications, we believe that the improvement in accuracy outweighs
the increase in complexity, especially for critical tasks, such as voiceprint recognition. Next,
we will compare how the increase in model complexity affects the recognition time.

Figure 12a compares the recognition accuracy (DCF) and recognition time of the
three speaker recognition models on test utterances of different durations. The recognition
time refers to the time taken by the speaker recognition models to identify the speaker from
3, 5, and 7 s of test speech, respectively. DCF represents the detection cost function. The
formula to calculate the detection cost function (DCF) is as follows:

DCF = Cmiss · Pmiss · Ptarget + Cfalse alarm · Pfalse alarm ·
(
1− Ptarget

)
(20)

where Cmiss is the cost of missing detection, and Pmiss is the probability of missing detection,
which is the probability of classifying actual positive samples as negative. Ptarget is the
target prior probability, representing the actual occurrence probability of positive samples.
Cfalse alarm is the cost of a false alarm, and Pfalse alarm is the probability of a false alarm,
which is the probability of classifying actual negative samples as positive.

Figure 12a shows that the MFCC/ECAPA-TDNN model has the shortest overall
recognition time, approximately 5.26 s. The PWPE/ECAPA-TDNN model has a medium
recognition time of around 6.45 s. The recognition time of the proposed PWPE/ECA-
Res2Net-TDNN model is 6.89 s, which is only about 1.5 s longer than the traditional
model, indicating that the recognition time of the PWPE/ECA-Res2Net-TDNN model is
still relatively short, even under the highest recognition rate conditions.

In addition, Figure 12b shows that when a 3 s speech is used in the experiment, all
speaker verification models achieve the lowest accuracy. This is because a 3 s speech is
too short to contain sufficient speaker information, which affects the performance of the
speaker verification models. When the test speech duration increased from 3 s to 5 s, the
accuracy of the speaker verification models improved by around 4%. However, when
the test speech duration increased from 5 s to 7 s, the accuracy of the speaker verification
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models only improved by around 1%. Considering the trade-off between model perfor-
mance and computational cost, it is more appropriate to use a 5 s test speech as input for
speaker identification.
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3.5. Ablation Experiments on Different Modules of PWPE/ECA-Res2Net-TDNN

Ablation experiments on the components were further conducted, which are intro-
duced in Section 4. Speech was used as the training data, and singing as the test data, with
PWPE as the input feature. Table 4 provides an overview of the results of these experiments.

Table 4. Comparative analysis of ablation experiments on various modules.

CAM Attention Loss EER (%)

A ECA Multi-head Sub-center ArcFace 21.52
A1 SE Multi-head Sub-center ArcFace 21.90
A2 ECA Attentive statistics Sub-center ArcFace 21.63
A3 ECA Multi-head AAM softmax 21.72

To evaluate the channel attention mechanism (CAM) module, Experiment A1 was con-
ducted, where the proposed ECA module was not utilized. The results showed an increase
of approximately 0.38% in EER, demonstrating the benefits of learning channel weights
with an uncompressed ECA network for improving system performance. To investigate the
proposed attention module, Experiment A2 was performed, and incorporated a multi-head
attention mechanism. It resulted in a reduction of approximately 0.11% in EER, indicating
the effectiveness of incorporating the multi-head attention mechanism. To study the effect
of the loss function on the model, Experiment A3 was conducted, and the AAM softmax
loss function was used. The EER increased by 0.2%, indicating that the utilization of the
sub-center ArcFace loss function is effective in improving the recognition performance.

4. Conclusions

This paper proposes a cross-scenario speaker recognition model based on PWPE
and ECA-Res2Net-TDNN. Through the improvement of the feature extraction method of
ECAPA-TDNN, the perceptual wavelet entropy feature is combined with the proposed
speaker recognition model, and wavelet threshold denoising is applied to reduce the
influence of input noise. The experimental results show that, compared to the ECAPA-
TDNN model using MFCC features, the PWPE-based ECAPA-TDNN model performs
better in terms of recognition accuracy and has better noise resistance. Furthermore, this
paper also made improvements to the classical speaker recognition model. It combined the
non-dimensional-reducing ECA block with Res2Net to assign weights to feature channels
and introduced a multi-head attention mechanism. This allowed the model to learn
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different behaviors without focusing attention excessively on its own position. The paper
also introduced the sub-center ArcFace loss function module to mitigate the effects of noise
in the data and enhance the robustness of the model.

A set of experiments is designed, where the 11 scenes in the dataset are divided
into three levels of high, medium, and low noise. Firstly, the MFCC-ECAPA-TDNN and
PWPE-ECA-Res2Net-TDNN models are tested for their speaker recognition performance in
these three levels of environmental noise. The experimental results show that the ECAPA-
TDNN model with PWPE extracted features shows an EER reduction of approximately 1%
compared to the ECAPA-TDNN model with MFCC extracted features. Furthermore, the
proposed ECA-Res2Net-TDNN model outperforms the ECAPA-TDNN model based on the
same PWPE feature extraction, with an increase of approximately 2% in EER. This results
validate the theory that the PWPE-ECA-Res2Net-TDNN model significantly improves the
robustness of the model in moderate-to-high-noise environments. Secondly, a comparison
of the recognition time across different models was conducted. The result shows the
model maintains a relatively short recognition time even under the highest recognition rate
conditions. Finally, a set of ablation experiments targeting each module in the proposed
model is conducted. The results indicate that each module contributes to an improvement
in the recognition performance, demonstrating the effectiveness of the proposed modules
in enhancing the system.

The limitation of this work is that, although the proposed network architecture shows
improvements in cross-scene recognition, it does not have any advantage in terms of
computational time compared to other speaker recognition models. There is a signifi-
cant bottleneck in terms of the computational performance, and further consideration
is required of how this can be addressed through alternative approaches with a lower
computational cost.
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