Unit Exponential Probability Distribution: Characterization and Applications in Environmental and Engineering Data Modeling
Abstract
:1. Introduction
- (i)
- Log transformation approaches;
- (ii)
- The CDF and quantile methodology;
- (iii)
- Reciprocal transformation;
- (iv)
- Exponential transformation;
- (v)
- The conditional distribution methodology;
- (vi)
- The T-X family approach.
2. The Proposed Unit Exponential Distribution
2.1. Properties of the Model
2.1.1. Quantile
2.1.2. Mode
2.1.3. Behavior of the PDF at and
2.1.4. Moments
2.1.5. Failure (Hazard) Rate Function
2.2. Characterizations
3. Estimation and Simulation Procedures
Simulation Study
- Set-I: , ;
- Set-II: , ;
- Set-III: , ;
- Set-IV: , .
4. Model Compatibility and Its Application to Real-World Data
4.1. Measures of Goodness-of-Fit
- The Kolmogorov–Smirnov (KS) test, whose test-statistics are defined by
- The Anderson–Darling (AD) test, which usually attaches more mass to the distributions tails and whose test-statistics are
- The Cramér–von Mises (CVM)-test is a derived version of the KS test, with test-statistics defined by
- The Akaike information criterion (AIC), defined as
- The corrected Akaike information criterion (AICc), expressed as
- The Bayesian information criterion (BIC), which is defined as
- The Hannan–Quinn information criterion (HQIC), expressed as
- The consistent Akaike information criterion (CAIC), given as
- The Vuong test was also used for model selection purposes.
4.2. Comparative Models
4.3. Environmental Datasets
- -
- Soil moisture (Dataset I): 0.0179, 0.0798, 0.0959, 0.0444, 0.0938, 0.0443, 0.0917, 0.0882, 0.0439, 0.049, 0.0774, 0.0171, 0.0305, 0.0757, and 0.0468;
- -
- Permanent wilting points (PWP) (Dataset II): 0.0821, 0.0561, 0.0202, 0.051, 0.0041, 0.0226, 0.0556, 0.0829, 0.0062, 0.0695, 0.0557, 0.0243, 0.0083, 0.0532, and 0.0118.
4.4. Engineering Datasets
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fleiss, J.L.; Levin, B.; Paik, M.C. Statistical Methods for Rates and Proportions, 3rd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1993. [Google Scholar]
- Gilchrist, W. Statistical Modelling with Quantile Functions; CRC Press: Abingdon, UK, 2000. [Google Scholar]
- Seber, G.A.F. Statistical Models for Proportions and Probabilities; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Bayes, T. An Essay Towards Solving a Problem in the Doctrine of Chances. By the late Rev. Mr. Bayes, F.R.S. communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S. Philos. Trans. R. Soc. 1763, 53, 370–418. [Google Scholar] [CrossRef]
- Leipnik, R.B. Distribution of the Serial Correlation Coefficient in a Circularly Correlated Universe. Ann. Math. Stat. 1947, 18, 80–87. [Google Scholar] [CrossRef]
- Johnson, N. Systems of Frequency Curves Derived From the First Law of Laplace. Trabajos Estadistica 1955, 5, 283–291. [Google Scholar] [CrossRef]
- Jørgensen, B. Proper Dispersion Models. Braz. J. Probab. Stat. 1997, 11, 89–128. [Google Scholar]
- Kumaraswamy, P. A Generalized Probability Density Function for Double-Bounded Random Processes. J. Hydrol. 1980, 46, 79–88. [Google Scholar] [CrossRef]
- Topp, C.W.; Leone, F.C. A Family of J-Shaped Frequency Functions. J. Am. Stat. Assoc. 1955, 50, 209–219. [Google Scholar] [CrossRef]
- Consul, P.C.; Jain, G.C. On the Log-Gamma Distribution and Its Properties. Stat. Hefte 1971, 12, 100–106. [Google Scholar] [CrossRef]
- Smithson, M.; Shou, Y. CDF-Quantile. Distributions for Modelling RVs on the Unit Interval. Br. J. Math. Stat. Psychol. 2017, 70, 412–438. [Google Scholar] [CrossRef]
- Nakamura, L.R.; Cerqueira, P.H.R.; Ramires, T.G.; Pescim, R.R.; Rigby, R.A.; Stasinopoulos, D.M. A New Continuous Distribution on the Unit Interval Applied to Modelling the Points Ratio of Football Teams. J. Appl. Stat. 2019, 46, 416–431. [Google Scholar] [CrossRef]
- Ghitany, M.E.; Mazucheli, J.; Menezes, A.F.B.; Alqallaf, F. The Unit-Inverse Gaussian Distribution: A New Alternative to Two-Parameter Distributions on the Unit Interval. Commun. Stat. Theory Methods 2019, 48, 3423–3438. [Google Scholar] [CrossRef]
- Altun, E.; Hamedani, G. The Log-Xgamma Distribution with Inference and Application. J. Soc. Fr. Stat. 2018, 159, 40–55. [Google Scholar]
- Mazucheli, J.; Menezes, A.F.; Dey, S. Unit-Gompertz Distribution with Applications. Statistica 2019, 79, 25–43. [Google Scholar] [CrossRef]
- Mazucheli, J.; Menezes, A.F.B.; Chakraborty, S. On the One Parameter Unit-Lindley Distribution and Its Associated Regression Model for Proportion Data. J. Appl. Stat. 2019, 46, 700–714. [Google Scholar] [CrossRef]
- Mazucheli, J.; Menezes, A.F.B.; Fernandes, L.B.; de Oliveira, R.P.; Ghitany, M.E. The Unit-Weibull Distribution as an Alternative to the Kumaraswamy Distribution for the Modeling of Quantiles Conditional on Covariates. J. Appl. Stat. 2019, 47, 954–974. [Google Scholar] [CrossRef]
- Altun, E. The Log-Weighted Exponential Regression Model: Alternative to the Beta Regression Model. Commun. Stat. Theory Methods 2020, 50, 2306–2321. [Google Scholar] [CrossRef]
- Gündüz, S.; Mustafa, Ç.; Korkmaz, M.C. A New Unit Distribution Based on the Unbounded Johnson Distribution Rule: The Unit Johnson SU Distribution. Pak. J. Stat. Oper. Res. 2020, 16, 471–490. [Google Scholar] [CrossRef]
- Korkmaz, M.Ç.; Korkmaz, Z.S. The Unit Log–log Distribution: A New Unit Distribution with Alternative Quantile Regression Modeling and Educational Measurements Applications. J. Appl. Stat. 2023, 50, 889–908. [Google Scholar] [CrossRef]
- Afify, A.Z.; Nassar, M.; Kumar, D.; Cordeiro, G.M. A New Unit Distribution: Properties and Applications. Electron. J. Appl. Stat. 2022, 15, 460–484. [Google Scholar]
- Fayomi, A.; Hassan, A.S.; Baaqeel, H.; Almetwally, E.M. Bayesian Inference and Data Analysis of the Unit–Power Burr X Distribution. Axioms 2023, 12, 297. [Google Scholar] [CrossRef]
- Krishna, A.; Maya, R.; Chesneau, C.; Irshad, M.R. The Unit Teissier Distribution and Its Applications. Math. Comput. Appl. 2022, 27, 12. [Google Scholar] [CrossRef]
- Biswas, A.; Chakraborty, S. A new method for constructing continuous distributions on the unit interval. arXiv 2021, arXiv:2101.04661. [Google Scholar]
- Dombi, J.; Jónás, T.; Tóth, Z.E. The Epsilon Probability Distribution and its Application in Reliability Theory. Acta Polytech. Hung. 2018, 15, 197–216. [Google Scholar]
- Aslam, M.; Noor, F.; Ali, S. Shifted Exponential Distribution: Bayesian Estimation, Prediction and Expected Test Time Under Progressive Censoring. J. Test. Eval. 2020, 48, 1576–1593. [Google Scholar] [CrossRef]
- Artzner, P.; Delbaen, F.; Eber, J.-M.; Heath, D. Coherent Measures of Risk. Math. Financ. 1999, 9, 203–228. [Google Scholar] [CrossRef]
- Ahsanullah, M.; Shakil, M.; Kibria, B.M.G. Characterizations of Continuous Distributions by Truncated Moment. J. Mod. Appl. Stat. Methods 2016, 15, 316–331. [Google Scholar] [CrossRef]
- Ahsanullah, M.; Ghitany, M.E.; Al-Mutairi, D.K. Characterization of Lindley Distribution by Truncated Moments. Commun. Stat. Theory Methods 2017, 46, 6222–6227. [Google Scholar] [CrossRef]
- Hamedani, G.G. Characterizations of Univariate Continuous Distributions Based on Truncated Moments of Functions of Order Statistics. Stud. Sci. Math. Hung. 2010, 47, 462–468. [Google Scholar] [CrossRef]
- Glánzel, W. A Characterization Theorem Based on Truncated Moments and Its Application to Some Distribution Families. In Mathematical Statistics and Probability Vol. B; Bauer, P., Konecny, F., Wertz, W., Eds.; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1987; pp. 75–84. [Google Scholar]
- Lindsay, B.G.; Li, B. On second-order optimality of the observed Fisher information. Ann. Stat. 1997, 25, 2172–2199. [Google Scholar] [CrossRef]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Control 1974, 9, 716–723. [Google Scholar] [CrossRef]
- Hussain, T.; Bakouch, H.S.; Chesneau, C. A New Probability Model with Application to Heavy-Tailed Hydrological Data. Environ. Ecol. Stat. 2019, 26, 127–151. [Google Scholar] [CrossRef]
- Murthy, D.N.P.; Xie, M.; Jiang, R. Weibull Models; John Wiley and Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Vuong, Q.H. Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses. Econometrica 1989, 57, 307–333. [Google Scholar] [CrossRef]
- Maity, R. Statistical Methods in Hydrology and Hydroclimatology; Springer Nature Singapore Pte Ltd.: Singapore, 2018. [Google Scholar]
- Aarset, M.V. How to Identify a Bathtub Hazard Rate. IEEE Trans. Reliab. 1987, 36, 106–108. [Google Scholar] [CrossRef]
- Dasgupta, R. On the Distribution of. Burr with Applications. Sankhya B 2011, 73, 1–19. [Google Scholar] [CrossRef]
- Dey, S.; Mazucheli, J.; Anis, M. Estimation of Reliability of Multicomponent Stress–strength for a Kumaraswamy Distribution. Commun. Stat. Theory Methods 2017, 46, 1560–1572. [Google Scholar] [CrossRef]
- Dey, S.; Mazucheli, J.; Nadarajah, S. Kumaraswamy Distribution: Different Methods of Estimation. Comput. Appl. Math. 2018, 37, 2094–2111. [Google Scholar] [CrossRef]
- ZeinEldin, R.A.; Chesneau, C.; Jamal, F.; Elgarhy, M. Different Estimation Methods for Type I Half-Logistic Topp–Leone Distribution. Mathematics 2019, 7, 985. [Google Scholar] [CrossRef]
Sample Size | Parameter | Estimate | Bias | MSE | LCL | UCL |
---|---|---|---|---|---|---|
n = 25 | 0.9417 | −0.0439 | 0.0111 | 0.9335 | 0.9499 | |
0.2180 | 0.0013 | 0.00008 | 0.2172 | 0.2189 | ||
n = 50 | 0.9511 | −0.0344 | 0.0068 | 0.9479 | 0.9544 | |
0.2189 | 0.0012 | 0.00007 | 0.2186 | 0.2193 | ||
n = 150 | 0.9655 | −0.0200 | 0.0032 | 0.9648 | 0.9663 | |
0.2192 | 0.0014 | 0.00004 | 0.2192 | 0.2192 | ||
n = 350 | 0.9685 | −0.0171 | 0.0022 | 0.9683 | 0.9688 | |
0.2194 | 0.0016 | 0.00003 | 0.2194 | 0.2194 | ||
n = 500 | 0.9729 | −0.0126 | 0.0015 | 0.9728 | 0.9732 | |
0.2194 | 0.0016 | 0.00002 | 0.2194 | 0.2194 |
Sample Size | Parameter | Estimate | Bias | MSE | LCL | UCL |
---|---|---|---|---|---|---|
n = 25 | 1.8547 | −0.0438 | 0.0472 | 1.8376 | 1.8717 | |
0.3140 | −0.0077 | 0.0004 | 0.3125 | 0.3155 | ||
n = 50 | 1.8902 | −0.0084 | 0.0230 | 1.8843 | 1.8962 | |
0.3149 | −0.0068 | 0.0003 | 0.3143 | 0.3156 | ||
n = 150 | 1.9204 | 0.0217 | 0.0117 | 1.9161 | 1.9246 | |
0.3167 | −0.0050 | 0.0001 | 0.3163 | 0.3172 | ||
n = 350 | 1.9346 | 0.0359 | 0.0071 | 1.9341 | 1.9352 | |
0.3171 | −0.0046 | 0.0001 | 0.3172 | 0.3172 | ||
n = 500 | 1.9337 | 0.0351 | 0.0063 | 1.9334 | 1.9342 | |
0.3171 | −0.0047 | 0.00008 | 0.3170 | 0.3171 |
Sample Size | Parameter | Estimate | Bias | MSE | LCL | UCL |
---|---|---|---|---|---|---|
n = 25 | 2.3256 | −0.1133 | 0.0578 | 2.307 | 2.3445 | |
2.4995 | −0.0149 | 0.0126 | 2.4908 | 2.5084 | ||
n = 50 | 2.3539 | −0.0850 | 0.0316 | 2.3472 | 2.3620 | |
2.4871 | −0.0274 | 0.0136 | 2.4826 | 2.4916 | ||
n = 150 | 2.3915 | −0.0475 | 0.0123 | 2.3900 | 2.3929 | |
2.5121 | −0.0023 | 0.0048 | 2.5113 | 2.5132 | ||
n = 350 | 2.4044 | −0.0345 | 0.0065 | 2.4040 | 2.40491 | |
2.5155 | 0.0010 | 0.0028 | 2.5152 | 2.5158 | ||
n = 500 | 2.4051 | −0.0338 | 0.0052 | 2.4048 | 2.4055 | |
2.5180 | 0.0035 | 0.0023 | 2.5179 | 2.5183 |
Sample Size | Parameter | Estimate | Bias | MSE | LCL | UCL |
---|---|---|---|---|---|---|
n = 25 | 0.4173 | −0.0217 | 0.0024 | 0.4134 | 0.4212 | |
1.5168 | 0.0023 | 0.0037 | 1.5120 | 1.5215 | ||
n = 50 | 0.4251 | −0.0138 | 0.0013 | 0.4237 | 0.4264 | |
1.5166 | 0.0021 | 0.0027 | 1.5146 | 1.5186 | ||
n = 150 | 0.4285 | −0.0105 | 0.0007 | 0.4281 | 0.4288 | |
1.5205 | 0.0060 | 0.0015 | 1.5200 | 1.5210 | ||
n = 350 | 0.4314 | −0.0076 | 0.0004 | 0.4313 | 0.4315 | |
1.5236 | 0.0091 | 0.0009 | 1.5234 | 1.5238 | ||
n = 500 | 0.4332 | −0.0058 | 0.0003 | 0.4332 | 0.4333 | |
1.5203 | 0.0058 | 0.0009 | 1.5202 | 1.5203 |
Dataset | SS | Mean | Median | SD | SK | KU |
---|---|---|---|---|---|---|
I | 15 | 0.0598 | 0.0490 | 0.0277 | −0.1083 | 1.6247 |
II | 15 | 0.0402 | 0.0510 | 0.0277 | 0.1083 | 1.6247 |
Dataset | SS | Mean | Median | SD | SK | KU |
---|---|---|---|---|---|---|
I | 15 | 0.0606 | 0.0621 | 0.0254 | −0.2107 | 2.3825 |
II | 15 | 0.0406 | 0.0384 | 0.0247 | 0.2942 | 2.3050 |
Distribution | CVM | AD | KS | p-Value | ||
---|---|---|---|---|---|---|
UED | 18.4218 | 0.0773 | 0.6239 | 0.1026 | 0.2079 | 0.5361 |
BD | 3.8233 | 60.2492 | 0.6858 | 0.1041 | 0.2099 | 0.5232 |
KwD | 719.3842 | 2.4408 | 0.6887 | 0.1109 | 0.2003 | 0.5844 |
JSBD | 4.9859 | 1.7279 | 0.7751 | 0.1117 | 0.2128 | 0.5056 |
UGoMD | 1.6525 | 0.0048 | 1.0587 | 0.1613 | 0.2353 | 0.3769 |
Models | Dataset I | Suitability | Dataset II | Suitability |
---|---|---|---|---|
UED-BD | 1.4601 | UED | 2.5935 | UED |
UED-KwD | 0.9738 | Indecisive | 3.4585 | UED |
UED-JSBD | 1.5427 | UED | 1.6793 | UED |
UED-UGoMD | 2.2142 | UED | 1.5955 | UED |
Distribution | CVM | AD | KS | p-Value | ||
---|---|---|---|---|---|---|
UED | 11.8676 | 0.4607 | 0.6239 | 0.1096 | 0.1960 | 0.6118 |
BD | 1.5370 | 36.8071 | 0.6869 | 0.1199 | 0.2481 | 0.3142 |
KwD | 78.9162 | 1.4011 | 0.7074 | 0.1224 | 0.2409 | 0.3487 |
JSBD | 3.5837 | 1.0177 | 0.8112 | 0.1364 | 0.2619 | 0.2549 |
UGoMD | 0.9497 | 0.0219 | 0.9011 | 0.1499 | 0.2386 | 0.3603 |
Distribution | AIC | AICC | BIC | HQIC | CAIC | |
---|---|---|---|---|---|---|
UED | 33.8617 | −63.7233 | −62.7233 | −62.3072 | −63.7384 | −60.3072 |
BD | 32.8026 | −61.6052 | −60.6052 | −60.1891 | −61.6203 | −58.1891 |
KwD | 33.3796 | −62.7592 | −61.7592 | −61.3431 | −62.7743 | −59.3431 |
JSBD | 32.0631 | −60.1262 | −59.1262 | −58.7101 | −60.1413 | −56.7101 |
UGoMD | 29.6463 | −55.2925 | −54.2925 | −53.8764 | −55.3076 | −51.8764 |
Distribution | AIC | AICC | BIC | HQIC | CAIC | |
---|---|---|---|---|---|---|
UED | 35.2604 | −66.5208 | −65.5208 | −65.1047 | −66.5359 | −63.1047 |
BD | 34.1097 | −64.2194 | −63.2194 | −62.8033 | −64.2345 | −60.8033 |
KwD | 34.3392 | −64.6784 | −63.6784 | −63.2623 | −64.6935 | −61.2623 |
JSBD | 33.0448 | −62.0896 | −61.0896 | −60.6735 | −62.1047 | −58.6735 |
UGoMD | 31.1648 | −58.3296 | −57.3296 | −56.9135 | −58.3447 | −54.9135 |
Dataset | SS | Mean | Median | SD | SK | KU |
---|---|---|---|---|---|---|
III | 50 | 0.1632 | 0.1600 | 0.0810 | 0.0723 | 2.2166 |
IV | 50 | 0.1520 | 0.1600 | 0.0785 | 0.0061 | 2.3012 |
Dataset | SS | Mean | Median | SD | SK | KU |
---|---|---|---|---|---|---|
III | 50 | 0.1633 | 0.1641 | 0.0809 | 0.0259 | 2.2511 |
IV | 50 | 0.1519 | 0.1521 | 0.0777 | 0.0262 | 2.2521 |
Distribution | CVM | AD | KS | p-Value | ||
---|---|---|---|---|---|---|
UED | 4.7879 | 0.1756 | 0.3274 | 0.0419 | 0.1242 | 0.9881 |
BD | 2.6824 | 13.8640 | 0.1538 | 0.9120 | 0.1414 | 0.5555 |
KwD | 1.0746 | 0.0925 | 12.2879 | 2.3943 | 0.7222 | 0.0000 |
JSBD | 2.3767 | 1.3175 | 0.2495 | 1.4647 | 0.1740 | 0.0968 |
UGoMD | 0.0924 | 1.0747 | 0.5213 | 3.0810 | 0.2046 | 0.0304 |
Distribution | CVM | AD | KS | p-Value | ||
---|---|---|---|---|---|---|
UED | 4.8518 | 0.1996 | 0.3224 | 0.0339 | 0.1239 | 0.9928 |
BD | 2.4003 | 13.5218 | 0.2871 | 1.5649 | 0.1981 | 0.7340 |
KwD | 1.9606 | 31.3769 | 0.2093 | 1.2683 | 0.1691 | 0.8825 |
JSBD | 2.3682 | 1.2374 | 0.4145 | 2.2458 | 0.2285 | 0.5579 |
UGoMD | 0.0916 | 1.0250 | 0.6091 | 3.4278 | 0.2312 | 0.5426 |
Distribution | AIC | AICC | BIC | HQIC | CAIC | |
---|---|---|---|---|---|---|
UED | −57.0712 | −110.142 | −109.887 | −106.318 | −108.686 | −104.318 |
BD | −54.6066 | −105.213 | −104.958 | −101.389 | −103.757 | −99.3892 |
KwD | −56.0686 | −108.137 | −107.882 | −104.313 | −106.681 | −102.313 |
JSBD | − 51.3231 | −98.6462 | −98.3909 | −94.8222 | −97.19 | −92.8222 |
UGoMD | −40.672 | −77.344 | −77.0887 | −73.52 | −75.8878 | −71.52 |
Distribution | AIC | AICC | BIC | HQIC | CAIC | |
---|---|---|---|---|---|---|
UED | −59.3536 | −114.707 | −114.452 | −110.883 | −113.251 | −108.883 |
BD | −55.9312 | −107.862 | −107.607 | −104.038 | −106.406 | −102.038 |
KwD | −57.5214 | −111.043 | −110.788 | −107.219 | −109.587 | −105.219 |
JSBD | − 52.305 | −100.61 | −100.355 | −96.786 | −99.1538 | −94.786 |
UGoMD | −42.6099 | −81.2198 | −80.9645 | −77.3957 | −79.7636 | −75.3957 |
Models | Dataset III | Suitability | Dataset IV | Suitability |
---|---|---|---|---|
UED-BD | 0.4137 | Indecisive | 3.5339 | UED |
UED-KwD | −2.3203 | KwD | 3.9633 | UED |
UED-JSBD | 2.1336 | UED | 3.4202 | UED |
UED-UGoMD | 4.9679 | UED | 4.0306 | UED |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakouch, H.S.; Hussain, T.; Tošić, M.; Stojanović, V.S.; Qarmalah, N. Unit Exponential Probability Distribution: Characterization and Applications in Environmental and Engineering Data Modeling. Mathematics 2023, 11, 4207. https://doi.org/10.3390/math11194207
Bakouch HS, Hussain T, Tošić M, Stojanović VS, Qarmalah N. Unit Exponential Probability Distribution: Characterization and Applications in Environmental and Engineering Data Modeling. Mathematics. 2023; 11(19):4207. https://doi.org/10.3390/math11194207
Chicago/Turabian StyleBakouch, Hassan S., Tassaddaq Hussain, Marina Tošić, Vladica S. Stojanović, and Najla Qarmalah. 2023. "Unit Exponential Probability Distribution: Characterization and Applications in Environmental and Engineering Data Modeling" Mathematics 11, no. 19: 4207. https://doi.org/10.3390/math11194207
APA StyleBakouch, H. S., Hussain, T., Tošić, M., Stojanović, V. S., & Qarmalah, N. (2023). Unit Exponential Probability Distribution: Characterization and Applications in Environmental and Engineering Data Modeling. Mathematics, 11(19), 4207. https://doi.org/10.3390/math11194207