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Abstract: The cooperative active defense guidance problem for a spacecraft with active defense is
investigated in this paper. An engagement between a spacecraft, an active defense vehicle, and an
interceptor is considered, where the target spacecraft with active defense will attempt to evade the
interceptor. Prior knowledge uncertainty and observation noise are taken into account simultane-
ously, which are vital for traditional guidance strategies such as the differential-game-based guidance
method. In this set, we propose an intelligent cooperative active defense (ICAAI) guidance strategy
based on deep reinforcement learning. ICAAI effectively coordinates defender and target maneuvers
to achieve successful evasion with less prior knowledge and observational noise. Furthermore, we
introduce an efficient and stable convergence (ESC) training approach employing reward shaping and
curriculum learning to tackle the sparse reward problem in ICAAI training. Numerical experiments
are included to demonstrate ICAAI’s real-time performance, convergence, adaptiveness, and robust-
ness through the learning process and Monte Carlo simulations. The learning process showcases
improved convergence efficiency with ESC, while simulation results illustrate ICAAI’s enhanced
robustness and adaptiveness compared to optimal guidance laws.

Keywords: cooperative guidance; reinforcement learning; active protection; guidance law

MSC: 93-08

1. Introduction

Spacecraft such as satellites, space stations, and space shuttles play an important
role in both civil and military activities. They are also at risk of being intercepted in the
exo-atmosphere. The pursuit-evasion game between the spacecraft and the interceptor will
be critical in the competition for space resources and has been widely studied in recent
years. The trajectory of spacecraft can be accurately predicted [1] since the dynamics of the
spacecraft is generally described in terms of a two-body problem. With the development
of accurate sensors, guidance technology, small-sized propulsion systems, and fast servo-
mechanism techniques, the Kinetic Kill Vehicle (KKV), which can be used for direct-hit
killing, has superior maneuverability compared to the other spacecraft. In other words, it is
not practical for targeted spacecraft involved in the pursuit-evasion game to rely solely on
orbital maneuvering.

Among the many available countermeasures, launching an Active Defense Vehicle
(ADV) as a defender to intercept the incoming threat has proven to be an effective ap-
proach to compensate for the inferior target maneuverability [2–4]. In an initial study [2],
Boyell proposed the active defense strategy of launching a defensive missile to protect
the target from a homing missile. Boyell proposed an approximate normalized curve of
game results under the condition of constant or static target velocity based on the relative
motion relationship among the three participants. The dynamic three-body framework was
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introduced by Rusnak in Ref. [4], inspired by the narrative of a “lady-bodyguard-bandit”
situation. This framework was later transformed into a “target-interceptor-defender” (TID)
three-body spacecraft active defense game scenario as described in Ref [3]. In the TID sce-
nario, the defender aims to reduce the distance from the interceptor, while the interceptor
endeavors to increase the distance from the defender and successfully intercept the target.
In Refs. [3,4], Rusnak proposed a game guidance method under the TID scenario based on
Multiple Objective Optimization and differential games theories. It was proven that the
proposed active defense method significantly reduces the miss distance and the required
acceleration level between interceptor and defender.

The efficacy of the active defense method has garnered increased attention to the
collaborative strategy between the target and defender in the TID scenario. Traditional
methods for solving optimal strategies in this context include Optimal Control [5–7] and
differential games theories [8–10]. In Ref. [7], Weiss employed the Optimal Control theory
to independently design the guidance for both the target and defender. This approach
considered the influence of target maneuvers on the interceptor’s effectiveness as a defender.
Furthermore, in Ref. [6], collaborative game strategies for the target and defender were
proposed, emphasizing their combined efforts in the TID scenario. Aiming at the multi-
member TID scenario in which a single target carries two defenders against two interceptors,
Ref. [5] designed a multi-member cooperative game guidance strategy and considered
the fuel consumption of target and defender. However, Optimal-Control-based strategies
rely on perfect information, demanding accurate maneuvering details of the interceptor.
In contrast, Differential Game approaches require prior knowledge instead of accurate
target acceleration information, enhancing algorithm robustness [11]. In Ref. [8], optimal
cooperative pursuit and evasion strategies were proposed using Pontryagin’s minimum
principle. A similar scenario was studied in Ref. [9] for both continuous and discrete
domains using the linear–quadratic differential game method. It is worth noting that the
differential game control strategies proposed in Ref. [9] solve the fuel cost and saturation
problem. However, they introduce computational problems and make the selection of
weight parameters more difficult. A switching surface [10], designed with zero-effort
miss distance, was introduced to divide the multi-agent engagement into two one-on-
one differential games, thereby achieving a balance between performance and usability.
Nonetheless, using the differential game method to solve the multi-agent pursuit-evasion
game problem still faces shortcomings [11–13]. First, it is difficult to establish a scene
model of a multi-member, multi-role game due to the extremely large increase in the
dimension of the state quantity; second, it has high requirements for the accuracy of the
prior knowledge, and the success rate of the game is low if the prior knowledge of the
players in the game cannot be obtained accurately; third, the differential game algorithm is
complicated, involving a high-dimensional matrix operation, power function operation,
integral calculation, etc., which places a high demand on the computational resources of
the spacecraft. More on this topic can be found in [14–20].

With the advancement of machine learning technology, Deep Reinforcement Learning
(DRL) has emerged as a promising approach for addressing active defense guidance problems.
In DRL, an agent interacts with the environment and receives feedback in the form of rewards,
enabling it to improve its performance and achieve specific tasks. This mechanism has
led to successful applications of DRL in various decision-making domains, including robot
control, MOBA games, autonomous driving, and navigation [21–25]. In Ref. [26], the DRL was
utilized to learn an adaptive homing phase control law, accounting for sensor and actuator
noise and delays. Another work [27] proposed an adaptive guidance system to address
the landing problem using Reinforcement Meta-Learning, adapting agent training from one
environment to another with limited steps, showcasing robust policy optimization in the
presence of parameter uncertainties. In the context of the TID scenario, Lau [28] demonstrated
the potential of using reinforcement learning for active defense guidance rating, although an
optimal strategy was not obtained in their preliminary investigation.
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It is worthy to point out that, on one hand, to better align with real-world engineering
applications, research in guidance methods often needs to consider the presence of various
information gaps and noise [29,30]. However, most of the existing optimal active defense
guidance methods rely on perfect information assumptions, leading to subpar performance
when faced with unknown prior knowledge or observation noise. Additionally, these
methods often struggle to meet the real-time requirements of spacecraft applications. On
the other hand, the majority of reinforcement learning algorithms have been applied to
non-adversarial or weak adversarial flight missions, where mission objectives and process
rewards are clear and intuitive. However, in the highly competitive TID game scenario, ob-
taining effective reward information becomes challenging due to the intense confrontation
between agents, leading to sparse reward problems or “Plateau Phenomenon” [31].

Given these observations, there is a strong motivation to develop an active defense
guidance method based on reinforcement learning that possesses enhanced real-time
capabilities, adaptiveness, and robustness, while addressing the challenges posed by
adversarial scenarios and sparse reward issues.

In this paper, we focus on the cooperative active defense guidance strategy design of a
target spacecraft with active defense attempting to evade an interceptor in space. This TID
scenario holds significant importance in the domains of space attack-defense and ballistic
missile penetration. The paper begins by deriving the kinematic and first-order dynamic
models of the engagement scenario. Subsequently, an intelligent cooperative active defense
(ICAAI) guidance method for active defense is proposed, utilizing the twin-delay deep
deterministic policy gradient (TD3) algorithm. To address the challenge of sparse rewards,
an efficient and stable convergence (ESC) training approach is introduced. Furthermore,
benchmark comparisons are made using Optimal Guidance Laws (OGLs), and simulation
analyses are presented to validate the performance of the proposed method.

The paper is organized as follows. In Section 2, the problem formulation is provided.
In Section 3, the guidance law is developed. In Section 4, experiments are presented where
the proposed method has been compared with its analytical counterpart, followed by the
conclusions presented in Section 5.

2. Problem Formulation

Consider a multi-agent game with a spacecraft as the main target (T), an active defense
vehicle as the defender (D), and a highly maneuverable small spacecraft as the interceptor
(I). In this battle, the interceptor chases the target, which launches the defender to protect
itself by destroying the interceptor. During the endgame, all players are considered as
constant-speed mass points whose trajectories can be linearized around the initial line of
sight. As a consequence of trajectory linearization, the engagement, a three-dimensional
process, can be simplified and will be analyzed in one plane. However, it should be noted
that in most cases these assumptions do not affect the generality of the results [11].

A schematic view of the engagement is shown in Figure 1, where X −O − Y is a
Cartesian inertial reference frame. The distances between the players are denoted as
ρID and ρIT, respectively. Each player’s velocity is indicated as VI, VT, and VD, while
their accelerations are represented as aI, aT, and aD. The flight path angles of the players
are defined as φI, φT, and φD, respectively. The line of sight (LOS) between the players
is described by LOSID and LOSIT, and the angles between the LOS and the X-axis are
denoted as λID and λIT. The lateral displacements of each player relative to the X-axis are
represented as yI, yT, and yD, while the relative displacements between the players are
defined as yIT and yID.

Considering the collective mission objectives, the target’s priority is to evade the
interceptor with defender support. Simultaneously, the interceptor aims to avoid the
defender while chasing the target. Consequently, the target’s guidance law strives for
maximum convergence, while the defender’s aims for convergence to zero. Conversely,
the interceptor’s guidance law assumes the opposite role (as depicted in Figure 1). This
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scenario can thus be segmented into two collision triangles: one involving the interceptor
and the target, and the other between the interceptor and the defender.
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2.1. Equations of Motion

Consider the I-T collision triangle and the I-D collision triangle in a multi-agent
pursuit-evasion engagement. The kinematics are expressed using the polar coordinate
system attached in the target and defender as follows:

.
ρIT = −VI cos(φI + λIT)−VT cos(φT − λIT).
yIT = VI sin φI −VT sin φT.
λIT = VI sin(φI+λIT)−VT sin(φT−λIT)

ρIT

(1)

.
ρID = −VI cos(φI + λID)−VD cos(φD − λID).
yID = VI sin φI −VD sin φD.
λID = VI sin(φI+λID)−VD sin(φD−λID)

ρID

(2)

Furthermore, the flight path angles associated with dynamics can be defined for each
of the players:

.
φi =

ai
Vi

, i = {I, T, D} (3)

2.2. Linearized Equations of Motion

In the research context, both the LOS angle λ and fight path angle φ are small quan-
tities, and the inter-spacecraft distances are much larger than the spacecraft velocities.
Furthermore, during the terminal guidance phase, the rate of change in spacecraft velocity
magnitude approaches zero. Therefore, the equations of motion can be linearized around
the initial line-of-sight:

.
ρIT = −VI cos(φI + λIT)−VT cos(φT − λIT) ≈ −(VI + VT)..
yIT = (VI sin φI −VT sin φT)

′ ≈ (VIφI −VTφT)
′

=
.

VIφI −
.

VTφT + VI
.
φI −VT

.
φT =

.
VIφI −

.
VTφT + aI − aT

≈ aI − aT.
λIT = VI sin(φI+λIT)−VT sin(φT−λIT)

ρIT
≈ VI(φI+λIT)−VT(φT−λIT)

ρIT
≈ 0

(4)

.
ρID = −VI cos(φI + λID)−VD cos(φD − λID) ≈ −(VI + VD)..
yID = (VI sin φI −VD sin φD)

′ ≈ (VIφI −VDφD)
′

=
.

VIφI −
.

VDφD + VI
.
φI −VD

.
φD =

.
VIφI −

.
VDφD + aI − aD

≈ aI − aD.
λID = VI sin(φI+λID)−VD sin(φD−λID)

ρID
≈ VI(φI+λID)−VD(φD−λID)

ρID
≈ 0

(5)
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The dynamics for each of the players is assumed to be a first-order process:

.
ai = −

ai − ui
τi

, i = {I, T, D} (6)

Furthermore, the variable vector can be defined as follows:

x =
[
yIT

.
yIT yID

.
yID aI aT aD

]
(7)

while the linearized equations of motion in the state space form can be written as follows:

.
x = Ax + B

[
uI uT uD

]T (8)

where

A =



0 1 0 0 0 0 0
0 0 0 0 1 −1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 −1
0 0 0 0 −1/τI 0 0
0 0 0 0 0 −1/τT 0
0 0 0 0 0 0 −1/τD


(9)

B =

[
05×3
B1

]
, B1 =

1/τI 0 0
0 1/τT 0
0 0 1/τD

 (10)

Since the velocity of each player is assumed to be constant, the engagement can be
formulated as a fixed-time process. Thus, the interception time can be calculated using
the following:

tf,IT = −ρ0
IT/

.
ρIT = ρ0

IT/(VI + VT)
tf,ID = −ρ0

ID/
.
ρID = ρ0

ID/(VI + VD)
(11)

where ρ0
IT represents the initial relative distance between the interceptor and the target,

while ρ0
ID is the distance between the interceptor and the defender, allowing us to define

the time-to-go of each engagement by

tgo,IT = tf,IT − t
tgo,ID = tf,ID − t

(12)

which represents the expected remaining game time for the interceptor in the “Interceptor
vs. Target” and “Interceptor vs. Defender” game scenarios, respectively.

2.3. Zero-Effort Miss

A well-known zero-effort miss (ZEM) is introduced in the guidance law design and
reward function design. It is obtained from the homogeneous solutions of equations of
motion and is only affected by the current state and interception time. It can be calculated
as follows:

ZIT(t) = L1Φ(t, tf,IT)x(t)
ZID(t) = L2Φ(t, tf,ID)x(t)

(13)

where
L1 =

[
1 0 0 0 0 0 0

]
L2 =

[
0 0 1 0 0 0 0

] (14)

Thus, the ZEM and its derivative with respect to time are given as follows:

ZIT(t) = x1 + tgoITx2 + aIτ
2
I ϕ
(
tgoIT/τI

)
x5 − aTτ2

T ϕ
(
tgoIT/τT

)
x6

ZID(t) = x3 + tgoIDx4 + aIτ
2
I ϕ
(
tgoID/τI

)
x5 − aDτ2

D ϕ
(
tgoID/τD

)
x7

(15)
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.
ZIT(t) = τI ϕ

(
tgoIT/τI

)
uI − τT ϕ

(
tgoIT/τT

)
uT.

ZID(t) = τI ϕ
(
tgoID/τI

)
uI − τD ϕ

(
tgoID/τD

)
uD

(16)

where
ϕ(χ)= e−χ + χ− 1 (17)

2.4. Problem Statement

This research focuses on the terminal guidance task of evading a homing interceptor
for a maneuvering target with active defense. We design a cooperative active defense
guidance to facilitate coordinated maneuvers between the target and the defender based
on DRL. This enables the target to evade the interceptor’s interception while allowing the
defender to counter-intercept the incoming threat.

3. Guidance Law Development

In this section, we develop the Intelligent Cooperative Active Defense (ICAAI) guid-
ance strategy and design an efficient and stable convergence (ESC) training approach.
The target and defender utilize ICAAI guidance, while the interceptor employs OGL. We
describe the game scenario using a Markov process, present the ICAAI guidance strategy,
and design an ESC training approach based on reward shaping and curriculum learning.

3.1. Markov Decision Process

The sequential decision making that an autonomous RL agent interacts with the
environment (e.g., the engagement) can be formally described as an MDP, which is required
to properly set up the mathematical framework of an DRL problem. A generic time-
discrete MDP can be represented as a 6-tuple {s, o, a, Psa, γ, R}. st ∈ S ∈ Rn is a vector
that completely identifies the state of the system (e.g., the EOM) at time t. Generally, the
complete state is not available to the agent at each time t; the decision-making relies on
an observation vector ot ∈ O ∈ Rm. In the present paper, the observations are defined
as an uncertain (e.g., imperfect and noisy) version of the true state, which can be written
as a function Ω of the current state st. The action a ∈ A ∈ Rl of the agent is given by a
state-feedback policy π : O→ A , that is, at = π(ot). Psa is time-discrete dynamic model
describing the transformation led by the state–action pair (st, at). As a result, the evolution
rule of the dynamic system can be described as follows:

st+1 = Psa(st, at)
ot = Ω(st)
at = π(ot)

(18)

Since a fixed-time engagement is considered, the interaction between the agent and
the environment gives rise to a trajectory I:

I = [ι1, ι2, · · · , ιt, · · · , ιT−1, ιT ]

ιt = [ot, at, rt]
T (19)

where the trajectory information at each time step ιt is composed of observational ot,
action at, and reward signal rt generated through the interaction between the agent and
the environment.

The return, the agent received at time t in the trajectory I, is defined as a discounted
sum of rewards:

RI
t = ∑T

i=t γi−tri (20)

where γ ∈ (0, 1] is a discount rate determining whether the agent has a long-term vision
(γ = 1) or is short-sighted (γ� 1).
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Prior to deriving the current guidance law, we outline the key elements of the MDP:
state space, action space, and observations. We present the reward design separately by
highlighting a crucial aspect of the configuration.

3.1.1. Perfect Information Model

In a deterministic model, the basic assumption is that each player has perfect in-
formation about the interceptor (e.g., states, maximum acceleration, and time constant).
The communication of this information between the defender and the protected target is
assumed to be ideal and without delay. Thus, the state space can be identified by states,
maximum acceleration, and time constant:

st = [t xt yt Vt at amax τ]
T (21)

xt =
[
xt,T xt,D xt,I

]
, yt =

[
yt,T yt,D yt,I

]
(22)

Vt =
[
Vt,T Vt,D Vt,I

]
(23)

at =
[
at,T at,D at,I

]
(24)

amax =
[
amax,T amax,D amax,I

]
(25)

τ =
[
τT τD τI

]
(26)

As with the multi-agent system, interactions introduce uncertainty into the environ-
ment, which significantly affects the stability of the RL algorithm. Given the full cooperation
between defender and target due to communication assumptions, the model must learn a
shared guidance law for both. This effectively mitigates environmental uncertainty and
enhances model convergence. In practical application, the same trained agent is assigned
to the target pair, yielding the following action space:

action = [uT uD] (27)

Since the dynamics of the scenario are formulated in Section 2.1, the state can be
propagated implicitly as the linearized equation of motion presented in Equations (4)–(6).

3.1.2. Imperfect Information Model

The imperfection of information is usually due to the limitations of radar measurement
and the erasure of prior knowledge. However, in existing studies, perfect information is a
strong assumption, which leads to implementation difficulties in practice. To address this
dilemma, this thesis considers information degradation. On the one hand, the interceptor
is assumed to have perfect information (i.e., the relative states and maneuverability of the
target and the defender). On the other hand, the observation of the target and defender is
imperfect and even noise-corrupted. The observation uncertainty is modeled as observation
noise and a mask on the perfect information.

ot = Ω(st) = Γst × (I +ωo,t) =


t
xt
yt
Vt
at

+


0

δxo,t
δyo,t
δVo,t
δao,t

 (28)
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where Γ is the mask matrix andωo,t is the observation noise vector. ωo,t can be calculated
by Equations (29)–(32).

ωo,t =


0

δxo,t
δyo,t
δVo,t
δao,t

∼U(013, Σ) ∈ R13 (29)

Σ =
[
0, 0, 0, σxI, 0, 0, σyI, 0, 0, σv, 0, 0, σa

]T (30)

σxI = cos(σLOS + λIT)
(
ρIT + σρ

)
− xI ≈ 0 (31)

σyI = sin(σLOS + λIT)
(
ρIT + σρ

)
− yI ≈ σLOS · ρIT (32)

where Σ represents the noise amplitude, with σρ(m), σLOS(mrad), σv(m/s), and σa(m/s2)
the nonnegative parameters.

3.2. ICAAI Guidance Law Design

In this section, we present the mathematical framework of actor–critic RL algorithms,
focusing on the algorithm used in ICAAI guidance: Twin-Delay Deep Deterministic Policy
Gradient (TD3) [32]. TD3 is an advanced deterministic policy gradient reinforcement
learning algorithm. In comparison to stochastic policy gradient algorithms like Proximal
Policy Optimization (PPO) [33] and Asynchronous Advantage Actor–Critic (A3C) [34], TD3
exhibits a higher resistance to converging into local optima. Furthermore, when compared
to traditional deterministic policy gradient RL algorithms such as Deep Deterministic Policy
Gradient (DDPG) [35], TD3 achieves superior training stability and convergence efficiency.
This assertion is supported by our prior RL algorithm selection experiments, as illustrated
in Figure 2.
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Without loss of generality, throughout the entire section the MDP is supposed to
be perfectly observable (i.e., with ot = st) to conform with the standard notation of RL.
However, the perfect information state st can be replaced by observation ot whenever the
observations differ from the state.
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3.2.1. Actor–Critic Algorithms

The RL problem’s goal is to find the optimal policy πφ with parameters φ that maxi-
mizes the expected return, which can be formulated as follows:

J(φ) = E
τ∼πφ

[Rτ
0 ] = E

τ∼πφ

[
T

∑
i=0

γi−0ri

]
(33)

where E
τ∼π

denotes the expectation taken over the trajectory τ. In actor–critic algorithms,
the policy, known as the actor, can be updated by using a deterministic policy gradient
algorithm [36]:

∇φ J(φ) = EPsa

[
∇aQπ(s, a)

∣∣∣a=π(s)∇φπφ(s)
]

(34)

The expected return, when performing action a in state s and following π after, is
called the critic or the value function, which can be formulated as follows:

Qπ(s, a) = E
τ∼πφ

[Rτ
t |s, a ] (35)

The value function can be learned through off-policy temporal differential learning, an
update rule based on the Bellman equation which describes the relationship between the
value of the state–action pair (s, a) and the value of the subsequent state–action pair (s′, a′):

Qπ(s, a) = r + γ E
s′ ,a′

[
Qπ(s′, a′)

]
(36)

In deep Q-learning [37], the value function can be estimated with a neural network
approximator Qθ(s, a) with parameters θ, and the network is updated by using temporary
differential learning with a secondary frozen target network Qθ′(s, a) to maintain a fixed
objective U over multiple updates:

U = r + γQθ′(s
′, a′), a′ = πφ′(s

′) (37)

where the actions a′ are determined by a target actor network πφ′ . Generally, the loss
function and update rule can be formulated as follows:

J(θ) = U −Qθ(s, a) (38)

∇θ J(θ) = [U −Qθ(s, a)]∇θQθ(s, a) (39)

The parameters of target networks are updated periodically to exactly match the
parameters of the corresponding current networks, which is called delayed update. This
leads to the original actor–critic method, the basic structure of which is shown in Figure 3.

3.2.2. Twin-Delayed Deep Deterministic Policy Gradient Algorithm

To address the common RL issues in actor-critic algorithms (i.e., overestimation bias
and accumulation of errors), in the TD3 algorithm, the actor–critic framework is modified
from three aspects.

A novel variant of double Q-learning [38] called clipped double Q-learning is devel-
oped to limit possible overestimation. This provides the update objective of the critic:

U = r + γmin
i=1,2

Qθ′ i (s
′, πφ′1

(s′)) (40)
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The parameters of policy networks are updated periodically to match the value net-
work, which is called delayed policy update, and the soft update approach is adopted,
which can be formulated as follows:

θ′ ← κθ + (1− κ)θ′ (41)

where κ is a proportion parameter.
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Target policy smoothing regularization is adopted to alleviate the overfitting phe-
nomenon, which can be explicated as follows:

y = r + γQθ′(s
′, πφ′(s

′) + ε) (42)

where ε is a clipped Gaussian noise.
An overview of the TD3 algorithm is demonstrated in Figure 4.
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3.2.3. Implementation Details

As for the network architecture setting, the agent observations are vectors with 13 di-
mensions. Both the guidance policy estimation (actor) and the value function estimation
(critic) consist of three fully connected layers with sizes of 64, 256, and 512, respectively,
along with layer normalization. The output layer has two units for the actor, representing
the unified command of the target and defender, respectively, and one unit for the critic.
The activation function is ReLU for the hidden layer neurons and linear for the output layer
neuron. This structure is heuristically designed and can be generalized for efficient function
approximation. Deeper and wider networks are avoided for real-time performance and
fast convergence.

The hyperparameters of TD3 have been devised and validated by empirical experi-
ments, which are reported in Table 1.

Table 1. TD3 hyperparameters.

Hyperparameter Symbol Value

Discount factor γ 0.99
Learning rate α 3× 10−4

Buffer size B 5120
Batch size nbatch 128

Soft update coefficient ζ 5× 10−3

Policy delay nopt 2
Train frequency ω 6000

3.3. ESC Traning Technique

Aiming at the sparse reward problem in the multi-agent pursuit-evasion game, an
efficient and stable convergence (ESC) training approach of reinforcement learning is
proposed based on reward shaping [39] and curriculum learning [40].

3.3.1. Reward Shaping

The design of a reward function is the most challenging part of solving this multi-
agent pursuit-evasion game through RL, as the function had to be adaptive to engagement
with a sparse reward setting. It is found that, except for the common leadership mission,
the pursuit-evasion game can be formulated as a strictly competitive zero-sum game. In
addition, the agent policy network weights were randomly initiated at the beginning of
training, while the interceptor was deployed with optimal guidance and is sufficiently
aggressive.

In [41], a shaping technique was presented as a particularly effective approach to
solving sparse reward problems through a series of biological experiments. The researchers
divided a difficult task into several simple units and trained the animals according to
an easy-to-hard schedule. This approach requires adjusting the reward signal to cover
the entire training process, followed by gradual changes in task dynamics as training
progresses. In [40], researchers took this idea further and proposed curriculum learning,
a type of training strategy. In this work, the shaping technique and curriculum learning
were used to speed up the convergence of neural networks and to increase the stability and
performance of the algorithm.

The goal of the target and the defender is to converge ZID to zero as t→ t f 2 while
keeping ZIT as large as possible. On the contrary, the interceptor control law is designed to
make ZIT converge to zero while maintaining ZID as large as possible.

For this reason, a non-sparse reward function is defined in Equations (43) and(44):

rmedium = γΦ
(
s′
)
−Φ(s) (43)
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Φ(s) =
∣∣∣∣ZIT

α1

∣∣∣∣β1

−
∣∣∣∣ZID

α2

∣∣∣∣β2

(44)

rterminal =

{
σ, if succeed
−σ, else

(45)

where γ is the discount factor in the Markov decision process and α1, α2, β1, β2, and σ are
the positive hyperparameters.

It must be stressed that, since both the number and maneuverability of players com-
pletely change the environment, the hyperparameter values used in this paper may be
not universal. Thus, in the following subsection, the focus will be on the applied design
method instead of the specific hyperparameter values. The rterminal is the terminal reward
signal given to the terminal behavior of the agent, which is sparse but intuitive. Situa-
tions in which the interceptor is destroyed by the defender (when t = tf,ID) or when the
interceptor is driven away by the defender and misses the target are judged as a success.
Furthermore, the rmedium is a non-sparse reward function based on the difference form of a
potential function Φ(s) which ensures the consistency of the optimal strategy [42–44]. It is
important to emphasize that the design of Φ(s) relies on a fractional exponential function.
This function provides a continuous reward signal for the agent’s evaluation of each state.
Notably, this model exhibits a unique property: as the base number approaches infinity, the
gradient decreases to zero, and as the base number approaches zero, the gradient increases
infinitely. This specific characteristic significantly aids the agent in converging towards
states where the base number is either greater than zero or approaches zero.

In this paper, the defined reward function carries the physical meaning of the mission—
the target must escape from the interceptor, while the defender has to get close to the
interceptor. The rmedium value increases as ZID converges to zero, or when ZIT increases.
On the other hand, it decreases when ZID is divergent or when ZIT converges to zero.

Generally, reward normalization is beneficial to neural network convergence. How-
ever, determining the bounds of ZIT and ZID is a complex task. For this reason, hyperpa-
rameters α1, α2, β1, and β2 are tuned, aiming to scale the rmedium close to [−c, c], in which c
is a positive constant. In the following step, the design of ρ is considered, which introduces
the expectation of agent foresight. If the agent is expected to predict the terminal reward
rterminal n steps before, the discounted terminal reward must be larger than the rmedium
bounds. Thus, the hyperparameter ρ satisfies the following expression:

ρ ≥ c
γn (46)

3.3.2. Curriculum Learning

After hyperparameter tuning, we enhance the training stability of intelligent algo-
rithms using an adaptive progressive curriculum learning approach. This method incre-
mentally raises training complexity to enhance agent capability and performance. The
agent’s training level is adaptively assessed through changes in network loss, determining
appropriate training difficulty. The vPG calculation formula is as follows:

vPG = L(x, θ)− L
(
x, θ′

)
(47)

where L(·) represents the calculation function of network loss; θ is the current network
parameter and θ′ is the new network parameter obtained after data x training. Given a
small amount ε(1� ε > 0), when

|vPG| < ε (48)

the agent training enters the next stage. A sequence of increasingly difficult tasks is allocated
to the agent, as shown in Table 2. The curriculum was divided into three stages:

• The agent is required to combat the interceptors employing non-maneuvering;
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• Square wave signal;
• OGL.

Finally, it is possible to complete the reward shaping process.

Table 2. Curriculum learning.

Curriculum Stage 1 Stage 2 Stage 3

Interceptor guidance
command None Square wave signal OGL

Maximum interceptor
acceleration 0 8 g 4 g/6 g/8 g

In summary, the block diagram of ICAAI guidance strategy is shown in Figure 5.
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4. Experiments

In this section, we demonstrate the efficacy of the proposed guidance method and
the effectiveness of the shaping technique through learning processes and Monte Carlo
simulations. We establish benchmark comparisons by including OGLs and evaluating
application requirements. To illustrate, we consider a scenario [10] involving a maneuver-
able small spacecraft (Interceptor, I), a defensive vehicle (Defender, D), and an evading
spacecraft (Target, T), all in circular Earth orbits. Gravity effects are incorporated in the
simulations. Assumptions include the interceptor’s superior maneuverability and time
constant compared to the target and defender.

4.1. Optimal Pursuit and Evasion Guidance Laws

Lemma 1. The linear–quadratic optimal guidance law (LQOGL) [10]:

u∗I =

 −
K(t)ZID(t)

ω1
umax

I τI ϕ
(

tf,ID−t
τI

)
for ‖ZID(t)‖ < η

− P(t)ZIM(t)
ξ1

umax
I τI ϕ

(
tf,IT−t

τI

)
else

(49)
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where η is a positive constant representing the limit-collision radius between the interceptor and the
defender, and umax

I is the maximum control force provided by the interceptor. Furthermore, variable
K(t) and P(t) can be defined as follows:

K(t) =
1∫ tfID

t

[
1

ω1

(
umax

I τI ϕ
(

tf,ID−t
τ1

))2
− 1

ω2

(
umax

D τD ϕ
(

tf,ID−t
τD

))2
]

dt− 1
(50)

P(t) =
1∫ tfIM

t

[
1
ξ1

(
umax

I τI ϕ
(

tf,IM−t
τ1

))2
− 1

ξ2

(
umax

M τM ϕ
(

tf,IM−t
τM

))2
]

dt− 1
(51)

whereω1, ω2, ξ1, and ξ2 are nonnegative constants ensuring the interceptor converges towards the
target, guaranteeing its escape from the defender.

Proof. The detailed proof of similar results can be found in [10]; see Theorem 1 and the
associated proof. �

Lemma 2. Standard optimal guidance law (SOGL) [45]:

u∗I = umax
I sgn[ZID(tf,ID)]sgn

[
ϕ
(

tf,ID−t
τI

)]
for ‖ZID(t)‖ < η

u∗I = −umax
I sgn[ZIT(tf,IT)]sgn

[
ϕ
(

tf,IT−t
τI

)]
else

(52)

whereη is a positive constant representing the switching condition always equal to the defender
kill radius.

Proof. Consider the following cost function:

J1 = − 1
2 Z2

ID(tfID) for ‖ZID(t)‖ < η

J2 = 1
2 Z2

IT(tfIT) else
(53)

For J1, the Hamiltonian of the problem is defined as follows:

H1 = λ1
.
ZID(t) (54)

The costate equation and transversality condition are provided by the following:

.
λ1(t) = −

∂H1

∂ZID
= 0 (55)

λ1(tfID) =
∂J1

∂ZID(tfID)
= −ZID(tfID) (56)

The optimal interceptor controller minimizes the Hamiltonian satisfying the following:

u∗I = arg
uI

min(H1) (57)

The interceptor guidance law can thus be obtained:

u∗I = umax
I sgn[ZID(tfID)]sgn

[
ϕ

(
tfID − t

τI

)]
(58)

For J2, a similar interceptor guidance law can be found:

u∗I = −umax
I sgn

[
ZIT

(
t f IT

)]
sgn
[

ϕ

( t f IT − t
τI

)]
(59)
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Finally, the interceptor guidance schemes for evading the defender and pursuing the
target are proposed after combining Equations (58) and (59):

u∗I = umax
I sgn

[
ZID

(
t f ID

)]
sgn
[

ϕ
( t f ID−t

τI

)]
for ‖ZID(t)‖ < η

u∗I = −umax
I sgn

[
ZIT

(
t f IT

)]
sgn
[

ϕ
( t f IT−t

τI

)]
else

(60)

�

4.2. Engagement Setup

In this scenario, a target carrying an active anti-interceptor is threatened by a KKV
interceptor in orbit at an altitude of 500 km. The defender maintains an initial safe distance
of approximately 50 m longitudinally and 10 km transversely to the target. Given that the
detection range of the interceptor’s guided warhead is about 100 km, the initial transverse
distance between the interceptor and the target is set at 100 km, and the initial longitudinal
position is random in the range 499.8–500.2 km. In addition, the maneuverability and
control response speed of the interceptor are better than those of the target and defender,
and the OGL is used for guidance.

The comprehensive list of engagement parameters is shown in Table 3.

Table 3. Engagement parameters.

Parameters
Interceptor Interceptor Target Defender

Horizonal location (km) 100 0 0~15
Vertical location (km) 499.8~500.2 500 500.05

Horizonal velocity (km/s) −3 2 2
Vertical velocity 0 0 0

Maximum acceleration (g) 8 2 6
Time constant (s) 0.02 0.1 0.05

Kill radius (m) 0.25 0.5 0.15

Furthermore, Gaussian noise with standard variance of σLOS = 1 mrad, σv = 0.2 m/s,
and σa = 1 m/s2 is considered in the interceptor information obtained by the target and
defender through a radar seeker.

4.3. Experiment 1: Real-Time Performance of the Guidance Policy

To verify that the proposed RL training approach ESC can improve convergence effi-
ciency and stability, the learning processes were demonstrated using the sparse reward (SR)
signal and ESC, respectively, with the same hyperparameters. During the learning process,
the weights of the neural network model were stored every 100 episodes for subsequent
analysis. In addition, to remove stochasticity as a confounding factor, six random seeds
were set for each case. Meanwhile, the real-time performance of the optimized agent is
evaluated by comparing it with the traditional OGLs.

The agents were obtained after a training of 20,000 episodes, which took 12 h with
8 parallel workers on a computer equipped with a 104-core Intel Core Xeon Platinum
8270 CPU @2.70 GHz. Similarly, both the traditional methods and the proposed method are
provided a current state or observation and return the required action. Table 4 shows the
comparison of computational cost and update frequency obtained by using SOGL, LQOGL,
and the proposed method. It can be seen from the table that LQOGL is time-consuming due
to the calculation of the Riccati function, which is the reason why it has not been applied
in practice. As a proven approach, the SOGL has excellent real-time performance. The
proposed method achieved an update frequency of 103 Hz and showed great potential for
on-board applications. While a variety of approaches (e.g., pruning and distillation) were
effective to compress the policy network and further improve its real-time performance, it
is not the main work of this research.
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Table 4. Statistics of time consumption with different guidance methods.

Metrics LQOGL SOGL ICAAI

Duration (1e3 step) 2.773 s 0.0145 s 0.910 s
Update frequency ≈360 HZ ≈6.9× 104 HZ ≈1.1× 103 HZ

Remark 1. As shown in Equations (18) and (19), the LQOGL has to solve the Riccati differential
equation. However, the experimental results show that its update frequency cannot meet the real-
time requirements of spacecraft guidance. Compared to the LQOGL, the SOGL in Equation (60)
does not need to solve the Riccati differential equation and has no hyperparameter. This improves
both its computational efficiency and robustness at the cost of flexibility and the occurrence of the
chattering phenomenon. To take into account the practical situation, the SOGL was chosen as an
OGL benchmark.

4.4. Experiment 2: Convergence and Performance of the Guidance Policy

The performance of the trained agent in the fully observable game was investigated by
comparing the escape success rate corresponding to an optimized policy πφ(s), obtained by
performing Monte Carlo simulation in the fully observable (deterministic and with default
engagement parameters) environment, with the solution of the SOGL.

4.4.1. Baselines

The SOGL for the target and the defender were considered as an OGL benchmark.
Through a brief derivation similar to that in Section 3, it can be proven that the SOGLs for
the target and the defender are as follows:

uT = −umax
T sgn

[
ZIT

(
t f IT

)]
sgn
[

ϕ
( t f IT−t

τT

)]
uD = umax

D sgn
[

ZID

(
t f ID

)]
sgn
[

ϕ
( t f ID−t

τD

)] (61)

4.4.2. Convergence and Escape Success Rate

Figure 6 displays the learning curves depicting the mean accumulated reward across
learning episodes for various scenarios. As depicted, in the ESC case, the agent’s reward
consistently escalated throughout the training episodes, ultimately stabilizing at around
6000 after 4000 iterations. Conversely, within the sparse reward (SR) framework, the ICAAI
encountered a plateau phenomenon during training, resulting in an unstable convergence
process for the associated reward function and eventual convergence failure.
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Figure 7 presents success rate curves for target evasion over learning episodes, com-
paring agents trained with and without ESC. The green line denotes OGL’s deterministic
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environment success rate of 83.4%. The ESC-trained agent surpassed the baseline by
2700 episodes, achieving a peak performance of 99% after around 13,800 episodes. Con-
versely, the agent without ESC exhibited a gradual decline in performance after reaching
a zenith of 77%, signifying policy network overfitting during continued training. The
ESC-trained agent demonstrated accelerated convergence and improved local optima.
It can be inferred that the proposed ESC training approach effectively organizes explo-
ration, addressing sparse reward issues and showcasing heightened learning efficiency
and asymptotic performance. Furthermore, the proposed methodology adeptly mitigates
overfitting phenomena.
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Figure 7. Escape success rate.

4.4.3. Performance Test

Figure 8 depicts spacecraft trajectories, featuring the interceptor’s actual path (blue
curve) and the observed trajectory from the target’s perspective (yellow curve). Figure 9
displays the lateral acceleration profiles for each spacecraft, while Figure 10 illustrates the
ZEM measurements between the target and interceptor and between the defender and
interceptor. The simulation results presented in Figure 11 reaffirm the impact of the relative
distance between the target and defender disDT on the game outcomes for the target.

Figures 8–10 illustrate the evident cooperation between the target and the defender,
utilizing relative state information. Taking the simulation results at disDT = 10 km as an
example, the miss distance between the target and the interceptor was approximately 15 m.
The defender maintained a miss distance of less than 1 m from the interceptor, confirming
its successful interception threat. Figures 9 and 10 depict that, within 16 s of the scenario’s
initiation, the target collaborated with the defender, executing subtle maneuvers to intercept
the interceptor. At around the 16 s mark, the interceptor perceived the threat and initiated
an escape strategy. Simultaneously, the target executed an evasive maneuver in the opposite
direction, utilizing its maximum maneuverability, which resulted in an increase in distance.
Ultimately, the interceptor managed to evade the defender’s interception attempt but failed
to intercept the target in time, leading to the target’s successful evasion.

In addition, the above simulation results show that the relative distance between
the target and defender disDT directly determines the time it takes for the interceptor to
intercept the target after evading the defender. Consequently, disDT significantly influences
the game outcomes for the target, including the success rate of evasion and miss distance.
Therefore, to explore the effect of disDT on the performance of ICAAI, the game results for
disDT ranging from 0 to 15 km are introduced in Figure 11.
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As evident from Figure 11, employing the ICAAI intelligent game algorithm results
in the target achieving success rates of no less than approximately 90% when the relative
distance to the defender is less than 10 km. However, as the disDT increases from 10 to
15 km, the success rate of target evasion decreases from 90% to 0%. These simulation
results illustrate that a smaller relative distance leads to an increased evasion success rate.
Additionally, the curve depicting the average miss distance for the target reveals that the
miss distance follows a pattern of initially increasing and then decreasing with disDT. The
miss distance reaches its maximum value of approximately 50 m around a relative distance
of 5 km. The occurrence of this phenomenon can be attributed to the fact that, when disDT
is less than 5 km, the miss distance increases with the target’s evasion time. Moreover, at
this point, the interceptor has not had sufficient time to alter its trajectory to intercept the
target. Conversely, when disDT exceeds 5 km, the interceptor has ample time to intercept
the target after evading the defender. Consequently, the miss distance decreases with an
increasing disDT.

4.5. Experiment 3: Adaptiveness of the ICAAI Guidance

In the real-world game confrontation process, obtaining the opponent’s prior knowl-
edge, such as the maximum acceleration and time constant, is often impractical. To assess
the proposed ICAAI guidance method’s superior adaptability compared to the OGL method
under conditions of unknown opponent knowledge, several comparison conditions were
designed and evaluated using the Monte Carlo target shooting method. The adaptive
capabilities of both methods were analyzed based on the game results (escape success rate
and miss distance) of the target spacecraft employing the two strategies.

While the target utilized OGL guidance, we considered it adopting umax
I = 8 g,

τ I = 0.02 s as the prediction of the prior knowledge of the interceptor, while the actual
umax

I = 6∼10 g, τ = 0.05∼0.002 s. The simulation results are shown in Figure 12.
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As depicted in Figure 12a, as the interceptor’s maneuverability improves, the target’s
escape ability decreases for both guidance methods. However, it is evident that, when em-
ploying the ICAAI guidance, the rate of decline in the target’s escape ability is significantly
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lower compared to the OGL guidance method. Similarly, Figure 12b demonstrates that an
increase in the interceptor’s response speed yields a similar trend in the target’s escape
ability as in Figure 12a. Specifically, when accurately estimating the prior knowledge of
the target, the escape abilities of both methods are comparable. However, when the prior
knowledge error exceeds 25%, the OGL guidance leads to a reduction of over 75% in the
target’s escape ability, while the ICAAI guidance results in less than a 34% decrease. In
conclusion, the proposed ICAAI guidance exhibits superior adaptability compared to the
OGL guidance when the interceptor’s prior knowledge is unknown.

Remark 2. As an analytical method, the SOGL is stable but inflexible due to its theoretical
framework [46] and stringent assumptions [47]. Correspondingly, the ICAAI control strategies are
flexible and can be continuously optimized. The proposed method is independent of the time constant,
which means that it performs better with less prior knowledge than the OGL. Furthermore, the
adaptability of the proposed method can be improved by considering the tolerance of the maximum
interceptor acceleration.

4.6. Experiment 4: Robustness of the RL-Based Guidance Method

In addition to the unperturbed, fully observable game, the following noisy, partially
observable game studies have been analyzed separately in this manuscript. The parameters
used to describe the imperfect information model defined in Section 3 are shown in Table 5.
The Monte Carlo simulation method is used to obtain the escape success rate and the
miss distance of the target using the proposed ICAAI guidance and SOGL guidance under
different noise conditions. The results of the Monte Carlo simulation are shown in Figure 13.

Table 5. Parameters of the different imperfect information models.

Measurement Noise Parameter Case 1 Case 2 Case 3

LOS σLOS(mrad) 0.05 0~0.2 0.05

Velocity σv(m/s) 0.2 0.2 0~0.5

Acceleration σa(m/s) 1~3 2 2

Based on the simulation results of Case 2, it was observed that the OGL method
exhibited significant sensitivity to LOS noise. In scenarios without LOS noise, the escape
success rate of the proposed ICAAI guidance matched that of the OGL guidance, and,
in some cases, the OGL method even achieved a larger miss distance. However, as the
LOS noise variance increased to 0.05 mrad, the success rate of the OGL method dropped
to approximately 50%. Eventually, at a LOS noise variance of 0.15 mrad, the target was
practically unable to escape using the SOGL method, while the ICAAI guidance still
maintained an escape success rate of around 80%.

Analyzing the simulation results of Case 1 and Case 3, it was found that due to the
presence of LOS noise, the target employing the OGL method exhibited reduced sensitivity
to acceleration and velocity noise. Nevertheless, its escape capability remained weaker
compared to that of the ICAAI guidance. This could be attributed to the policy network
propagating observation information with different weights, leveraging the exploration
mechanism of reinforcement learning (RL). Consequently, training the agent in a determin-
istic environment resulted in a robust guidance policy with strong noise-resistant ability.
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5. Conclusions

In this research, we solved the cooperative active defense guidance problem for a
target with active defense attempting to evade an interceptor. Based on deep reinforcement
learning algorithms, a collaborative guidance strategy termed ICAAI was formulated to
enhance active spacecraft defense. Monte Carlo simulations were conducted to empirically
substantiate the real-time performance, convergence, adaptiveness, and robustness of the
introduced guidance strategy. The conclusions are stated as follows:

(1) In the presence of less prior knowledge and observation noise, the proposed ICAAI
guidance strategy is effective in achieving a higher success rate of target evasion by
guiding the target to coordinate maneuvers with defensive spacecraft.

(2) Utilizing a heuristic continuous reward function and an adaptive progressive cur-
riculum learning method, we devised the ESC training approach to effectively tackle
issues of low convergence efficiency and training process instability in ICAAI.

(3) The ICAAI guidance strategy outperforms the linear–quadratic optimal guidance law
(LQOGL) [10] in real-time performance. This framework also achieved an impressive
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update frequency of 103 Hz, demonstrating substantial potential for onboard applica-
tions.

(4) Simulation results confirm ICAAI’s effectiveness in reducing the relative distance
between interceptor and defender, enabling successful target evasion. In contrast
to traditional OGL methods, our approach exhibits enhanced robustness in noisy
environments, particularly in mitigating line-of-sight (LOS) noise.
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Nomenclature
a acceleration, m/s2

A, B state-space model of the linearized equations of motion
H Hamiltonian
I identity matrix
J(·) cost function
L constant vector
L−1 inverse Laplace transform
LOS light-of-sight
Q(·) reward signal
r reward signal
s state defined in Markov decision process
o observation of the agent
t, tgo, tf time, time to go, and final time, respectively, s
u guidance command, m/s2

V velocity, m/s
X−O−Y Cartesian reference frame
x state vector of the linearized equations of motion
y lateral distance, m
Z zero-effort-miss, m
α, β, σ design parameters of the reward function
φ flight path angle, rad
Φ transition matrix
γ discount factor
η killing radius, m
λ the angle between the corresponding light-of-sight and X-axis, rad
λ(·) Lagrange multiplier vector
µ(·) policy function
ρ relative distance between the adversaries, m
τ time constant
ω, ξ design parameters of the optimal guidance law (OGL)
I, T, D interceptor, target, and defender, respectively
max maximum
∗ optimal solution
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