
Citation: Pan, Z.; Wu, X.; Xiong, C.

Dual-Neighborhood Search for

Solving the Minimum Dominating

Tree Problem. Mathematics 2023, 11,

4214. https://doi.org/10.3390/

math11194214

Academic Editor: Rasul Kochkarov

Received: 10 August 2023

Revised: 26 September 2023

Accepted: 8 October 2023

Published: 9 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Dual-Neighborhood Search for Solving the Minimum
Dominating Tree Problem
Ze Pan, Xinyun Wu ∗ and Caiquan Xiong

School of Computer Science, Hubei University of Technology, Wuhan 430068, China
* Correspondence: xinyun@hbut.edu.cn

Abstract: The minimum dominating tree (MDT) problem consists of finding a minimum weight
subgraph from an undirected graph, such that each vertex not in this subgraph is adjacent to at
least one of the vertices in it, and the subgraph is connected without any ring structures. This paper
presents a dual-neighborhood search (DNS) algorithm for solving the MDT problem, which integrates
several distinguishing features, such as two neighborhoods collaboratively working for optimizing
the objective function, a fast neighborhood evaluation method to boost the searching effectiveness,
and several diversification techniques to help the searching process jump out of the local optimum
trap thus obtaining better solutions. DNS improves the previous best-known results for four public
benchmark instances while providing competitive results for the remaining ones. Several ingredients
of DNS are investigated to demonstrate the importance of the proposed ideas and techniques.

Keywords: metaheuristic; dominating tree; dual neighborhoods; fast neighborhood evaluation;
optimization

MSC: 68T20; 05C85

1. Introduction

The minimum dominating tree problem for weighted undirected graphs is to find
a dominating tree in a weighted undirected graph such that all vertices in this weighted
undirected graph are either in or adjacent to this tree, and the sum of the edge weights of
this tree is minimized [1]. Adjacent means that there is an edge between this vertex and at
least one vertex in the tree. The minimum dominating tree is a concept in graph theory and
one of the important classes of tree structures in graph theory.

A highly related problem, the minimum connected dominating set (MCDS), has been
extensively studied for building routing backbone wireless sensor networks (WSNs) [2,3].
One of the goals of introducing the MCDS in WSNs is to minimize energy consumption;
if two devices are too far away from each other, they may consume too much power to
communicate [4,5]. Using a routing backbone to transmit messages will greatly reduce
energy consumption, which increases dramatically as the transmission distance becomes
longer [6]. However, some directly connected vertices in MCDS may still be far away
from each other because MCDS does not account for distance [7]. Therefore, considering
each edge in the routing backbone is more in line with energy consumption purposes [8].
The minimum dominating tree (MDT) problem was first proposed by Zhang et al. [9] for
generating a routing backbone that is well adapted to broadcast protocols.

Shin et al. [1] proved that the MDT problem is NP-hard and introduced an approxi-
mate framework for solving it. They also provided heuristic algorithms and mixed-integer
programming (MIP) formulations for the MDT problem. Adasme et al. [10] introduced
two other MIP formulations, one based on a tree formulation in the bidirectional counter-
part of the input graph, and the other obtained from a generalized spanning tree polyhe-
dron. Adasme et al. [11] proposed a primal dyadic model for the minimum-cost domi-

Mathematics 2023, 11, 4214. https://doi.org/10.3390/math11194214 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11194214
https://doi.org/10.3390/math11194214
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11194214
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11194214?type=check_update&version=2

Mathematics 2023, 11, 4214 2 of 20

nated tree problem and an effective inequality to improve the linear relaxation. Álvarez-
Miranda et al. [12] proposed a precise solution framework that combined a primal–dual
heuristic algorithm with a branch-and-cut approach to transform the problem into a Steiner
tree problem with additional constraints. Their framework solved most instances in the
literature within three hours and proved its optimality.

In recent years, efficient heuristic algorithms for MDT problems have flourished.
Sundar and Singh [13] proposed two metaheuristic algorithms, the artificial bee colony
(ABC-DT) algorithm and the ant colony optimization (ACO-DT) algorithm, for the MDT
problem. These two algorithms were the first metaheuristics for the MDT problem and
provided better performance than previous algorithms. They also provided 54 randomly
generated instances in their work, which are considered challenging instances of the MDT
problem and are widely used to evaluate the performance of algorithms for the MDT
problem. Based on the latter work, Chaurasia and Singh [14] proposed an evolutionary
algorithm with guided mutation (EA/G-MP) for MDT problems. Dražic et al. [15] proposed
a variable neighborhood search algorithm (VNS) for MDT problems. Singh and Sundar [16]
proposed another artificial bee colony (ABC-DTP) algorithm for the MDT problem. This
new ABC-DTP method differed from the ABC-DT in the way it generated initial solutions
and in the strategy for determining neighboring solutions. Their experiments showed
that for the MDT problem, ABC-DTP outperformed all existing problem-specific heuristics
and metaheuristics available in the literature. Hu et al. [17] proposed a hybrid algorithm
combining genetic algorithms (GAITLS) and an iterative local search to solve the domi-
nating tree problem. Experimental results on classical instances showed that the method
outperformed existing algorithms. Xiong et al. [18] presented a two-level metaheuristic
(TLMH) algorithm for solving the MDT problem with a solution sampling phase and two
local search-based procedures nested in a hierarchical structure. The results demonstrated
the efficiency of the proposed algorithm in terms of solution quality compared with the
existing metaheuristics.

Metaheuristics have been shown to be very effective in solving many challenging
real-world problems [19]. However, for some problems, due to the complexity of the
problem structure and the large search space, the classical metaheuristic framework fails to
produce the desired results [20]. Many researchers have relied on composite neighborhood
structures. If properly designed, most composite neighborhood structures have proven
successful [21]. These methods include variable depth search (VDS), which searches a
large search space through a series of successive simple neighborhood search operations.
Although understanding the basic concepts of VDS algorithms dates back to the 1970s [22],
researchers have maintained a sustained enthusiasm for the term [23,24]. For a more
detailed survey of VDS, we refer to Ahuja et al. [25–27]. Another idea for dealing with
complex structural problems is to use a hierarchical metatrial approach, where several trials
are combined in a nested structure. Wu et al. [28] successfully implemented a two-level
iterative local search for a network design problem with traffic sparing. According to their
analysis, hierarchical metaheuristics must be carefully designed to balance the complexity
of the algorithm and its performance. In particular, for the outer framework, keeping
it as simple as possible makes the algorithm converge faster. Pop et al. [29] proposed a
two-level solution to the generalized minimum spanning tree problem. Carrabs et al. [30]
introduced a metaheuristic algorithm implementing a two-level structure to solve the
shortest path problem for all colors. Contreras Bolton and Parada [31] proposed an iterative
local search method to solve the generalized minimum spanning tree problem using a
two-level solution.

In recent years, some improved tabu search algorithms and multineighborhood meta-
heuristic algorithms have been proposed and applied to NP-hard problems. Li et al. [32]
proposed an improved tabu search algorithm to solve the vehicle routing problem, intro-
ducing an adaptive tabu length and neighborhood structure. Tong et al. [33] established
a mixed-integer nonlinear programming model and solved the unmanned aerial vehicle
transportation route optimization planning problem through a variable neighborhood tabu

Mathematics 2023, 11, 4214 3 of 20

search algorithm. Seydanlou et al. [34] proposed a metaheuristic algorithm with a multi-
neighborhood procedure, and experimental results proved the effectiveness of that method.
Song et al. [35] proposed a new competition-guided multineighborhood local search (CMLS)
algorithm to solve the course-based course scheduling problem, and computational results
showed that the proposed algorithm was highly competitive.

In this paper, we design a metaheuristic algorithm for a two-neighborhood search
to solve the MDT problem that uses two neighborhood moves to perform the search and
combines a tabu search to escape local optima. The DNS algorithm is described in detail
in Section 2, the experimental results of the DNS algorithm and comparison with other
algorithms are given in Section 3, and some comparative experiments within the DNS
algorithm are conducted in Section 4.

2. Tabu Search Algorithm

The DNS algorithm in this paper is based on the tabu search algorithm, so we first
introduce the tabu search algorithm.

2.1. Introduction

Tabu search (TS) is a metaheuristic search method used for mathematical optimization.
It was proposed by Fred W. Glover in 1998 [36]. Tabu search improves the performance
of local search by relaxing the basic rules of local search. It starts from an initial feasible
solution, selects a series of specific search directions (moves) as probes, and chooses the
move that makes the specific objective function value change the most. To avoid falling
into local optimal solutions, TS search uses a flexible “memory” technique to record and
select the optimization process that has been carried out, guiding the next step of search
direction. Tabu search is based on neighborhood search, by setting up a tabu list to tabu
some operations that have been experienced and using aspiration criteria to reward some
good states.

2.2. Basic Elements

The basic components of tabu search include:

• Initial solution: this is where the tabu search starts, usually a randomly generated
solution.

• Neighborhood function: this function defines the neighborhood of a given solution,
i.e., a set of solutions that are similar to but subtly different from the current solution.

• Objective function: this function is used to evaluate the quality or fitness of a solution.
• Tabu list: this is a list of solutions that have been visited, used to prevent the algorithm

from revisiting the same solution.
• Aspiration criteria: based on evaluation value rules, if a solution appears whose

objective value is better than any previous best candidate solution, it can be pardoned.
• Stopping criteria: this is a condition that when met, the algorithm will stop running.

The main indicators of the tabu list include:

• Tabu objects: those changing elements that are tabued in the tabu list.
• Tabu length: the number of steps that are tabued.

2.3. Basic Steps

The basic steps of tabu search are as follows:

1. Start from an initial solution.
2. Find all neighborhoods of the current solution and find the optimal neighborhood

solution.
3. If the optimal neighborhood solution is better than the current best solution, then it is

taken as the new current solution.
4. Add the new current solution to the tabu list. If the tabu list exceeds its maximum

length, delete the oldest entry.

Mathematics 2023, 11, 4214 4 of 20

5. Repeat steps 2–4 until the stopping criteria are met.

Perturbation is often used with tabu search algorithms. During the optimization
process, if the algorithm stagnates around some local optimum value, the perturbation
strategy will be activated. A perturbation strategy usually makes larger range changes to a
current solution so that search can jump out of a current local optimum value and enter a
new search area.

2.4. Design Challenges

The design of the various components and overall flow of a tabu search often has
certain impact on its efficiency. When designing a tabu search, the following challenges
need to be considered:

• How to define the neighborhood: The neighborhood function determines the space of
solutions that the algorithm can explore. If the neighborhood is defined too small, the
algorithm may fall into a local optimum; if it is defined too large then the computa-
tional cost may become too high.

• How to select tabu objects: The number of tabu objects need to be sufficient to prevent
the algorithm from falling into a local optimum. However, if there are too many
tabu objects, it may take up too much memory, and the lookup operation will also
slow down.

• How to determine the tabu length: too large a tabu length will slow down the search
and make it difficult to converge; too small a length will make the search easily fall
into a local optimum.

• How to set stopping criteria: stopping too early may lead to not finding optimal
solution; running for too long may lead to low efficiency.

• How to set perturbation intensity: although a perturbation strategy helps improve the
global optimization ability of the search, excessive perturbation may make the search
process chaotic and unable to effectively converge to a global optimum.

3. Dual-Neighborhood Search
3.1. Main Framework

The basic idea of our proposed DNS algorithm is to tackle the MDT problem by
optimizing the candidate dominating tree weight using a neighborhood search-based
metaheuristic with two neighborhood move operators. The search space of the DNS
consists of all the minimum spanning trees of all the possible dominating sets of the
instance graph. The proposed NDS algorithm optimizes the following objective function:

f (T) = α f1(X) + f2
(
E′
)

(1)

where T = (X, E′) stands for the current configuration, i.e., the candidate dominating
tree. Notations X and E′ represents the vertex and edge sets of T, respectively. Function
f1(X) calculates the number of vertices not dominated by T. Function f2(E′) calculates
the weights of the minimum spanning tree of T. α is a constant parameter to balance the
importance between f1 and f2. T is a feasible solution to the minimum dominating tree
problem if and only if f1(X) = 0.

The algorithm primarily comprises several key steps. Firstly, an initial solution is
generated, followed by a neighborhood evaluation. Subsequently, the best neighborhood
move is selected and executed iteratively. During the iteration, the best overall configu-
ration is recorded. The framework of the algorithm can be represented in pseudocode as
Algorithm 1.

In Algorithm 1, Ti represents the initial configuration, Tb represents the recorded best
overall solution, and Tc represents the current configuration. In each iteration, the sub-
procedure DO_NEIGHBOREVALUATE evaluates all the neighborhood moves in the current
configuration. The following two subprocedures select and execute the best move. The

Mathematics 2023, 11, 4214 5 of 20

termination condition can be the time or iteration limit. The time complexity of the DNS
algorithm is O(V2 + VE + E log E), and its space complexity is O(V2).

Algorithm 1 Algorithm for the MDT problem.

Require: The instance graph G(V, E)
Ensure: A DTP configuration Tb

1: procedure DNS(G)
2: Ti ← GENERATE_INITIALSOLUTION(G)
3: Tb ← Ti
4: Repeat
5: EvaluateMatrices← DO_NEIGHBOREVALUATE(G)
6: BestMove← SELECT_BESTMOVE(EvaluateMatrices)
7: Tc ← EXECUTE_BESTMOVE(Tc, BestMove)
8: if f (Tc) < f (Tb) then
9: Tb ← Tc

10: end if
11: until The termination condition is met
12: return Tb
13: end procedure

3.2. Initial Solution Generation

The proposed DNS algorithm uses a feasible dominating tree as the initial configura-
tion. The subprocedure GENERATE_INITIALSOLUTION generates this initial dominating
tree. It first finds the minimum spanning tree for the whole graph and tries to trim the tree
by removing leaves iteratively until removing one more leave breaks the dominancy of the
tree. The pseudocode of this procedure is defined in Algorithm 2.

Algorithm 2 Algorithm for generating the initial solution.

Require: The instance graph G(V, E)
Ensure: A DTP configuration Ti

1: procedure GENERATE_INITIALSOLUTION(G)
2: Ti ← KRUSKAL(G)
3: repeat
4: v← null
5: for n ∈ AllLeafVertices do
6: if n can remove and w(n) > w(v) then
7: v← n
8: end if
9: end for

10: if v 6= null then
11: Ti.remove(v)
12: end if
13: until v = null
14: return Ti
15: end procedure

The procedure starts from the minimum spanning tree Ti generated by Kruskal’s algo-
rithm. Then, it tries to delete the leaf with the largest edge weight. The process terminates
when no more leaves can be deleted. The algorithm returns a feasible dominating tree as
the initial configuration. In the following sections, we focus on the metaheuristic part of
the proposed DNS algorithm, i.e., the neighborhood structure as well as its evaluation.

Mathematics 2023, 11, 4214 6 of 20

3.3. Definition

For a better description, we first define some important concepts and notations used
in the proposed DNS algorithm.

• X: the set of vertices in the current dominator tree.
• Xplus: the set of vertices dominated by X and not in X.
• A1: An array of the number of undominated vertices; the length of the array is the

number of graph vertices.

A1[i] = |{j ∈ V \ (X ∪ Xplus) : (i, j) ∈ E, ∀k ∈ (X ∪ Xplus), (k, j) /∈ E}| (2)

A1[i] denotes the number of vertices not dominated by the new X when moving i
from X to Xplus (or from Xplus to X).

• A2: array of minimum spanning tree weights for X. The length of the array is the
number of graph vertices.

A2[i] =

{
w(MST(G[X \ {i}])) if i ∈ X
w(MST(G[X ∪ {i}])) if i ∈ Xplus

(3)

A2[i] denotes the weight of the new minimum spanning tree of X when moving i from
X to Xplus (or from Xplus to X).

The following example illustrates how A1 and A2 are calculated.
As shown in the Figure 1, the current dominating tree is T<B,D>, containing two vertices,

B and D. Therefore, X = B, D. The vertices dominated by X are A, C, and E. Thus,
Xplus = A, C, E. The vertices A, B, C, D, and E correspond to the array subscripts 0, 1, 2, 3,
and 4, respectively. To evaluate the neighborhood moves, the algorithm takes vertex A out
and puts it in the set of the other side. The number of vertices that are not dominated by
the new X after this move is 0, thus A1[0] is assigned to 0. The weight of the new minimum
spanning tree of X is 13, thus A2[0] is assigned to 13. After evaluating all the neighborhood
moves, the resulting arrays are A1 = [0, 1, 0, 1, 0] and A2 = [13, 0, 17, 0, 3]. A1 and A2 are
used to evaluate the neighborhood moves.

Figure 1. T<B,D>.

3.4. Neighborhood Move and Evaluation

There are two kinds of neighborhood moves in the DNS algorithm: one is to take out
one vertex in X and put it into Xplus, and the other one is to take out one vertex in Xplus
and put it into X. At each iteration, the best neighborhood move is selected and performed
among all the two kinds of neighborhood moves. There are two criteria to evaluate the
quality of the moves, one is the dominance and the other is the weight of the dominating
tree. The pseudocode for the neighborhood evaluation is described in Algorithm 3.

Mathematics 2023, 11, 4214 7 of 20

Algorithm 3 Algorithm for performing a neighborhood evaluation.

Require: EvaluateMatrices = (A1, A2), G(V, E)
Ensure: EvaluateMatrices

1: procedure DO_NEIGHBOREVALUATE(G)
2: for v ∈ X ∪ Xplus do
3: move v to other set
4: A1[v]← CALCULATE_NODOMINUMBER(X, Xplus, v)
5: A2[v]← CALCULATE_NEWMINSPANTREE(X, Xplus, v)
6: move v back
7: end for
8: end procedure

The evaluation is conducted by trying to move each vertex to the other set, then
the A1 and A2 values are calculated. The time complexity of this module is O(V2 + VE),
and its space complexity is O(V2). Based on these two arrays, the best move is selected as
described in Algorithm 4.

Algorithm 4 Algorithm for selecting the best move.

Require: EvaluateMatrices = (A1, A2)
Ensure: The best move

1: procedure SELECT_BESTMOVE(EvaluateMatrices)
2: Mbest ← 0
3: for v ∈ V do
4: if A1[v] < A1[Mbest] then
5: Mbest ← v
6: end if
7: if A1[v] = A1[Mbest] and A2[v] < A2[Mbest] then
8: Mbest ← v
9: end if

10: end for
11: return Mbest
12: end procedure

Procedure SELECT_BESTMOVE picks the move with the smallest A1 and A2, with a
higher priority for A1. The time complexity of this module is O(V), and its space complexity
is O(1). Then, the best move selected is performed by Algorithm 5.

Algorithm 5 Algorithm for executing the best neighborhood move.

Require: X, BestMove
Ensure: Tc

1: procedure EXECUTE_BESTMOVE(X, BestMove)
2: if BestMove ∈ X then
3: move BestMove from X to Xplus
4: else
5: move BestMove from Xplus to X
6: end if
7: Tc ← KRUSKAL(G(X))
8: return Tc
9: end procedure

Procedure EXECUTE_BESTMOVE moves the selected vertex to Xplus if it is in X,
and vice versa. After the move, the minimum spanning tree of G(X) is calculated using
Kruskal’s algorithm and assigned to Tc. The time complexity of this module is O(E log E),

Mathematics 2023, 11, 4214 8 of 20

and its space complexity is O(V). The following example illustrates how the best move is
evaluated and performed.

As shown in Figure 2, the current dominating tree is T<B,D>, X = {B, D}, Xplus =
{A, C, E}. To evaluate vertex A, we first move it from Xplus to X; then, X becomes {A, B, D}.
The number of vertices that are not dominated by the new X at this point is 0, thus
A1[A] = 0. The minimum spanning tree weight of X = {A, B, D} is 13, thus A2[A] = 13.
We then move A back to its original set. The evaluation for A is concluded. B, C, D,
and E are evaluated sequentially by the same process. After the evaluation for each vertex,
A1 = [0, 1, 0, 1, 0] and A2 = [13, 0, 17, 0, 3].

Figure 2. Move T<B,D> to T<B,D,E>.

Then, we pick the best neighborhood move by finding the minimum value from A1
and A2, prior to A1. There are 3 minimum values in A1, corresponding to A, C, and E. Then,
we compare the value of these three vertices in A2, the minimum value is 3, corresponding
to vertex E. Therefore, the best vertex is E, and the best neighboring move is to move E.
After the move, the new X = {B, D, E}. We calculate the minimum spanning tree of the
new X. The new minimum spanning tree is T<B,D,E> with a weight of 3.

3.5. Fast Neighborhood Evaluation

In order to improve the efficiency of the algorithm, this paper proposes a method to
dynamically update the neighborhood evaluation matrices A1, A2.

3.5.1. Fast Evaluation for A1

The number of undominated vertices may increase or remain unchanged when vertices
are moved from X to Xplus. The newly added undominated vertices must be originally in
the Xplus set and connected to the moved vertex. Since the number of undominated vertices
is zero throughout the algorithm, we can count the newly introduced undominated vertices
by counting the vertices in Xplus, where the moved vertex is its only connection to X.

When we move vertices from Xplus to X, the number of undominated vertices may
decrease or remain the same. Because X is dominated throughout the algorithm, the num-
ber of undominated vertices after this kind of moves is still 0. The above observation
can be utilized to dynamically compute A1 without having to traverse the entire graph.
The formula is as follows:

A1[i] =

{
|{j ∈ Xplus : (i, j) ∈ E}| if i ∈ X
0 if i ∈ Xplus

(4)

3.5.2. Fast Evaluation for A2

For A2, we use a dynamic Kruskal’s algorithm. The algorithm dynamically maintains a
set Roads, which is the set of edges contained in subgraph G(X), i.e., the set of edges whose
two vertices are in X. The Roads set is sorted from smallest to largest by the weights of the
edges. When a X-to-Xplus move is performed, the edges connecting to the moved vertex
and X are deleted from the Roads set. Similarly, when a Xplus-to-X move is performed,
the edges connecting to the moved vertex and X are inserted into the Roads set. Note
that edges should be inserted into the appropriate position in Roads to guarantee that it is
sorted. The dynamic Kruskal’s algorithm then assumes that the edges before the deletion or

Mathematics 2023, 11, 4214 9 of 20

insertion position are in the new minimum spanning tree and starts the normal procedure
from that position. The pseudocode for the dynamic Kruskal’s algorithm is described in
Algorithms 6 and 7.

Algorithm 6 Algorithm for calculate a new minimum spanning tree.

Require: MovedVertex, G, Roads, Tc
Ensure: weight of minimum spanning tree Ts

1: procedure CALCULATE_NEWMINSPANTREE(X, Xplus, MovedVertex)
2: min← MAX_VALUE
3: U ← CALCULATELINKVERTEX(G, MovedVertex)
4: for v ∈ U do
5: if v ∈ X then
6: if w(E(v, MovedVertex)) < min then
7: index ← RECORDINDEXINROADS(E(v, MovedVertex))
8: min← w(E(v, MovedVertex))
9: end if

10: if MovedVertex ∈ X then
11: Roads.delete(E(v, MovedVertex))
12: end if
13: if MovedVertex ∈ Xplus then
14: Roads.insert(E(v, MovedVertex))
15: end if
16: end if
17: end for
18: Ts ← DYNAMICKRUSKAL(Roads, index, G, Tc)
19: return w(Ts)
20: end procedure

In Algorithm 6, the notation E(a, b) represents the edge connecting vertices a and
b, and Tc is the original minimum spanning tree, i.e., the entire algorithm of the current
solution. The time complexity of this module is O(E), and its space complexity is O(V).
The main job of this procedure is to update the Roads set. Moreover, Algorithm 7 calculates
the spanning tree dynamically according to Roads.

Algorithm 7 Algorithm for the dynamic Kruskal algorithm.

Require: Roads, index, G, Tc
Ensure: a minimum spanning tree Ts

1: procedure DYNAMICKRUSKAL(Roads, index, G, Tc)
2: Ts ← null
3: for i from 0 to index do
4: if Roads[i] ∈ Tc then
5: Ts.add(Roads[i])
6: end if
7: end for
8: for i from index to Roads.size do
9: if Roads[i] can add to Ts then

10: Ts.add(Roads[i])
11: end if
12: end for
13: return Ts
14: end procedure

The time complexity of this module is O(E), and its space complexity is O(V). The
following example illustrates the above procedures:

Mathematics 2023, 11, 4214 10 of 20

As shown in Figure 3, the original tree is T<A,B,D,F>; currently, X = {A, B, D, F},
Xplus = {C, E, G}, Roads = {< D, F >,< A, B >,< B, D >}, and the weights of the edges
w(Roads) = {1, 4, 8}. Let us evaluate the move of vertex E from Xplus to X. After the
move X = {A, B, D, E, F}, Xplus = {C, G}. Since E was originally in Xplus, A1[E] = 0.
The new edge added after the move is the edge {< B, E >,< E, F >} with weights
{2, 5}. Then, we insert these two edges into the appropriate position in Roads according to
their weights from smallest to largest in w(Roads) = {1, 2, 4, 5, 8}, and the corresponding
Roads = {< D, F >,< B, E >,< A, B >,< E, F >,< B, D >}. We only need to start from
the position of < B, E > to determine the new minimum spanning tree. The edges before
< B, E > must be in the new minimum spanning tree. The evaluated minimum spanning
tree is T<A,B,D,E,F> = {< D, F >,< B, E >,< A, B >,< E, F >} with weight 12, thus
A2[E] = 12.

Figure 3. T<A,B,D,F> to T<A,B,D,E,F>.

3.6. Tabu Strategy and Aspiration Mechanism

The proposed DNS algorithm implements the tabu strategy. The vertex is prohibited
to be moved again within a tenure once it is moved. The tabu strategy is implemented
in both kinds of moves in the algorithm. Since there is no intersection of X and Xplus,
only one tabu table is needed. We denote the tabu tenure of the move from Xplus to X as
TabuLength1 and the move from X to Xplus as TabuLength2. These two tabu tenures are set
to the number of vertices in X and Xplus, respectively, thus implementing dynamic tabu
tenures. This tabu strategy improves the accuracy and efficiency and makes the algorithm
jump out of the local optimum more easily.

In order to avoid missing some good solutions, an aspiration strategy is introduced. If
one tabu move may improve the best overall solution, the searching process breaks its tabu
status and selects it as a candidate best move.

3.7. Perturbation Strategy

In order to further improve the quality of the solution, the proposed DNS algorithm
implements a perturbation strategy. The specific perturbation is to move some vertices
from Xplus to X randomly. The algorithm sets a parameter as the perturbation period.
When the number of iterations reaches the perturbation period, a perturbation is triggered,
and the number of iterations is cleared to zero if the best overall solution is updated
within this period. There are two other parameters, the perturbation amplitude and the
perturbation tabu tenure. The perturbation amplitude is the number of vertices taken
out from Xplus in the perturbation. The perturbation tabu tenure is the tabu tenure used
during the perturbation period. In addition, after a certain number of small perturbations,
a larger perturbation needs to be triggered to give a larger spatial span to the search process.
The larger perturbation is implemented by moving one-third of the vertices from Xplus to
X randomly.

4. Algorithm Experimentation
4.1. Datasets and Experimental Protocols

The experiments were carried out on the following two datasets:

• The DTP dataset is a dataset proposed by Dražic et al. [15], with the number of vertices
ranging from 150 to 1000.

Mathematics 2023, 11, 4214 11 of 20

• The Range dataset is a dataset proposed by Sundar and Singh [13], with the number
of vertices ranging from 50 to 500 and a transmission range from 100 to 150 m.

Both datasets are randomly generated and can be downloaded online or obtained
from the authors. The DNS algorithm was implemented in Java (JDK17) and tested on a
desktop computer equipped with an Intel® Xeon® W-2235 CPU @3.80 GHz, with 16.0 GB
of RAM.

4.2. Calibration

In this section, we present experiments to fix the value of key parameters of the DNS
algorithm:

• Parameter DisturbPeriod: The first perturbation period. Values from 14 to 17 were tested.
• Parameter DisturbLevel: The perturbation amplitude. Values from 7 to 12 were tested.
• Parameter DisturbTL1: The tabu length of the neighborhood move consisting in taking

a vertex from Xplus and putting it into X during the perturbation. Values from one to
two were tested.

• Parameter DisturbTL2: The tabu length of the neighborhood move consisting in taking
a vertex from X and putting it into Xplus during perturbation. Values from three to
eight were tested.

We selected 13 representative instances to tackle the calibration experiments. Repre-
sentatives were instances 200-400-1, 200-600-1, 300-600-1, and 300-1000-1 In DTP; instances
300-1, 400-1, and 500-1 in Range100, Range125, and Range150, respectively . The experi-
ment was conducted as follows: First, we performed a rough experiment with parameter
combinations to select better parameter combinations. Then, for each set of parameters, we
ran these 13 instances in sequence. Each instance was run five times with different random
seeds for 300 s each time. We compared the gap rates for each parameter setting. The gap
was calculated as:

gap =
n1 − n2

n2
(5)

where n1 is the average result obtained, and n2 is the known best objective. Table 1 shows
the result for the calibration experiment.

Table 1. Experimental results of parameter testing for the DNS.

DisturbPeriod DisturbLevel DisturbTL_1 DisturbTL_2 Total Gap Average Time

14 7 1 3 0.083 1959
14 7 1 4 0.082 1696
14 7 1 5 0.083 1806
14 8 1 3 0.093 1803
14 8 1 4 0.077 1776
14 8 1 5 0.080 1733
14 9 1 3 0.093 1910
14 9 1 4 0.090 1985
14 9 1 5 0.095 2084
15 8 1 4 0.075 1822
15 8 1 5 0.086 1768
15 8 1 6 0.083 1854
15 9 1 4 0.096 1956
15 9 1 5 0.095 1772
15 9 1 6 0.107 1835
15 10 1 4 0.077 1945
15 10 1 5 0.093 1955
15 10 1 6 0.096 1906
16 9 2 5 0.097 1930
16 9 2 6 0.110 1932
16 9 2 7 0.094 2168
16 10 2 5 0.087 1919

Mathematics 2023, 11, 4214 12 of 20

Table 1. Cont.

DisturbPeriod DisturbLevel DisturbTL_1 DisturbTL_2 Total Gap Average Time

16 10 2 6 0.089 2025
16 10 2 7 0.101 2054
16 11 2 5 0.101 2013
16 11 2 6 0.093 1769
16 11 2 7 0.093 1895
17 10 2 6 0.106 1662
17 10 2 7 0.106 1781
17 10 2 8 0.111 1968
17 11 2 6 0.108 1835
17 11 2 7 0.117 1863
17 11 2 8 0.108 1896
17 12 2 6 0.113 1942
17 12 2 7 0.114 1892
17 12 2 8 0.110 1707

According to the experimental data, the minimum total gap rate was 0.075, correspond-
ing to a DisturbPeriod of 15, a DisturbLevel of 8, a DisturbTL1 of 1, and a DisturbTL2 of
4. In the following experiment, we set the parameters of the algorithm to this setting.
Note that this experiment does not guarantee the optimal values of the parameters, and
the optimal scheme may vary from one benchmark to another. It can also be seen that
for different parameter combinations, the gap rate is small, indicating the robustness of
the algorithm.

4.3. Algorithm Comparison

In this section, a comparison of algorithms for the minimum dominating tree is
conducted, and the specific comparison is shown in Table 2.

Table 2. Comparison of Algorithms for Minimum Dominating Tree.

Algorithm Author Time Advantage Disadvantage

VNS Zorica Dražić 2016 Can calculate the optimal solution for
small-scale instances

The calculation result is poor for
large-scale instances

GAITLS Shuli Hu 2019 The average calculation result is good The overall optimal solution level is slightly poor

ACO-DT Shyam Sundar 2013 Can calculate the optimal solution for
small-scale instances

The overall optimal solution level and average
level are poor

ABC-DTP Kavita Singh 2018 The overall optimal solution level is good The average level is slightly poor

EA/G-MP Chaurasia 2016 Can calculate the optimal solution for
small-scale instances

The overall optimal solution level and average
level are slightly poor

TLMH Caiquan Xiong 2023 The overall optimal solution level and average
level are good Takes a long time

4.4. Comparison on DTP Dataset

In this section, we compare the proposed DNS algorithm with other methods in the
literature on the DTP dataset. There are two DTP datasets: dtp_large and dtp_small. Since
all algorithms can obtain the best results for dtp_small with little difference in speed, only
the experimental results for dtp_large are shown here. The compared algorithms were the
TLMH, VNS, and GAITLS algorithms. For each instance, 10 runs with different random
seeds were performed, each lasting 1000 s. The best, average objective values, and average
time were recorded for each instance. The experimental results and comparisons are shown
in Table 3. Bolded numbers represent that the current best value has been obtained and the
results are not worse than other algorithms. The stars indicate when the DNS algorithm
improved on the best objective value in the literature.

From Table 3, it can be seen that our algorithm obtained the best value in most in-
stances, and those that did not reach the optimal value were also very close to it. The overall
best values were slightly worse than those of the TLMH algorithm but better than those of
the VNS and GAITLS algorithms. The overall average of our algorithm outperformed the

Mathematics 2023, 11, 4214 13 of 20

other algorithms, demonstrating its stability and faster speed. It also improved on the best
solution in two instances.

Table 3. Computational results of the DNS and comparisons on dtp_large.

DNS TLMH VNS GAITLS

Instance Best Average Time Best Average Time Best Average Best Average

100-150-0 152.57 152.57 14 152.57 152.57 2 152.57 154.61 152.57 152.57
100-150-1 192.21 192.21 6 192.21 192.21 11 192.21 194.22 192.21 192.21
100-150-2 146.34 146.34 <1 146.34 146.34 87 146.34 148.35 146.34 146.34
100-200-0 135.04 135.04 <1 135.04 135.04 60 135.04 136.41 135.04 135.04
100-200-1 91.88 91.88 <1 91.88 91.88 13 91.88 92.03 91.88 91.88
100-200-2 115.93 115.93 17 115.93 115.93 9 115.93 117.11 115.93 115.93
200-400-0 257.09 257.52 376 257.09 257.23 370 306.06 343.95 257.09 257.09
200-400-1 258.77 258.88 181 258.77 258.88 486 303.53 331.10 258.93 258.93
200-400-2 241.07 241.42 6 238.27 241.72 370 274.37 389.51 238.29 238.29
200-600-0 121.62 122.94 307 121.62 127.73 460 132.49 150.39 121.62 121.62
200-600-1 135.08 137.63 293 135.08 145.20 441 162.92 198.21 135.08 135.08
200-600-2 123.70 124.04 166 123.31 123.70 264 139.08 154.36 123.31 123.31
300-600-0 352.32 353.36 297 348.03 351.22 529 471.69 494.62 348.03 348.03
300-600-1 416.23 416.99 157 413.93 416.64 753 494.91 542.46 415.32 415.32
300-600-2 354.35 356.52 57 352.15 353.77 760 500.72 535.30 385.53 385.53
300-1000-0 148.86 151.05 331 148.63 150.10 629 257.72 264.33 149.57 149.57
300-1000-1 * 164.65 165.77 404 165.21 165.91 477 242.79 325.16 165.19 165.19
300-1000-2 * 154.59 158.90 434 154.64 169.39 595 233.18 251.41 154.61 154.61

average 197.91 198.83 169 197.26 199.75 351 241.86 267.97 199.25 199.25

4.5. Range Dataset Experiments

In this section, the widely used Range dataset with 54 instances was tested and com-
pared with the TLMH, ACO-DT, EA/G-MP, and ABC-DTP algorithms. The experimental
results of these algorithms compared in this paper are the best results obtained using the
best parameters in the original literature. In this section, our algorithm was run 10 times
for each dataset with the previously measured best parameters and different random seeds.
Each run lasted 1000 s and the best, average objective values, and average time were calcu-
lated. The results and comparisons are shown in Tables 4–6. Bolded numbers represent
that the current best value has been obtained and the results are not worse than other
algorithms. The stars indicate when the DNS algorithm improved on the best objective
value in the literature.

Table 4. Computational results of the DNS and comparisons on Range100.

DNS TLMH ACO-DT EA/G-MP ABC-DTP

Instance Best Average Time Best Average Time Best Average Best Average Best Average

50-1 1204.41 1204.41 29 1204.41 1204.41 1 1204.41 1204.41 1204.41 1204.41 1204.41 1204.41
50-2 1340.44 1340.44 25 1340.44 1340.44 <1 1340.44 1340.44 1340.44 1340.44 1340.44 1340.69
50-3 1316.39 1316.39 6 1316.39 1316.39 <1 1316.39 1316.39 1316.39 1316.39 1316.39 1316.39

100-1 1217.47 1217.47 <1 1217.47 1217.47 17 1217.47 1217.47 1217.47 1217.61 1217.47 1218.59
100-2 1128.40 1128.40 7 1128.40 1128.40 44 1152.85 1152.85 1128.40 1128.54 1128.40 1136.50
100-3 1252.99 1252.99 20 1252.99 1253.41 202 1253.49 1253.49 1253.49 1257.37 1252.99 1253.30
200-1 1206.79 1206.79 23 1206.79 1206.80 515 1206.79 1207.61 1206.79 1208.26 1206.79 1210.25
200-2 1213.24 1213.24 170 1213.24 1213.27 395 1216.23 1217.73 1216.41 1222.23 1216.41 1219.38
200-3 1247.25 1247.25 114 1247.25 1247.41 313 1247.25 1248.94 1247.63 1250.78 1247.73 1252.15
300-1 1217.59 1224.32 587 1215.48 1217.40 564 1228.24 1243.70 1225.22 1230.48 1215.48 1220.39
300-2 1170.85 1171.53 441 1170.85 1171.08 341 1176.45 1193.95 1170.85 1171.30 1170.85 1171.15
300-3 1247.51 1254.16 453 1247.51 1249.51 348 1261.18 1276.75 1252.14 1260.83 1249.54 1254.67
400-1 1211.33 1216.45 426 1211.33 1213.51 502 1220.62 1237.45 1211.72 1220.79 1212.51 1214.36
400-2 1201.74 1205.34 425 1197.66 1198.99 432 1209.69 1246.14 1199.92 1202.82 1199.23 1202.90
400-3 1257.52 1262.98 487 1245.31 1248.47 633 1254.10 1270.34 1248.29 1268.38 1246.94 1258.76
500-1 1202.12 1209.06 482 1197.26 1202.81 678 1219.66 1240.05 1206.07 1222.12 1200.06 1208.73
500-2 * 1220.47 1233.98 624 1221.76 1226.81 570 1273.86 1295.51 1226.78 1240.62 1220.68 1230.07
500-3 * 1231.81 1244.93 381 1231.84 1236.64 583 1232.71 1259.08 1232.15 1250.48 1231.95 1236.33

average 1227.13 1230.56 261 1225.91 1227.32 348 1235.10 1245.68 1228.03 1234.10 1226.57 1230.57

Mathematics 2023, 11, 4214 14 of 20

Table 5. Computational results of the DNS and comparisons on Range125.

DNS TLMH ACO-DT EA/G-MP ABC-DTP

Instance Best Average Time Best Average Time Best Average Best Average Best Average

50-1 802.95 802.95 10 802.95 802.95 1 802.95 803.26 802.95 802.95 802.95 802.95
50-2 1055.10 1055.10 19 1055.10 1055.10 2 1055.10 1055.10 1055.10 1055.10 1055.10 1055.10
50-3 877.77 877.77 3 877.77 877.77 4 877.77 877.77 877.77 877.77 877.77 877.83

100-1 943.01 943.01 3 943.01 943.01 102 943.01 946.37 943.01 943.01 943.01 943.01
100-2 917.00 917.00 126 917.00 917.23 281 935.71 938.71 917.95 917.95 917.00 917.38
100-3 998.18 998.18 5 998.18 998.18 44 998.18 1006.11 998.18 998.18 998.18 999.91
200-1 910.17 910.17 11 910.17 910.17 195 910.17 910.50 910.17 910.17 910.17 911.66
200-2 921.76 921.76 79 921.76 921.76 184 928.84 942.72 921.76 923.03 921.76 925.38
200-3 939.58 939.58 452 939.60 939.61 333 951.36 959.63 939.58 949.18 939.58 943.20
300-1 977.65 978.33 412 977.65 977.65 416 978.91 980.11 977.65 981.04 979.81 981.85
300-2 913.01 913.01 228 913.01 913.01 402 918.40 949.05 913.01 914.08 913.01 913.88
300-3 974.85 974.94 383 974.78 974.78 315 981.15 981.33 974.85 979.34 974.78 978.35
400-1 965.99 966.08 292 966.01 966.03 225 968.66 980.60 965.99 966.59 965.99 966.71
400-2 938.54 942.45 643 934.17 937.88 506 941.52 961.71 941.02 943.53 941.02 942.59
400-3 1002.61 1003.13 579 1002.61 1002.67 525 1002.61 1009.07 1002.97 1003.62 1002.61 1003.33
500-1 963.89 964.10 484 963.89 965.91 272 986.49 991.85 963.89 963.89 963.89 964.80
500-2 950.18 956.48 539 948.57 949.57 457 953.77 996.85 948.57 952.96 948.96 950.12
500-3 982.02 988.86 514 980.67 982.73 553 1006.23 1007.36 980.67 992.64 981.90 986.01

average 946.35 947.38 265 945.94 946.45 283 952.27 961.01 946.39 948.61 946.53 948.00

Table 6. Computational results of the DNS and comparisons on Range150.

DNS TLMH ACO-DT EA/G-MP ABC-DTP

Instance Best Average Time Best Average Time Best Average Best Average Best Average

50-1 647.75 647.75 <1 647.75 647.75 1 647.75 647.75 647.75 647.75 647.75 647.75
50-2 863.69 863.69 <1 863.69 863.69 2 863.69 863.69 863.69 863.69 863.69 864.04
50-3 743.94 743.94 <1 743.94 743.94 2 743.94 743.94 743.94 743.94 743.94 745.68

100-1 876.69 876.69 7 876.69 876.79 297 881.37 885.36 876.69 876.69 876.69 877.02
100-2 657.35 657.35 <1 657.35 657.35 11 657.35 657.35 657.35 657.53 657.35 657.53
100-3 722.87 722.87 <1 722.87 722.87 2 722.87 722.87 722.87 722.87 722.87 722.87
200-1 809.90 809.90 23 809.90 809.90 138 809.90 810.87 809.90 810.49 809.90 809.90
200-2 736.23 736.23 2 736.23 736.23 354 736.23 736.23 736.23 736.23 736.23 736.23
200-3 792.71 792.71 17 792.71 792.71 97 792.71 793.73 792.71 795.65 792.71 793.48
300-1 796.15 796.60 288 796.15 796.15 283 796.70 797.17 796.15 798.12 796.29 796.99
300-2 741.02 741.72 257 741.02 741.03 298 748.94 752.33 741.02 743.05 741.02 742.88
300-3 819.76 819.76 171 819.76 819.78 129 826.48 826.56 819.76 821.67 819.76 820.45
400-1 796.70 797.42 435 795.53 795.88 445 796.70 798.24 795.53 798.82 795.53 797.92
400-2 779.63 780.64 477 779.67 779.67 388 782.91 787.66 779.63 783.14 779.63 781.40
400-3 814.14 816.62 589 814.14 814.18 388 826.48 831.32 814.14 817.38 814.14 815.35
500-1 792.32 793.49 469 792.21 792.31 357 794.47 797.13 792.21 793.59 793.98 796.16
500-2 779.35 779.92 465 779.38 779.41 274 779.35 791.20 779.35 781.28 779.35 780.04
500-3 808.64 810.00 538 808.37 808.39 281 808.50 811.35 808.50 810.27 808.50 808.50

average 776.60 777.07 207 776.52 776.56 208 778.69 780.82 776.52 777.90 776.53 777.46

Our algorithm obtained the best solution for most instances in the Range dataset,
and those that were not optimal were close to the optimal solution. It improved on the best
solution for two instances and outperformed the TLMH algorithm in speed.

5. Analysis and Discussion
5.1. The Importance of the Initial Solution

A procedure for generating the initial solution was proposed in the previous section.
To see the effect of that procedure, experiments were conducted using it in this section,
where 18 instances of Range150 were tested. The objective value obtained by our procedure
were compared with both the minimum spanning tree weights and the known best objective
value to see how much our procedure improved on the initial solution and how close that
initial solution was to the minimum dominating tree. The experimental results are shown
in Table 7.

Mathematics 2023, 11, 4214 15 of 20

Table 7. Experimental results of the initial dominating tree algorithm.

Instance Tm Ti Tb

50-1 2368.21 1145.40 647.75
50-2 2521.75 1222.31 863.69
50-3 2461.33 1103.13 743.94
100-1 3313.79 1324.04 876.69
100-2 3155.53 1212.55 657.35
100-3 3354.60 1043.87 722.87
200-1 4618.79 1327.49 809.90
200-2 4704.18 1322.38 736.23
200-3 4720.93 1353.97 792.71
300-1 5685.14 1559.49 796.15
300-2 5718.30 1269.55 741.02
300-3 5839.22 1516.01 819.76
400-1 6599.33 1730.84 795.53
400-2 6618.89 1833.34 779.63
400-3 6524.29 1638.08 814.14
500-1 7356.76 1375.03 792.21
500-2 7342.62 1334.51 779.35
500-3 7305.09 2111.56 808.37

In Table 7, Tm represents the minimum spanning tree, Ti represents the objective value
obtained from the initialization procedure, and Tb represents the known best objective value.
From the results, it can be seen that using the initialization procedure to obtain a dominating
tree as the initial solution improves the results significantly compared to using the minimum
spanning tree as the initial solution. The weight of this initial dominating tree is relatively
close to that of the minimum dominating tree, allowing the algorithm to converge quickly
to a near-optimal solution at the very beginning. To verify this improvement, this paper
also used the minimum spanning tree of graph G(V, E) as an initial solution, and we
conducted experiments on Range150 for comparison. This method is denoted as DNS-MS.
The experimental results are presented in Table 8.

Table 8. Computational results of the initial solution experiment on Range150.

DNS DNS-MS

Instance Best Average Time Best Average Time

50-1 647.75 647.75 <1 647.75 647.75 <1
50-2 863.69 863.69 <1 863.69 863.69 <1
50-3 743.94 743.94 <1 743.94 743.94 <1
100-1 876.69 876.69 7 876.69 876.69 10
100-2 657.35 657.35 <1 657.35 657.35 <1
100-3 722.87 722.87 <1 722.87 722.87 <1
200-1 809.90 809.90 23 809.90 809.90 20
200-2 736.23 736.23 2 736.23 736.23 7
200-3 792.71 792.71 17 792.71 792.71 32
300-1 796.15 796.60 288 796.65 796.69 282
300-2 741.02 741.72 257 741.02 741.02 273
300-3 819.76 819.76 171 819.76 819.84 484
400-1 796.70 797.42 435 796.70 797.34 500
400-2 779.63 780.64 477 779.63 780.40 525
400-3 814.14 816.62 589 815.03 817.09 567
500-1 792.32 793.49 469 792.21 793.73 808
500-2 779.35 779.92 465 779.35 780.31 652
500-3 808.64 810.00 538 809.69 810.34 670

average 776.60 777.07 207 776.73 777.11 268

The experimental results show that there is not much difference between the best
and average values obtained by DNS and DNS-MS, demonstrating the robustness of the
local search procedure of the DNS algorithm. It can be seen that under the condition that
there is not much difference in the calculation results, the solution time required by DNS
is less than that of DNS-MS. This indicates that the initial solution proposed in this paper
improves the efficiency of the algorithm.

Mathematics 2023, 11, 4214 16 of 20

5.2. The Importance of the Fast Neighborhood Evaluation

The proposed DNS algorithm uses a fast neighborhood evaluation technique. To verify
its effectiveness, an experiment was conducted to test the time taken to reach the same result
for 18 instances of Range150 with and without the fast neighborhood evaluation. In this
experiment, the perturbation was disabled, and only the tabu mechanism was enabled. The
best objective value that could be reached at complete convergence was tested in advance
for each instance and used as the target result. The random seed was fixed for each instance
so that the difference in speed was only due to using the fast neighborhood evaluation. The
program ran until it reached the target result, and the time taken by each instance to reach
the target result under these two methods was recorded separately. The results are shown
in Table 9, where Method 1 represents the version without fast neighborhood evaluation
and Method 2 represents the version with fast neighborhood evaluation:

Table 9. Comparison of fast neighborhood evaluation experiments.

Instance Target Results Method 1’s Time Method 2’s Time

50-1 647.75 <1 <1
50-2 903.37 <1 <1
50-3 751.24 <1 <1
100-1 876.69 13 3
100-2 657.35 1 <1
100-3 722.87 1 <1
200-1 809.90 10 1
200-2 736.23 10 1
200-3 797.11 85 15
300-1 798.18 136 22
300-2 745.29 28 3
300-3 827.56 447 77
400-1 803.07 288 36
400-2 785.63 411 61
400-3 825.07 448 72
500-1 801.36 200 23
500-2 780.03 372 56
500-3 818.49 315 20

average 782.62 153 21

From Table 9, it can be seen that the version using the fast neighborhood evaluation sig-
nificantly improves its speed compared to the version without it, verifying the effectiveness
of the fast neighborhood evaluation. To observe the convergence of these two methods,
scatter plots were generated by outputting the weights and corresponding times after each
update. The convergence curves of some instances are shown in Figure 4, where NDNU
represents the method without fast neighborhood evaluation, and DNU represents the
method with the fast neighborhood evaluation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time

650

700

750

800

850

900

950

1000

1050

1100

T
re

e
W

ei
g
h
t

Range150/ins 50-1

NDNU

DNU

(a) 50-1

0 5 10 15

Time

850

900

950

1000

1050

1100

1150

1200

1250

1300

T
re

e
W

ei
g
h
t

Range150/ins 100-1

NDNU

DNU

(b) 100-1

Figure 4. Cont.

Mathematics 2023, 11, 4214 17 of 20

0 2 4 6 8 10 12

Time

800

850

900

950

1000

1050

1100

1150

1200

1250

1300

T
re

e
W

ei
g
h
t

Range150/ins 200-1

NDNU

DNU

(c) 200-1

0 50 100 150

Time

800

900

1000

1100

1200

1300

1400

1500

T
re

e
W

ei
g
h
t

Range150/ins 300-1

NDNU

DNU

(d) 300-1

0 50 100 150 200 250 300

Time

800

900

1000

1100

1200

1300

1400

1500

1600

1700

T
re

e
W

ei
g
h
t

Range150/ins 400-1

NDNU

DNU

(e) 400-1

0 20 40 60 80 100 120 140 160 180 200

Time

800

900

1000

1100

1200

1300

T
re

e
W

ei
g
h
t

Range150/ins 500-1

NDNU

DNU

(f) 500-1

Figure 4. Fast neighborhood evaluation scatter plot.

From Figure 4, it can be seen that the version using the fast neighborhood evaluation
converges to the target value more quickly. For the version without the fast neighborhood
evaluation, the curve is slower and takes longer to converge to the same objective value.

5.3. Importance of the Perturbation

The proposed DNS algorithm also implements a perturbation strategy. In this section,
the effectiveness of that strategy was verified through experiments by testing the version
with and without that strategy, for 18 instances in Range150. Each instance was run
five times with different random seeds, with a time limit of 1000 s, and the results of the
experiments are shown in Table 10:

Table 10. Comparison of disturbance strategy experiments.

Using Perturbation Without Perturbation

Instance Best Average Best Average

50-1 647.75 647.75 647.75 647.75
50-2 863.69 863.69 903.37 903.37
50-3 743.94 743.94 751.24 751.24
100-1 876.69 876.69 876.69 876.69
100-2 657.35 657.35 657.35 657.35
100-3 722.87 722.87 722.87 722.87
200-1 809.90 809.90 809.90 809.90
200-2 736.23 736.23 736.23 736.23
200-3 792.71 792.71 792.71 794.27
300-1 796.29 796.62 796.70 799.93
300-2 741.02 741.02 743.99 744.87
300-3 819.76 819.76 822.70 828.09
400-1 796.70 797.84 802.80 805.29
400-2 779.63 781.21 782.98 786.56
400-3 814.14 816.47 824.31 825.71
500-1 792.65 793.55 799.82 806.55
500-2 779.35 779.65 780.03 784.35
500-3 808.64 809.92 811.63 817.03

average 776.63 777.07 781.28 783.23

Mathematics 2023, 11, 4214 18 of 20

From Table 10, it can be seen that better solutions can be obtained by the version using
the perturbation strategy, especially in some larger instances, verifying the effectiveness of
the strategy.

5.4. Statistical Significance Testing among Versions of DNS

We conducted t-tests on different versions of DNS on some instances to check whether
the differences in results were merely caused by randomness. These different versions of
the algorithm included:

• DNS-MS, the version of the algorithm with the minimum spanning tree as the
initial solution.

• DNS-NF, the version of the algorithm without fast neighborhood evaluation.
• DNS-NP, the version of the algorithm without perturbation.

Among them, DNS-MS and DNS-NF tested for differences in time, while DNS-NP
tested for differences in calculation results. The results and comparisons are as follows.

From Table 11, we can see that some results or speeds of DNS are significantly different
(p ≤ 0.05) from the other versions. Additionally, it can be seen in DNS vs. DNS-NP that
the p-value is 1.00 on some small-scale instances. This is because both DNS and DNS-NP
can always obtain the optimal solution for these instances, so no difference can be observed
between DNS and DNS-NP on these small-scale instances. However, significant differences
can be observed on large-scale instances.

Table 11. p values of t-Tests on each instance between versions of DNS.

Instance DNS vs. DNS-MS DNS vs. DNS-NF DNS vs. DNS-NP

50-1 0.45 0.12 1.00
50-2 0.26 0.15 0.00
50-3 0.22 0.08 0.00
100-1 0.16 0.01 1.00
100-2 0.04 0.06 1.00
100-3 0.05 0.05 1.00
200-1 0.12 0.00 1.00
200-2 0.00 0.00 1.00
200-3 0.03 0.01 0.08
300-1 0.65 0.00 0.00
300-2 0.22 0.00 0.00
300-3 0.01 0.01 0.00
400-1 0.04 0.00 0.00
400-2 0.05 0.00 0.00
400-3 0.22 0.00 0.00
500-1 0.01 0.00 0.00
500-2 0.03 0.00 0.00
500-3 0.04 0.00 0.00

6. Conclusions

In this paper, a dual-neighborhood search algorithm was proposed to solve the mini-
mum dominating tree problem. In order to improve the efficiency of the algorithm, a fast
neighborhood evaluation method was proposed, in which the method of dynamically gen-
erating the minimum spanning tree from the subgraph was deduced from the dominating
set. The tabu and the perturbation mechanisms helped the algorithm jump out of the local
optimum trap, thus obtaining better solutions. The DNS algorithm was demonstrated to
be highly effective in tests on a collection of widely used benchmark instances, where it
was compared with algorithms from the literature. Out of 72 public instances, the DNS
improved the best result on four problems while being competitive on the remaining ones
with less computational time. Although the techniques proposed in this paper are specific
to the minimum dominating tree problem, most of these ideas can be applied to other com-
binatorial optimization problems. For example, the dynamic spanning tree calculation used
in the fast neighborhood evaluation can be used in problems with spanning tree structures.
Moreover, the collaboration of two neighborhood structures can also be introduced to other
relevant optimization problems. Finally, it would be interesting to test the proposed ideas
in other metaheuristic frameworks with other optimization problems.

Mathematics 2023, 11, 4214 19 of 20

Additionally, the DNS algorithm has some shortcomings. For instance, the optimal
solutions obtained by the DNS on some instances are not good enough. At the same time,
there are some areas for improvement in the algorithm. For example, a weighted approach
can be used to guide the position after perturbation. According to some rules or judgment
functions, nodes that are likely to appear in the optimal solution are weighted. The initial
solution is probabilistically generated through weights. The larger the weight, the greater
the probability of selecting this node. Furthermore, some judgment conditions can be used
to adaptively scale the tabu search, reducing the tabu length in areas where global optimal
solutions may appear to refine the search.

Author Contributions: Conceptualization, X.W. and C.X.; investigation, X.W. and Z.P.; methodology,
X.W. and Z.P.; software, Z.P. and X.W.; data collection, Z.P. and X.W.; writing, Z.P. and X.W.; equip-
ment, C.X. and X.W.; funding acquisition, X.W. and C.X.; supervision, C.X. and X.W. All authors have
read and agreed to the published version of the manuscript.

Funding: The research was supported by the National Natural Science Foundation of China (Grant
No. 62002105 and 62201203) and the Science and Technology Program of Hubei Province (2021BLB171).

Data Availability Statement: The source code for the experiment can be obtained through the
following link: https://github.com/pan204981292/DNS.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shin, I.; Shen, Y.; Thai, M.T. On approximation of dominating tree in wireless sensor networks. Optim. Lett. 2010, 4, 393–403.

[CrossRef]
2. Wu, X.; Lü, Z.; Galinier, P. Restricted swap-based neighborhood search for the minimum connected dominating set problem.

Networks 2017, 69, 222–236. [CrossRef]
3. Li, R.; Hu, S.; Gao, J.; Zhou, Y.; Wang, Y.; Yin, M. GRASP for connected dominating set problems. Neural Comput. Appl. 2017,

28, 1059–1067. [CrossRef]
4. Li, R.; Hu, S.; Liu, H.; Li, R.; Ouyang, D.; Yin, M. Multi-start local search algorithm for the minimum connected dominating set

problems. Mathematics 2019, 7, 1173. [CrossRef]
5. Bouamama, S.; Blum, C.; Fages, J.G. An algorithm based on ant colony optimization for the minimum connected dominating set

problem. Appl. Soft Comput. 2019, 80, 672–686. [CrossRef]
6. Chinnasamy, A.; Sivakumar, B.; Selvakumari, P.; Suresh, A. Minimum connected dominating set based RSU allocation for

smartCloud vehicles in VANET. Clust. Comput. 2019, 22, 12795–12804. [CrossRef]
7. Hedar, A.R.; Ismail, R.; El-Sayed, G.A.; Khayyat, K.M.J. Two meta-heuristics designed to solve the minimum connected

dominating set problem for wireless networks design and management. J. Netw. Syst. Manag. 2019, 27, 647–687. [CrossRef]
8. Li, B.; Zhang, X.; Cai, S.; Lin, J.; Wang, Y.; Blum, C. Nucds: An efficient local search algorithm for minimum connected dominating

set. In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence
2021, Yokohama, Japan, 7–15 January 2021; pp. 1503–1510.

9. Zhang, N.; Shin, I.; Li, B.; Boyaci, C.; Tiwari, R.; Thai, M.T. New approximation for minimum-weight routing backbone in wireless
sensor network. In Proceedings of the Wireless Algorithms, Systems, and Applications: Third International Conference, WASA
2008, Dallas, TX, USA, 26–28 October 2008; pp. 96–108.

10. Adasme, P.; Andrade, R.; Leung, J.; Lisser, A. Models for minimum cost dominating trees. Electron. Notes Discret. Math. 2016,
52, 101–107. [CrossRef]

11. Adasme, P.; Andrade, R.; Leung, J.; Lisser, A. Improved solution strategies for dominating trees. Expert Syst. Appl. 2018,
100, 30–40. [CrossRef]

12. Álvarez-Miranda, E.; Luipersbeck, M.; Sinnl, M. An exact solution framework for the minimum cost dominating tree problem.
Optim. Lett. 2018, 12, 1669–1681. [CrossRef]

13. Sundar, S.; Singh, A. New heuristic approaches for the dominating tree problem. Appl. Soft Comput. 2013, 13, 4695–4703.
[CrossRef]

14. Chaurasia, S.N.; Singh, A. A hybrid heuristic for dominating tree problem. Soft Comput. 2016, 20, 377–397. [CrossRef]
15. Dražić, Z.; Čangalović, M.; Kovačević-Vujčić, V. A metaheuristic approach to the dominating tree problem. Optim. Lett. 2017,

11, 1155–1167. [CrossRef]
16. Singh, K.; Sundar, S. Two new heuristics for the dominating tree problem. Appl. Intell. 2018, 48, 2247–2267. [CrossRef]
17. Hu, S.; Liu, H.; Wu, X.; Li, R.; Zhou, J.; Wang, J. A hybrid framework combining genetic algorithm with iterated local search for

the dominating tree problem. Mathematics 2019, 7, 359. [CrossRef]
18. Xiong, C.; Liu, H.; Wu, X.; Deng, N. A two-level meta-heuristic approach for the minimum dominating tree problem. Front.

Comput. Sci. 2023, 17, 171406. [CrossRef]

https://github.com/pan204981292/DNS
http://doi.org/10.1007/s11590-010-0175-0
http://dx.doi.org/10.1002/net.21728
http://dx.doi.org/10.1007/s00521-016-2429-y
http://dx.doi.org/10.3390/math7121173
http://dx.doi.org/10.1016/j.asoc.2019.04.028
http://dx.doi.org/10.1007/s10586-018-1760-8
http://dx.doi.org/10.1007/s10922-018-9480-1
http://dx.doi.org/10.1016/j.endm.2016.03.014
http://dx.doi.org/10.1016/j.eswa.2018.01.031
http://dx.doi.org/10.1007/s11590-018-1252-z
http://dx.doi.org/10.1016/j.asoc.2013.07.014
http://dx.doi.org/10.1007/s00500-014-1513-4
http://dx.doi.org/10.1007/s11590-016-1017-5
http://dx.doi.org/10.1007/s10489-017-1075-0
http://dx.doi.org/10.3390/math7040359
http://dx.doi.org/10.1007/s11704-022-2178-2

Mathematics 2023, 11, 4214 20 of 20

19. Yang, W.; Ke, L. An improved fireworks algorithm for the capacitated vehicle routing problem. Front. Comput. Sci. 2019,
13, 552–564. [CrossRef]

20. Hou, N.; He, F.; Zhou, Y.; Chen, Y. An efficient GPU-based parallel tabu search algorithm for hardware/software co-design. Front.
Comput. Sci. 2020, 14, 145316 . [CrossRef]

21. Hao, X.; Liu, J.; Zhang, Y.; Sanga, G. Mathematical model and simulated annealing algorithm for Chinese high school timetabling
problems under the new curriculum innovation. Front. Comput. Sci. 2021, 15, 151309. [CrossRef]

22. Lin, S.; Kernighan, B.W. An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 1973, 21, 498–516.
[CrossRef]

23. Glover, F. Ejection chains, reference structures and alternating path methods for traveling salesman problems. Discret. Appl.
Math. 1996, 65, 223–253. [CrossRef]

24. Yagiura, M.; Yamaguchi, T.; Ibaraki, T. A variable depth search algorithm with branching search for the generalized assignment
problem. Optim. Methods Softw. 1998, 10, 419–441. [CrossRef]

25. Ahuja, R.K.; Ergun, Ö.; Orlin, J.B.; Punnen, A.P. A survey of very large-scale neighborhood search techniques. Discret. Appl. Math.
2002, 123, 75–102. [CrossRef]

26. Santos, L.F.M.; Iwayama, R.S.; Cavalcanti, L.B.; Turi, L.M.; de Souza Morais, F.E.; Mormilho, G.; Cunha, C.B. A variable
neighborhood search algorithm for the bin packing problem with compatible categories. Expert Syst. Appl. 2019, 124, 209–225.
[CrossRef]

27. Wu, X.; Xiong, C.; Deng, N.; Xia, D. A variable depth neighborhood search algorithm for the Min–Max Arc Crossing Problem.
Comput. Oper. Res. 2021, 134, 105403. [CrossRef]

28. Wu, X.; Lü, Z.; Guo, Q.; Ye, T. Two-level iterated local search for WDM network design problem with traffic grooming. Appl. Soft
Comput. 2015, 37, 715–724. [CrossRef]

29. Pop, P.C.; Matei, O.; Sabo, C.; Petrovan, A. A two-level solution approach for solving the generalized minimum spanning tree
problem. Eur. J. Oper. Res. 2018, 265, 478–487. [CrossRef]

30. Carrabs, F.; Cerulli, R.; Pentangelo, R.; Raiconi, A. A two-level metaheuristic for the all colors shortest path problem. Comput.
Optim. Appl. 2018, 71, 525–551. [CrossRef]

31. Contreras-Bolton, C.; Parada, V. An effective two-level solution approach for the prize-collecting generalized minimum spanning
tree problem by iterated local search. Int. Trans. Oper. Res. 2021, 28, 1190–1212. [CrossRef]

32. Li, G.; Li, J. An improved tabu search algorithm for the stochastic vehicle routing problem with soft time windows. IEEE Access
2020, 8, 158115–158124. [CrossRef]

33. Tong, B.; Wang, J.; Wang, X.; Zhou, F.; Mao, X.; Zheng, W. Optimal Route Planning for Truck–Drone Delivery Using Variable
Neighborhood Tabu Search Algorithm. Appl. Sci. 2022, 12, 529. [CrossRef]

34. Seydanlou, P.; Sheikhalishahi, M.; Tavakkoli-Moghaddam, R.; Fathollahi-Fard, A.M. A customized multi-neighborhood search
algorithm using the tabu list for a sustainable closed-loop supply chain network under uncertainty. Appl. Soft Comput. 2023, 114,
110495. [CrossRef]

35. Song, T.; Chen, M.; Xu, Y.; Wang, D.; Song, X.; Tang, X. Competition-guided multi-neighborhood local search algorithm for the
university course timetabling problem. Appl. Soft Comput. 2021, 110, 107624. [CrossRef]

36. Glover, F.; Laguna, M. Tabu Search; Springer: Berlin/Heidelberg, Germany, 1998.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11704-017-6418-9
http://dx.doi.org/10.1007/s11704-019-8184-3
http://dx.doi.org/10.1007/s11704-020-9102-4
http://dx.doi.org/10.1287/opre.21.2.498
http://dx.doi.org/10.1016/0166-218X(94)00037-E
http://dx.doi.org/10.1080/10556789808805722
http://dx.doi.org/10.1016/S0166-218X(01)00338-9
http://dx.doi.org/10.1016/j.eswa.2019.01.052
http://dx.doi.org/10.1016/j.cor.2021.105403
http://dx.doi.org/10.1016/j.asoc.2015.08.044
http://dx.doi.org/10.1016/j.ejor.2017.08.015
http://dx.doi.org/10.1007/s10589-018-0014-2
http://dx.doi.org/10.1111/itor.12880
http://dx.doi.org/10.1109/ACCESS.2020.3020093
http://dx.doi.org/10.3390/app12010529
http://dx.doi.org/10.1016/j.asoc.2023.110495
http://dx.doi.org/10.1016/j.asoc.2021.107624

	Introduction
	Tabu Search Algorithm
	Introduction
	Basic Elements
	Basic Steps
	Design Challenges

	Dual-Neighborhood Search
	Main Framework
	Initial Solution Generation
	Definition
	Neighborhood Move and Evaluation
	Fast Neighborhood Evaluation
	Fast Evaluation for A1
	Fast Evaluation for A2

	Tabu Strategy and Aspiration Mechanism
	Perturbation Strategy

	Algorithm Experimentation
	Datasets and Experimental Protocols
	Calibration
	Algorithm Comparison
	Comparison on DTP Dataset
	Range Dataset Experiments

	Analysis and Discussion
	The Importance of the Initial Solution
	The Importance of the Fast Neighborhood Evaluation
	Importance of the Perturbation
	Statistical Significance Testing among Versions of DNS

	Conclusions
	References

