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Abstract: Many researchers have been attracted to the study of convex analysis theory due to both
facts, theoretical significance, and the applications in optimization, economics, and other fields, which
has led to numerous improvements and extensions of the subject over the years. An essential part
of the theory of mathematical inequalities is the convex function and its extensions. In the recent
past, the study of Jensen–Mercer inequality and Hermite–Hadamard–Mercer type inequalities has
remained a topic of interest in mathematical inequalities. In this paper, we study several inequalities
for GA-h-convex functions and its subclasses, including GA-convex functions, GA-s-convex functions,
GA-Q-convex functions, and GA-P-convex functions. We prove the Jensen–Mercer inequality for
GA-h-convex functions and give weighted Hermite–Hadamard inequalities by applying the newly
established Jensen–Mercer inequality. We also establish inequalities of Hermite–Hadamard–Mercer
type. Thus, we give new insights and variants of Jensen–Mercer and related inequalities for GA-
h-convex functions. Furthermore, we apply our main results along with Hadamard fractional
integrals to prove weighted Hermite–Hadamard–Mercer inequalities for GA-h-convex functions and
its subclasses. As special cases of the proven results, we capture several well-known results from the
relevant literature.

Keywords: convex functions; h-convex functions; GA-h-convex functions; Jensen–Mercer inequality;
Hermite–Hadamard–Mercer type inequalities; Hadamard fractional integral

MSC: 52A30; 52A40; 52A41

1. Introduction and Preliminaries

Many researchers have been attracted to and have studied convex analysis theory
because it is widely used in optimization, economics, and other disciplines. The convex anal-
ysis has undergone numerous improvements and extensions over the years. Among several
other developments, one recent breakthrough is the introduction of cr- convex functions [1]
utilized when establishing equivalent optimality conditions for nonlinear optimization
problems (constrained, unconstrained) via objective function (interval valued). Theoreti-
cally, the notion of convex function (CF) has been known to exist even before [2]. The convex
functions partially possess several fundamental features such as continuity, differentiability,
and monotonicity of derivatives, which makes them a potential family to be studied in
different branches of mathematics. A key such direction is the study of mathematical in-
equalities, in which a large number of important inequalities have been studied for convex
functions. These inequalities include Jensen’s inequality (JI), the Hermite–Hadamard in-
equality (HHI), the Jensen–Mercer inequality (JMI), and several other inequalities (see [2–5])
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and references therein. The notion of convexity has been modified and generalized, and
corresponding significant inequalities have been investigated for new families such as
P-convex and Q-convex functions [6–8]. Another generalization of the family of convex
functions is known as the class of s-convex functions (s-CF), for which the corresponding
inequalities have also been studied (see [9,10]). Another significant and vastly studied
generalization of the convex functions was introduced in [11], known as h-convex function
(h-CF). Several researchers investigated different variants of standard inequalities for this
family (see [12–16]). In [17,18], Niculescu introduced another type of convexity, known as
GA-convexity and studied its properties. Several inequalities, such as HHI, the Fejer-type
integral inequalities and JMI, have been established for GA-convex functions (GA-CFs)
and their generalizations such as GA-s-convex functions (GA-s-CFs) and GA-h-convex
functions (GA-h-CF) [19–23]. The notion of GA-h-CF, introduced in [23], was studied
extensively, as it is a generalized class of functions and contains the classes of GA-CFs and
GA-s-CFs. Moreover, in [24], the notion of the Hadamard fractional integral (HFI) was
introduced. Many researchers studied the convexity and fractional operator-based inequal-
ities (see [25–29]). The study of JMI, HH-JMI, Jensen–Mercer and Hermite–Mercer-type
inequalities (for different families of convex functions) and the use of fractional integral
operators, have been among the modern trends in the area of mathematical inequlaities
(see [30–34]). By keeping in view the significance of the modern trends toward the above-
mentioned inequalities, convexities and fractional integral operators, in this paper, we study
several inequalities for GA-h-convex functions and their subclasses, including GA-convex
functions, GA-s-convex functions, GA-Q-convex functions, and GA-P-convex functions.
We prove the Jensen–Mercer inequality for GA-h-convex functions and give weighted
Hermite–Hadamard inequalities by applying the newly proven Jensen–Mercer inequality.
We also establish inequalities of Hermite–Hadamard–Mercer type. Furthermore, we apply
our main results along with Hadamard fractional integrals to prove weighted Hermite–
Hadamard–Mercer inequalities for GA-h-convex functions and its subclasses. As a special
case of the proven results, we capture several well-known results from [20,21,25,27].

Before proceeding further, we denote by J an interval [α, β] with α < β (unless
mentioned otherwise) h− CF(J), GA− h− CF(J), GA− s− CF(J), GA−Q− CF(J), and
GA − P − CF(J) the class of h-convex functions, GA-h-convex functions, GA-s-convex
functions, GA-Q-convex functions, and GA-P-convex functions on J, respectively. For other
abbreviations, see the table at the end.

Now, we include necessary notions, connection between these notions and correspond-
ing inequalities (see [2,3]). We start the section by including well-known notion of CF.

Definition 1 ([2]). A function ψ : J → < is said to be CF if for each 0 ≤ λ ≤ 1 and u, v ∈ J,
we have

ψ(λu + (1− λ)v) ≤ λψ(u) + (1− λ)ψ(v).

The HHI for CF was proven in [2].

Theorem 1. For a CF ψ : J → <,

ψ

(
α1 + β1

2

)
≤ 1

β1 − α1

∫ β1

α1

φ(u)du ≤ ψ(α1) + ψ(β1)

2
(1)

holds, where α1, β1 ∈ J and α1 < β1.

The inequality in (1) is among the most studied inequalities, as its several variants
have been proven for diverse classes of functions including CF, s-CF, Q-CF, P-CF, and h-CF
(see [6,7,9–11]). Some of these are included in the sequel.
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Definition 2 ([11]). Let h : [0, 1]→ [0, ∞) and ψ : J → <, ψ is said to be h-CF, if

ψ(λu + (1− λ)v) ≤ h(λ)ψ(u) + h(1− λ)ψ(v)

for all u, v ∈ J and 0 ≤ λ ≤ 1.

The following version of (1) for h-CF was proven in [12].

Theorem 2. Let h : [0, 1] → [0, ∞) with h( 1
2 ) 6= 0 and ψ : J → < be a h-CF. Then, for any

α1, β1 ∈ J with α1 < β1, we have

1
2h( 1

2 )
ψ

(
α1 + β1

2

)
≤ 1

β1 − α1

∫ β1

α1

ψ(u)du ≤ [ψ(α1) + ψ(β1)]
∫ 1

0
h(t)dt.

Definition 3 ([17,18]). A function ψ : J ⊆ (0, ∞)→ < is called GA-CF, if

ψ
(

uλv1−λ
)
≤ λψ(u) + (1− λ)ψ(v)

holds for any 0 ≤ λ ≤ 1 and u, v ∈ J.

The following variant of (1) for GA-CF was proven in [19].

Theorem 3. For any GA-CF ψ : J → <, and for any α1, β1 ∈ J with α1 < β1, we have

ψ
(√

α1β1

)
≤ 1

ln β1 − ln α1

∫ β1

α1

ψ(u)
u

dx ≤ ψ(α1) + ψ(β1)

2
.

Some classes related to the GA-convex function and the corresponding analogue of
(1) for these classes of functions have been proven in [22,23]. We only recall the following
definitions.

Definition 4. A function ψ : J ⊆ (0, ∞)→ [0, ∞) is called

• GA-s-CF, if ψ
(
uλv1−λ

)
≤ (λ)sψ(u) + (1− λ)sψ(v);

• GA-Q-CF, if ψ
(
uλv1−λ

)
≤ ψ(u)

λ + ψ(v)
1−λ ; and

• GA-P-CF, if ψ
(
uλv1−λ

)
≤ ψ(u) + ψ(v)

hold for any λ ∈ [0, 1] (λ 6= 0, 1 for GA-Q-CF) , u, v ∈ J and s ∈ (0, 1].

Definition 5. Let h : [0, 1] → [0, ∞) and ψ : J ⊆ (0, ∞) → [0, ∞). The function ψ is called
GA-h-CF if

ψ(uλv1−λ) ≤ h(λ)ψ(u) + h(1− λ)ψ(v), (2)

for any 0 ≤ λ ≤ 1 and u, v ∈ J.

The following remark [23] demonstrates the relationship between GA-h-CF with
GA-s-CF, GA-Q-CF, and GA-P-CF.

Remark 1. Under this assumption, when h(λ) = λ (h(λ) = λs, h(λ) = 1
λ or h(λ) = 1),

the GA-h-CF satisfies the inequality required for GA-CF ( GA-s-CF, GA-Q-CF or GA-P-CF).

The inequality (2) is equivalent to (ψ ◦ exp)(λ ln u + (1− λ) ln v) ≤ h(λ)(ψ ◦ exp)(ln u)
+ h(1− λ)(ψ ◦ exp)(ln v), which concludes that the necessary and sufficient condition for
ψ : J → [0, ∞) to be GA-h-CF is that (ψ ◦ exp) is h-CF on ln J. Similarly, in particular,
equivalent conditions in exponential form for the notions of GA-s, GA-Q and GA-P-CFs
can be produced as well.

Now, we recall a variant of (1) for GA-h-CF from [23]:
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Theorem 4. Let h : [0, 1]→ [0, ∞) and ψ : J → [0, ∞). If ψ ∈ GA− h− CF(J), then

1
2h( 1

2 )
ψ
(√

α1β1

)
≤ 1

ln β1 − ln α1

∫ β1

α1

ψ(u)
u

dx ≤ [ψ(α1) + ψ(β1)]
∫ 1

0
h(z)dz

holds for α1 < β1 and α1, β1 ∈ J, where h( 1
2 ) 6= 0.

The Jensen’s inequality (JI) for h-CF was proven in [13].

Theorem 5. Let h : [0, 1]→ [0, ∞) and ψ : J → < be two functions. Then ψ ∈ h− CF(J) if and
only if

ψ

(
n

∑
i=1

λivi

)
≤

n

∑
i=1

h(λi)ψ(vi) (3)

for any vi ∈ J, λi ≥ 0, i = 1, 2, ..., n and ∑n
i=1 λi = 1.

Similarly, one may prove the following analogue of JI for GA-h-CF.

Theorem 6. Let h : [0, 1] → [0, ∞) and ψ : J → [0, ∞) be two functions. Then ψ ∈ GA− h−
CF(J) if and only if

ψ

(
n

∏
i=1

vλi
i

)
≤

n

∑
i=1

h(λi)ψ(vi) (4)

for all vi ∈ J, λi ≥ 0, i = 1, 2, ..., n and ∑n
i=1 λi = 1.

As a special case, the Theorem 6 also yields the JIs for the functions in GA− s−CF(J),
GA−Q− CF(J) and GA− P− CF(J).

The following Jensen–Mercer inequality (JMI) for h-CF was proven in [15].

Theorem 7. For ψ ∈ h− CF(J), we have

ψ

(
α + β−

n

∑
i=1

λivi

)
≤

n

∑
i=1

h(λi)[h(λ) + h(1− λ)][ψ(α) + ψ(β)]−
n

∑
i=1

h(λi)ψ(vi), (5)

where vi ∈ J and λi ∈ [0, 1] with ∑n
i=1 λi = 1.

We conclude the section by including vastly studied fractional integrals, known as
Hadamard fractional integrals (HFIs) [24].

Definition 6. Hadamard Fractional Integrals. Let a integrable function ψ in L[u, v], with u, v ≥ 0
and u < v, then
the left side of HFIs of order λ > 0 are defined by

Jλ
v−ψ(x) =

1
Γ(λ)

∫ v

x
(ln

z
x
)λ−1ψ(z)dz. x < v.

The right side of the HFIs of order λ > 0 are defined by

Jλ
u+ψ(x) =

1
Γ(λ)

∫ x

u
(ln

x
z
)λ−1ψ(z)dz. u < x.

2. The Jensen–Mercer Inequality for GA-h-Convex Functions and Its Subclasses

The current section is devoted to proof of Jensen–Mercer inequalities (JMIs) for GA-h-
CF. Consequently, we acquire the Jensen–Mercer inequality (JMI) for GA-s-CF, GA-Q-CF,
and GA-P-CF as well. We begin with the proof of lemma first.
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Lemma 1. Let h : [0, 1]→ [0, ∞) and ψ : J ⊆ (0, ∞)→ [0, ∞) be a GA-h-CF. Then,

ψ

(
αβ

u

)
≤ [h(λ) + h(1− λ)][ψ(α) + ψ(β)]− ψ(u) (6)

holds for any u ∈ J and λ ∈ [0, 1].

Proof. For any u ∈ J = [α, β], then there exist λ ∈ [0, 1] with u = αλβ1−λ, and we write
αβ
u = α1−λβλ. By definition of ψ,

ψ

(
αβ

u

)
= ψ

(
α1−λβλ

)
≤ h(1− λ)ψ(α) + h(λ)ψ(β).

By adding and subtracting h(λ)ψ(α) and h(1− λ)ψ(β), we have

ψ

(
αβ

u

)
= h(λ)ψ(α) + h(λ)ψ(β)− h(λ)ψ(α)− h(1− λ)ψ(β) + h(1− λ)ψ(β) + h(1− λ)ψ(α)

= h(λ)ψ(α) + h(λ)ψ(β)− [h(λ)ψ(α) + h(1− λ)ψ(β)] + h(1− λ)ψ(α) + h(1− λ)ψ(β)

≤ [h(λ) + h(1− λ)]ψ(α) + [h(λ) + h(1− λ)]ψ(β)− ψ
(

αλβ1−λ
)

= [h(λ) + h(1− λ)][ψ(α) + ψ(β)]− ψ(u).

Thus, we get ψ
(

αβ
u

)
≤ [h(λ) + h(1− λ)][ψ(α) + ψ(β)]− ψ(u), which completes the

proof.

Now we prove JMI for GA-h-CF by using Lemma 1.

Theorem 8. Let h : [0, 1] → [0, ∞) and ψ : J ⊆ (0, ∞) → [0, ∞) be two functions. If ψ is
GA-h-CF, then

ψ

(
αβ

∏n
i=1 vλi

i

)
≤

n

∑
i=1

h(λi)[h(λ) + h(1− λ)][ψ(α) + ψ(β)]−
n

∑
i=1

h(λi)ψ(vi)

holds for any vi ∈ J, 0 ≤ λi ≤ 1 with ∑n
i=1 λi = 1.

Proof. First Method. By Equation (4), we have

ψ

(
αβ

∏n
i=1 vλi

i

)
= ψ

(
n

∏
i=1

(
αβ

vi

)λi
)
≤

n

∑
i=1

h(λi)ψ

(
αβ

vi

)
.

By inequality (6) and Lemma 1, we get

ψ

(
αβ

∏n
i=1 vλi

i

)
≤

n

∑
i=1

h(λi)[[h(λ) + h(1− λ)][ψ(α) + ψ(β)]− ψ(vi)]

=
n

∑
i=1

h(λi)[h(λ) + h(1− λ)][ψ(α) + ψ(β)]−
n

∑
i=1

h(λi)ψ(vi)

ψ

(
αβ

∏n
i=1 vλi

i

)
≤

n

∑
i=1

h(λi)[h(λ) + h(1− λ)][ψ(α) + ψ(β)]−
n

∑
i=1

h(λi)ψ(vi),

which was required.
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Second Method. Because ψ : J = [α, β] → [0, ∞) is GA-h-CF, therefore (ψ ◦ exp) is
h-CF on ln([α, β]). Consequently, by Equation (5), we get

(ψ ◦ exp)

(
ln(α) + ln(β)−

n

∑
i=1

λi ln(vi)

)
= ψ

(
αβ

∏n
i=1 vλi

i

)

≤
n

∑
i=1

h(λi)[h(λ) + h(1− λ)][(ψ ◦ exp) ln(α) + (ψ ◦ exp) ln(β)]−
n

∑
i=1

h(λi)(ψ ◦ exp) ln(vi)

=
n

∑
i=1

h(λi)[h(λ) + h(1− λ)][ψ(α) + ψ(β)]−
n

∑
i=1

h(λi)ψ(vi)

ψ

(
αβ

∏n
i=1 vλi

i

)
≤

n

∑
i=1

h(λi)[h(λ) + h(1− λ)][ψ(α) + ψ(β)]−
n

∑
i=1

h(λi)ψ(vi).

The following consequences of Theorem 8 provide JMIs for the subclasses of GA-h-CF.

Corollary 1. Let ψ : J ⊆ (0, ∞)→ [0, ∞) be a GA-s-CF. Then, for any vi ∈ J, 0 ≤ λi ≤ 1 with
∑n

i=1 λi = 1,

ψ

(
αβ

∏n
i=1 vλi

i

)
≤

n

∑
i=1

(λi)
s[(λ)s + (1− λ)s][ψ(α) + ψ(β)]−

n

∑
i=1

(λi)
sψ(vi)

holds.

Corollary 2. Let ψ : J ⊆ (0, ∞)→ [0, ∞) be a GA-Q-CF. Then, for any vi ∈ J, 0 < λi < 1 with
∑n

i=1 λi = 1,

ψ

(
αβ

∏n
i=1 vλi

i

)
≤

n

∑
i=1

(
1
λi

)[
1
λ
+

1
1− λ

]
[ψ(α) + ψ(β)]−

n

∑
i=1

(
1
λi

)
ψ(vi)

holds.

Corollary 3. Let ψ : J ⊆ (0, ∞)→ [0, ∞) be a GA-P-CF. Then, for any vi ∈ J, 0 ≤ λi ≤ 1 and
∑n

i=1 λi = 1,

ψ

(
αβ

∏n
i=1 vλi

i

)
≤ 2[ψ(α) + ψ(β)]−

n

∑
i=1

ψ(vi)

holds.

3. Generalized Weighted Hermite–Hadamard–Mercer Inequalities for GA-h-Convex
Functions and Its Subclasses

The current section is devoted to establishing the main results of the manuscript and
developing connections with the inequalities in the recent literature. First, we prove the
generalized weighted Hermite–Hadamard–Mercer inequality (wHHMI) for GA-h-CFs.
The special cases of the proven results coincide with the inequalities proven as main results
in [20,21]. Before proving the main theorem, we fix the notation. We emphasize again,
in the sequel, that we denote by L(J) = L[α, β] the class of integrable functions on J = [α, β].



Mathematics 2023, 11, 278 7 of 21

Theorem 9. Let h : [0, 1]→ [0, ∞) and ψ : J → [0, ∞) with ψ ∈ L(J). If ψ is GA-h-CF, then for
any nonnegative and integrable function g : J → <, we have

1

2h
(

1
2

)ψ

(
αβ√
uv

) ∫ αβ
u

αβ
v

g(z)
z

dz ≤ 1
2

{∫ αβ
u

αβ
v

ψ(z)g(z)
dz
z

+
∫ αβ

u

αβ
v

ψ(z)g

(
(αβ)2

uvz

)
dz
z

}

≤ 1
2

[
ψ(

αβ

u
) + ψ(

αβ

v
)

] ∫ αβ
u

αβ
v

h

 ln
(

vz
αβ

)
ln
( v

u
)
+ h

 ln
(

αβ
uz

)
ln
( v

u
)
g(z)

dz
z

≤ [ψ(α) + ψ(β)]
∫ αβ

u

αβ
v

h

 ln
(

vz
αβ

)
ln
( v

u
)
+ h

 ln
(

αβ
uz

)
ln
( v

u
)
2

g(z)
dz
z

−
[

ψ(u) + ψ(v)
2

] ∫ αβ
u

αβ
v

h

 ln
(

vz
αβ

)
ln
( v

u
)
+ h

 ln
(

αβ
uz

)
ln
( v

u
)
g(z)

dz
z

(7)

for all u, v ∈ J, where h
(

1
2

)
6= 0.

Proof. The GA-h-convexity of ψ implies

ψ

(
αβ√
uv

)
= ψ


√√√√[(αβ

u

)λ(αβ

v

)1−λ
][(

αβ

u

)1−λ(αβ

v

)λ
]

≤ h
(

1
2

)
ψ

((
αβ

u

)λ(αβ

v

)1−λ
)
+ h
(

1
2

)
ψ

((
αβ

u

)1−λ(αβ

v

)λ
)

= h
(

1
2

)[
ψ

((
αβ

u

)λ(αβ

v

)1−λ
)
+ ψ

((
αβ

u

)1−λ(αβ

v

)λ
)]

.

Thus, we have

1

h
(

1
2

)ψ

(
αβ√
uv

)
≤
[

ψ

((
αβ

u

)λ(αβ

v

)1−λ
)
+ ψ

((
αβ

u

)1−λ(αβ

v

)λ
)]

(8)

for any u, v ∈ I and 0 ≤ λ ≤ 1 and h
(

1
2

)
6= 0.

Now, by multiplying (8) with 1
2 g
((

αβ
u

)λ( αβ
v

)1−λ
)

, integrating with respect to λ over

[0,1] and by applying substitution with z =
(

αβ
u

)λ( αβ
v

)1−λ
, we get

1

2h
(

1
2

)ψ

(
αβ√
uv

) ∫ αβ
u

αβ
v

g(z)
z

dz ≤ 1
2

{∫ αβ
u

αβ
v

ψ(z)g(z)
dz
z

+
∫ αβ

u

αβ
v

ψ(z)g

(
(αβ)2

uvz

)
dz
z

}
,

which yields the first inequality of (7). To obtain the second inequality of (7), the definition
of ψ gives

ψ

((
αβ

u

)λ(αβ

v

)1−λ
)
≤ h(λ)ψ

(
αβ

u

)
+ h(1− λ)ψ

(
αβ

v

)
(9)
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and

ψ

((
αβ

u

)1−λ(αβ

v

)λ
)
≤ h(1− λ)ψ

(
αβ

u

)
+ h(λ)ψ

(
αβ

v

)
. (10)

By adding (9) and (10), we get

ψ

((
αβ

u

)λ(αβ

v

)1−λ
)
+ ψ

((
αβ

u

)1−λ(αβ

v

)λ
)
≤ [h(λ) + h(1− λ)]

[
ψ

(
αβ

u

)
+ ψ

(
αβ

v

)]
. (11)

By multiplying (11) with 1
2 g
((

αβ
u

)λ( αβ
v

)1−λ
)

and integrating w.r.t. λ over 0 to 1, we

have

1
2

∫ 1

0
ψ

((
αβ

u

)λ(αβ

v

)1−λ
)

g

((
αβ

u

)λ(αβ

v

)1−λ
)

dλ

+
1
2

∫ 1

0
ψ

((
αβ

u

)1−λ(αβ

v

)λ
)

g

((
αβ

u

)λ(αβ

v

)1−λ
)

dλ

≤ 1
2

[
ψ

(
αβ

u

)
+ ψ

(
αβ

v

)] ∫ 1

0
[h(λ) + h(1− λ)]g

((
αβ

u

)λ(αβ

v

)1−λ
)

dλ. (12)

By substituting
(

αβ
u

)λ( αβ
v

)1−λ
= z in (12), we get

1
2

{∫ αβ
u

αβ
v

ψ(z)g(z)
dz
z

+
∫ αβ

u

αβ
v

ψ(z)g

(
(αβ)2

uvz

)
dz
z

}

≤ 1
2

[
ψ

(
αβ

u

)
+ ψ

(
αβ

v

)] ∫ αβ
u

αβ
v

h

 ln
(

vz
αβ

)
ln
( v

u
)
+ h

 ln
(

αβ
uz

)
ln
( v

u
)
g(z)

dz
z

,

which gives the second inequality in (7). For the remaining inequality in (7), the inequality
(6) gives

ψ

(
αβ

u

)
≤ [h(λ) + h(1− λ)][ψ(α) + ψ(β)]− ψ(u), (13)

and

ψ

(
αβ

v

)
≤ [h(λ) + h(1− λ)][ψ(α) + ψ(β)]− ψ(v). (14)

Now, by adding (13) and (14), we have

ψ

(
αβ

u

)
+ ψ

(
αβ

v

)
≤ 2[h(λ) + h(1− λ)][ψ(α) + ψ(β)]− [ψ(u) + ψ(v)]. (15)

By multiplying (15) with 1
2 [h(λ) + h(1− λ)]g

((
αβ
u

)λ( αβ
v

)1−λ
)

, we get

1
2

{
ψ

(
αβ

u

)
+ ψ

(
αβ

v

)}
[h(λ) + h(1− λ)]g

((
αβ

u

)λ(αβ

v

)1−λ
)

≤ [ψ(α) + ψ(β)][h(λ) + h(1− λ)]2g

((
αβ

u

)λ(αβ

v

)1−λ
)

−
[

ψ(u) + ψ(v)
2

]
[h(λ) + h(1− λ)]g

((
αβ

u

)λ(αβ

v

)1−λ
)

.
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By integrating w.r.t. λ over 0 to 1 and by applying the substitution with

z =
(

αβ
u

)λ( αβ
v

)1−λ
, we get

1
2

[
ψ

(
αβ

u

)
+ ψ

(
αβ

v

)] ∫ αβ
u

αβ
v

h

 ln
(

vz
αβ

)
ln
( v

u
)
+ h

 ln
(

αβ
uz

)
ln
( v

u
)
g(z)

dz
z

≤ [ψ(α) + ψ(β)]
∫ αβ

u

αβ
v

[
h(

ln( vz
αβ )

ln( v
u )

) + h(
ln( αβ

uz )

ln( v
u )

)

]2

g(z)
dz
z

−
[

ψ(u) + ψ(v)
2

] ∫ αβ
u

αβ
v

h

 ln
(

vz
αβ

)
ln
( v

u
)
+ h

 ln
(

αβ
uz

)
ln
( v

u
)
g(z)

dz
z

,

which completes the proof.

By taking h(λ) = λ in the Theorem 9 we have the following.

Corollary 4. Let ψ be a function from J to [0, ∞), such that ψ ∈ L(J). If ψ is GA-CF and
g : J → [0, ∞) be integrable, then

ψ

(
αβ√
uv

) ∫ αβ
u

αβ
v

g(z)
z

dz ≤ 1
2

{∫ αβ
u

αβ
v

ψ(z)g(z)
dz
z

+
∫ αβ

u

αβ
v

ψ(z)g

(
(αβ)2

uvz

)
dz
z

}

≤ 1
2

[
ψ

(
αβ

u

)
+ ψ

(
αβ

v

)] ∫ αβ
u

αβ
v

g(z)
z

dz ≤
[

φ(α) + φ(β)− ψ(u) + φ(v)
2

] ∫ αβ
u

αβ
v

g(z)
z

dz (16)

for all u, v ∈ J.

The inequality (16) is the same as the inequality in Theorem 2.2 of [21].
By taking u = α and v = β in Theorem 9, we get the wHHI for GA-h-CF.

Corollary 5. Assuming the conditions of Theorem 9, we have

1

2h
(

1
2

)ψ
(√

αβ
) ∫ β

α

g(z)
z

dz ≤ 1
2

{∫ β

α
ψ(z)g(z)

dz
z

+
∫ β

α
ψ(z)g

(
αβ

z

)
dz
z

}

≤ 1
2
[ψ(α) + ψ(β)]

∫ β

α

h

 ln
( z

α

)
ln
(

β
α

)
+ h

 ln
(

β
z

)
ln
(

β
α

)
g(z)

dz
z

≤ [ψ(α) + ψ(β)]
∫ β

α

h

 ln
( z

α

)
ln
(

β
α

)
+ h

 ln
(

β
z

)
ln
(

β
α

)
2

g(z)
dz
z

−
[

ψ(α) + ψ(β)

2

] ∫ β

α

h

 ln
( z

α

)
ln
(

β
α

)
+ h

 ln
(

β
z

)
ln
(

β
α

)
g(z)

dz
z

. (17)
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Corollary 6. Under the assumption of Theorem 9 and assuming g( αβ
z ) = g(z) for any z ∈ [α, β]

(that is g is geometrically symmetric), (17) implies:

1

2h
(

1
2

)ψ
(√

αβ
) ∫ β

α

g(z)
z

dz ≤
∫ β

α
ψ(z)g(z)

dz
z

≤ 1
2
[ψ(α) + ψ(β)]

∫ β

α

h

 ln
( z

α

)
ln
(

β
α

)
+ h

 ln
(

β
z

)
ln
(

β
α

)
g(z)

dz
z

≤ [ψ(α) + ψ(β)]
∫ β

α

h

 ln
( z

α

)
ln
(

β
α

)
+ h

 ln
(

β
z

)
ln
(

β
α

)
2

g(z)
dz
z

−
[

ψ(α) + ψ(β)

2

] ∫ β

α

h

 ln
( z

α

)
ln
(

β
α

)
+ h

 ln
(

β
z

)
ln
(

β
α

)
g(z)

dz
z

for all u, v ∈ J.

Remark 2. 1. By taking h(λ) = λ in Corollary 5, we get

ψ
(√

αβ
) ∫ β

α

g(z)
z

dz ≤ 1
2

{∫ β

α
ψ(z)g(z)

dz
z

+
∫ β

α
ψ(z)g

(
αβ

z

)
dz
z

}
≤ ψ(α) + ψ(β)

2

∫ β

α
g(z)

dz
z

for all u, v ∈ J, which gives inequality (12) in [21].
2. By taking h(λ) = λ in Corollary 6, we get

ψ
(√

αβ
) ∫ β

α

g(z)
z

dz ≤
∫ β

α
ψ(z)g(z)

dz
z
≤ ψ(α) + ψ(β)

2

∫ β

α

g(z)
z

dz,

for all u, v ∈ J, which gives inequality of Theorem 2.2 in [20].

Now, we prove another main result of this section, which as a special case yields
Theorem 2.3 in [21].

Theorem 10. Let h : [0, 1]→ [0, ∞) and ψ : J → [0, ∞) be two functions. If ψ ∈ L(J) and ψ is
GA-h-CF, then for any integrable g : J → [0, ∞), we have

1
2h( 1

2 )
ψ

(
αβ√
uv

) ∫ αβ
u

αβ
v

g(z)
z

dz ≤ 1
2

{∫ αβ
u

αβ
v

ψ(z)g(z)
dz
z

+
∫ αβ

u

αβ
v

ψ(z)g

(
(αβ)2

uvz

)
dz
z

}

≤ [ψ(α) + ψ(β)]
∫ v

u

[
h

(
ln
( z

v
)

ln
( u

v
))+ h

(
ln
( u

z
)

ln
( u

v
))]g

(
αβ

z

)
dz
z

− 1
2

[∫ v

u
ψ(z)g

(
αβ

z

)
dz
z

+
∫ v

u
ψ(z)g

(
αβz
uv

)
dz
z

]
≤ [ψ(α) + ψ(β)]

∫ v

u

[
h

(
ln
( z

v
)

ln
( u

v
))+ h

(
ln
( u

z
)

ln
( u

v
))]g

(
αβ

z

)
dz
z
− 1

2h( 1
2 )

ψ(
√

uv)
∫ v

u
g
(

αβ

z

)
dz
z

(18)



Mathematics 2023, 11, 278 11 of 21

for all u, v ∈ J and h
(

1
2

)
6= 0.

Proof. The first inequality in (18) has already been established in Theorem 9. For the
second inequality in (18), by applying (6) and GA-h-convexity of ψ, we have

ψ((
αβ

u
)λ(

αβ

v
)1−λ) = ψ(

αβ

uλv1−λ
) ≤ [h(λ) + h(1− λ)][ψ(α) + ψ(β)]− ψ(uλv1−λ). (19)

Then we have

ψ((
αβ

u
)1−λ(

αβ

v
)λ) = ψ(

αβ

u1−λvλ
) ≤ [h(1− λ) + h(λ)][ψ(α) + ψ(β)]− ψ(u1−λvλ). (20)

By adding (19) and (20), we get

ψ

(
αβ

uλv1−λ

)
+ ψ

(
αβ

u1−λvλ

)
≤ 2[h(λ) + h(1− λ)][ψ(α) + ψ(β)]

−
[
ψ
(

uλv1−λ
)
+ ψ

(
u1−λvλ

)]
. (21)

By multiplying (21) with 1
2 g
(

αβ

uλv1−λ

)
and integrating λ over 0 to 1, we get

1
2

{∫ 1

0
ψ

(
αβ

uλv1−λ

)
g
(

αβ

uλv1−λ

)
dλ +

∫ 1

0
ψ

(
αβ

u1−λvλ

)
g
(

αβ

uλv1−λ

)
dλ

}
≤ [ψ(α) + ψ(β)]

∫ 1

0
[h(λ) + h(1− λ)]g

(
αβ

uλv1−λ

)
dλ

−
[∫ 1

0
ψ
(

uλv1−λ
)

g
(

αβ

uλv1−λ

)
dλ +

∫ 1

0
ψ
(

u1−λvλ
)

g
(

αβ

uλv1−λ

)
dλ

]
. (22)

By applying substitution with z = uλv1−λ, inequality (22) becomes

1
2

{∫ αβ
u

αβ
v

ψ(z)g(z)
dz
z

+
∫ αβ

u

αβ
v

ψ(z)g

(
(αβ)2

uvz

)
dz
z

}

≤ [ψ(α) + ψ(β)]
∫ v

u

[
h

(
ln
( z

v
)

ln
( u

v
))+ h

(
ln
( u

z
)

ln
( u

v
))]g

(
αβ

z

)
dz
z

− 1
2

[∫ v

u
ψ(z)g

(
αβ

z

)
dz
z

+
∫ v

u
ψ(z)g

(
αβz
uv

)
dz
z

]
.

Now, for the last inequality, the GA-h-convexity of ψ yields

ψ
(√

uv
)
= ψ

(√(
uλv1−λ

)(
u1−λvλ

))
≤ h(

1
2
)
[
ψ
(

uλv1−λ
)
+ ψ

(
u1−λvλ

)]
.

By adding both side 2[h(λ) + h(1− λ)][ψ(α) + ψ(β)], we get

2[h(λ) + h(1− λ)][ψ(α) + ψ(β)]−
[
ψ
(

uλv1−λ
)
+ ψ

(
u1−λvλ

)]
,

≤ 2[h(λ) + h(1− λ)][ψ(α) + ψ(β)]− 1
h( 1

2 )
ψ
(√

uv
)
. (23)

By multiplying (23) with 1
2 g
(

αβ

uλv1−λ

)
and integrating it with λ over 0 to 1, we get
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[ψ(α) + ψ(β)]
∫ v

u

[
h

(
ln
( z

v
)

ln
( u

v
))+ h

(
ln
( u

z
)

ln
( u

v
))]g

(
αβ

z

)
dz
z

− 1
2

[∫ v

u
ψ(z)g

(
αβ

z

)
dz
z

+
∫ v

u
ψ(z)g

(
αβz
uv

)
dz
z

]
≤ [ψ(α) + ψ(β)]

∫ v

u

[
h

(
ln
( z

v
)

ln
( u

v
))+ h

(
ln
( u

z
)

ln
( u

v
))]g

(
αβ

z

)
dz
z
− 1

2h( 1
2 )

ψ
(√

uv
) ∫ v

u
g
(

αβ

z

)
dz
z

,

which was required.

Corollary 7. Let ψ be a function from J to [0, ∞), such that ψ ∈ L(J). If ψ is GA-CF on J, and
then for any integrable g : J → [0, ∞), we get

ψ

(
αβ√
uv

) ∫ αβ
u

αβ
v

g(z)
z

dz ≤ 1
2

{∫ αβ
u

αβ
v

ψ(z)g(z)
dz
z

+
∫ αβ

u

αβ
v

ψ(z)g

(
(αβ)2

uvz

)
dz
z

}

≤ 1
2

[
ψ

(
αβ

u

)
+ ψ

(
αβ

v

)] ∫ v

u

g(z)
z

dz− 1
2

{∫ v

u
ψ(z)g(z)

dz
z

+
∫ v

u
ψ(z)g

(
(αβ)2

uvz

)
dz
z

}
≤
[
ψ(α) + ψ(β)− ψ

(√
uv
)] ∫ v

u

g(z)
z

dz (24)

for all u, v ∈ J.

Proof. This follows immediately by taking h(λ) = λ in Theorem 10.

The inequality in Corollary 7 coincides with Theorem 2.3 in [21]. Now, by taking the
special case as u = α and v = β in Theorem 10, we get the following w-HH inequality for
GA-h-CF.

Corollary 8. Let h : [0, 1] → [0, ∞) and ψ : J → [0, ∞) be two functions. If ψ ∈ L(J) and ψ is
GA-h-CF on J, then for any integrable g : J → [0, ∞), we have

1

2h
(

1
2

)ψ
(√

αβ
) ∫ β

α

g(z)
z

dz ≤ 1
2

{∫ β

α
ψ(z)g(z)

dz
z

+
∫ β

α
ψ(z)g

(
αβ

z

)
dz
z

}

≤ [ψ(α) + ψ(β)]
∫ β

α

h

 ln
(

z
β

)
ln
(

α
β

)
+ h

 ln
(

α
z
)

ln
(

α
β

)
g

(
αβ

z

)
dz
z

− 1
2

[∫ β

α
ψ(z)g

(
αβ

z

)
dz
z

+
∫ β

α
ψ(z)g(z)

dz
z

]

≤ [ψ(α) + ψ(β)]
∫ β

α

h

 ln
(

z
β

)
ln
(

α
β

)
+ h

 ln
(

α
z
)

ln
(

α
β

)
g

(
αβ

z

)
dz
z

− 1
2h( 1

2 )
ψ
(√

αβ
) ∫ β

α
g
(

αβ

z

)
dz
z

(25)

for all u, v ∈ J and h
(

1
2

)
6= 0.
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Special Cases for GA-s-Convex (GA-Q-Convex and GA-P-Convex) Functions

In the current subsection, we obtained the studied inequalities for the subclasses
GA− s− CF(J), GA−Q− CF(J) and GA− P− CF(J) of GA− h− CF(J). We start with
the next theorem.

Theorem 11. Let ψ be a function from J to [0, ∞) with ψ ∈ L(J). If ψ ∈ GA− s− CF(J), then
for any nonnegative and integrable g : J → <, we have

2s−1ψ

(
αβ√
uv

) ∫ αβ
u

αβ
v

g(z)
z

dz ≤ 1
2

{∫ αβ
u

αβ
v

ψ(z)g(z)
dz
z

+
∫ αβ

u

αβ
v

ψ(z)g

(
(αβ)2

uvz

)
dz
z

}

≤ 1
2

[
ψ(

αβ

u
) + ψ(

αβ

v
)

] ∫ αβ
u

αβ
v


 ln

(
vz
αβ

)
ln
( v

u
)
s

+

 ln
(

αβ
uz

)
ln
( v

u
)
sg(z)

dz
z

≤ [ψ(α) + ψ(β)]
∫ αβ

u

αβ
v


 ln

(
vz
αβ

)
ln
( v

u
)
s

+

 ln
(

αβ
uz

)
ln
( v

u
)
s

2

g(z)
dz
z

−
[

ψ(u) + ψ(v)
2

] ∫ αβ
u

αβ
v


 ln

(
vz
αβ

)
ln
( v

u
)
s

+

 ln
(

αβ
uz

)
ln
( v

u
)
sg(z)

dz
z

(26)

for all u, v ∈ J.

Proof. If we take h(λ) = (λ)s, where s ∈ (0, 1]. Then, the inequality (7) in Theorem 9 yields
required the inequality (26).

Furthermore, if we assume u = α and v = β in Theorem 11, we obtain the wHHI for
GA-s-CF.

Corollary 9. Let ψ be a function from J to [0, ∞) with ψ ∈ L(J). If ψ ∈ GA− s− CF(J), then
for any nonnegative and integrable g : J → <, we have

2s−1ψ
(√

αβ
) ∫ β

α

g(z)
z

dz ≤ 1
2
{
∫ β

α
ψ(z)g(z)

dz
z

+
∫ β

α
ψ(z)g

(
αβ

z

)
dz
z
}

≤ 1
2
[ψ(α) + ψ(β)]

∫ β

α


 ln

( z
α

)
ln
(

β
α

)
s

+

 ln
(

β
z

)
ln
(

β
α

)
sg(z)

dz
z

≤ [ψ(α) + ψ(β)]
∫ β

α


 ln

( z
α

)
ln
(

β
α

)
s

+

 ln
(

β
z

)
ln
(

β
α

)
s

2

g(z)
dz
z

−
[

ψ(α) + ψ(β)

2

] ∫ β

α


 ln

( z
α

)
ln
(

β
α

)
s

+

 ln
(

β
z

)
ln
(

β
α

)
sg(z)

dz
z

(27)

for all u, v ∈ J.

Remark 3. If we take g as g( αβ
z ) = g(z) for any z ∈ [α, β] in inequality (27), we get the following

inequality, and, furthermore, by taking h(λ) = λ we get the inequalities from [20].
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2s−1ψ
(√

αβ
) ∫ β

α

g(z)
z

dz ≤
∫ β

α
ψ(z)g(z)

dz
z

≤ 1
2
[ψ(α) + ψ(β)]

∫ β

α


 ln

( z
α

)
ln
(

β
α

)
s

+

 ln
(

β
z

)
ln
(

β
α

)
sg(z)

dz
z

≤ [ψ(α) + ψ(β)]
∫ β

α


 ln

( z
α

)
ln
(

β
α

)
s

+

 ln
(

β
z

)
ln
(

β
α

)
s

2

g(z)
dz
z

−
[

ψ(α) + ψ(β)

2

] ∫ β

α


 ln

( z
α

)
ln
(

β
α

)
s

+

 ln
(

β
z

)
ln
(

β
α

)
sg(z)

dz
z

for all u, v ∈ J.

Now, we present the consequences of Theorem 10 for the class of GA-s-CF to establish
the inequalities of type [20].

Theorem 12. Let ψ be a function from J to [0, ∞) with ψ ∈ L(J). If ψ is GA-s-CF, then for any
nonnegative and integrable g : J → <, it follows that

2s−1ψ

(
αβ√
uv

) ∫ αβ
u

αβ
v

g(z)
z

dz ≤ 1
2

{∫ αβ
u

αβ
v

ψ(z)g(z)
dz
z

+
∫ αβ

u

αβ
v

ψ(z)g

(
(αβ)2

uvz

)
dz
z

}

≤ [ψ(α) + ψ(β)]
∫ v

u

[(
ln
( z

v
)

ln
( u

v
))s

+

(
ln
( u

z
)

ln
( u

v
))s]

g
(

αβ

z

)
dz
z

− 1
2

[∫ v

u
ψ(z)g

(
αβ

z

)
dz
z

+
∫ v

u
ψ(z)g

(
αβz
uv

)
dz
z

]
≤ [ψ(α) + ψ(β)]

∫ v

u

[(
ln
( z

v
)

ln
( u

v
))s

+

(
ln
( u

z
)

ln
( u

v
))s]

g
(

αβ

z

)
dz
z
− 2s−1ψ(

√
uv)

∫ v

u
g
(

αβ

z

)
dz
z

(28)

holds for all u, v ∈ J.

Proof. If we take h(λ) = (λ)s, where s ∈ (0, 1] the GA-h-CF becomes GA-s-CF. Conse-
quently, the inequality (18) in Theorem 10 becomes the required inequality (28).

We get the following w-HH inequality for GA-s-CF, if we take u = α and v = β in
Theorem 12.

Corollary 10. Let ψ be a function from J to [0, ∞) with ψ ∈ L(J). If ψ is GA-s-CF, then for any
nonnegative and integrable g : J → <

2s−1ψ
(√

αβ
) ∫ β

α

g(z)
z

dz ≤ 1
2

{∫ β

α
ψ(z)g(z)

dz
z

+
∫ β

α
ψ(z)g

(
αβ

z

)
dz
z

}

≤ [ψ(α) + ψ(β)]
∫ β

α


 ln

(
z
β

)
ln
(

α
β

)
s

+

 ln
(

α
z
)

ln
(

α
β

)
s
g
(

αβ

z

)
dz
z

− 1
2

[∫ β

α
ψ(z)g

(
αβ

z

)
dz
z

+
∫ β

α
ψ(z)g(z)

dz
z

]
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≤ [ψ(α) + ψ(β)]
∫ β

α


 ln

(
z
β

)
ln
(

α
β

)
s

+

 ln
(

α
z
)

ln
(

α
β

)
s
g
(

αβ

z

)
dz
z

− 2s−1ψ
(√

αβ
) ∫ β

α
g
(

αβ

z

)
dz
z

(29)

holds for all u, v ∈ J.

Remark 4. Similarly, one may employ the conditions h(λ) = 1 (h(λ) = 1
λ , where λ ∈ (0, 1)),

to get the consequence of Theorem 9, Theorem 10 and related results for GA-P-convex (GA-Q-
convex) functions.

4. Hermite–Hadamard–Mercer Inequality for GA-h-Convex Functions via Hadamard
Fractional Integrals (HFI)

If we assume g(z) = 1
Γ(λ) lnλ−1

(
αβ
zu

)
or g(z) = 1

Γ(λ) lnλ−1
(

vz
αβ

)
in Theorem 9, then we

obtain the following HHMI for GA-h-CG via HFI.

Theorem 13. Let h : [0, 1] → [0, ∞) and ψ : J → [0, ∞) be two functions such that ψ ∈ L(J).
If ψ ∈ GA− h− CF(J), and then

1

2h
(

1
2

)ψ

(
αβ√
uv

)
≤ Γ(λ + 1)

2 lnλ( v
u
) {Jλ

αβ
v +

ψ

(
αβ

u

)
+ Jλ

αβ
u −

ψ

(
αβ

v

)}

≤ Γ(λ + 1)

2 lnλ( v
u
) [ψ

(
αβ

u

)
+ ψ

(
αβ

v

)] ∫ αβ
u

αβ
v

h

 ln
(

vz
αβ

)
ln
( v

u
)
+ h

 ln
(

αβ
uz

)
ln
( v

u
)
 lnλ−1

(
αβ
uz

)
Γ(λ)z

dz

≤ Γ(λ + 1)

lnλ( v
u
) [ψ(α) + ψ(β)]

∫ αβ
u

αβ
v

h

 ln
(

vz
αβ

)
ln
( v

u
)
+ h

 ln
(

αβ
uz

)
ln
( v

u
)
2

lnλ−1
(

αβ
uz

)
Γ(λ)z

dz

− Γ(λ + 1)

2 lnλ( v
u
) [ψ(u) + ψ(v)]

∫ αβ
u

αβ
v

h

 ln
(

vz
αβ

)
ln
( v

u
)
+ h

 ln
(

αβ
uz

)
ln
( v

u
)
 lnλ−1

(
αβ
uz

)
Γ(λ)z

dz (30)

holds for all u, v ∈ J and λ > 0, and h( 1
2 ) 6= 0. Furthermore, if we take λ = 1 in (30), then we get

1

2h
(

1
2

)ψ

(
αβ√
uv

)
≤ 1

ln( v
u )

∫ v

u
ψ

(
αβ

z

)
dz
z

≤ 1
2 ln( v

u )

[
ψ

(
αβ

u

)
+ ψ

(
αβ

v

)] ∫ αβ
u

αβ
v

h

 ln
(

vz
αβ

)
ln
( v

u
)
+ h

 ln
(

αβ
uz

)
ln
( v

u
)
dz

z

≤ 1
ln
( v

u
) [ψ(α) + ψ(β)]

∫ αβ
u

αβ
v

h

 ln
(

vz
αβ

)
ln
( v

u
)
+ h

 ln
(

αβ
uz

)
ln
( v

u
)
2

dz
z

− 1
2 ln( v

u )
[ψ(u) + ψ(v)]

∫ αβ
u

αβ
v

h

 ln
(

vz
αβ

)
ln
( v

u
)
+ h

 ln
(

αβ
uz

)
ln
( v

u
)
dz

z

for all u, v ∈ J with u < v.
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By taking h(λ) = λ in (30), we get the following consequence of Theorem 13.

Corollary 11. Let ψ : J → [0, ∞) be a function such that ψ ∈ L[α, β]. If ψ ∈ GA− CF(J), then

ψ

(
αβ√
uv

)
≤ Γ(λ + 1)

2 lnλ( v
u
) {Jλ

αβ
v +

ψ

(
αβ

u

)
+ Jλ

αβ
u −

ψ

(
αβ

v

)}
≤ 1

2

[
ψ

(
αβ

u

)
+ ψ

(
αβ

v

)]
≤ ψ(α) + ψ(β)− ψ(u) + ψ(v)

2
,

(31)

for all u, v ∈ J and λ > 0. Furthermore, if we take λ = 1 in (31), then we get

ψ

(
αβ√
uv

)
≤ 1

ln( v
u )

∫ v

u
ψ

(
αβ

z

)
dz
z
≤ 1

2

[
ψ

(
αβ

u

)
+ ψ

(
αβ

v

)]
≤ ψ(α) + ψ(β)− ψ(u) + ψ(v)

2

for all u, v ∈ J with u < v.

The inequalities in Corollary 11 coincide with inequalities of Corollary 2.2 in [21].
Furthermore, if we put u = α and v = β in inequality (30), we get the following HHMI for
GA-h-convex function via HFIs.

Corollary 12. Let ψ : J → [0, ∞) with ψ ∈ L(J). If ψ ∈ GA− h− CF(J), then

1

2h
(

1
2

)ψ
(√

αβ
)
≤ Γ(λ + 1)

2 lnλ
(

α
β

){Jλ
α+ψ(β) + Jλ

β−ψ(α)}

≤ Γ(λ + 1)

2 lnλ
(

β
α

) [ψ(α) + ψ(β)]
∫ β

α

h

 ln
( z

α

)
ln
(

β
α

)
+ h

 ln
(

β
z

)
ln
(

β
α

)
 lnλ−1

(
β
z

)
Γ(λ)z

dz

≤ Γ(λ + 1)

lnλ
(

β
α

) [ψ(α) + ψ(β)]
∫ β

α

h

 ln
( z

α

)
ln
(

β
α

)
+ h

 ln
(

β
z

)
ln
(

β
α

)
2

lnλ−1( β
z )

Γ(λ)z
dz

− Γ(λ + 1)

2 lnλ
(

β
α

) [ψ(α) + ψ(β)]
∫ β

α

h

 ln
( z

α

)
ln
(

β
α

)
+ h

 ln
(

β
z

)
ln
(

β
α

)
 lnλ−1( β

z )

zΓ(λ)
dz

for all u, v ∈ J and λ > 0 and h( 1
2 ) 6= 0.

Remark 5. If we take h(λ) = λ, we get

ψ
(√

αβ
)
≤ Γ(λ + 1)

2 lnλ
(

α
β

){Jλ
α+ψ(β) + Jλ

β−ψ(α)} ≤ ψ(α) + ψ(β)

2

for all u, v ∈ J, λ > 0, which gives the inequality of Theorem 2.1 from [25].

Now, if we put g(z) = 1
Γ(λ) lnλ−1

(
αβ
zu

)
or g(z) = 1

Γ(λ) lnλ−1
(

vz
αβ

)
in Theorem 10, we

get the following.
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Theorem 14. Let h : [0, 1]→ [0, ∞) and ψ : J → [0, ∞) be two functions with ψ ∈ L(J). If ψ is
GA-h-CF, then

1
2h( 1

2 )
ψ

(
αβ√
uv

)
≤ Γ(λ + 1)

2 lnλ( v
u
) {Jλ

αβ
v +

ψ

(
αβ

u

)
+ Jλ

αβ
u −

ψ

(
αβ

v

)
}

≤ Γ(λ + 1)
lnλ( v

u
) [ψ(α) + ψ(β)]

∫ v

u

[
h

(
ln
( z

v
)

ln
( u

v
))+ h

(
ln
( u

z
)

ln
( u

v
))] lnλ−1( z

u
)

zΓ(λ)
dz

− Γ(λ + 1)
2 lnλ( v

u
) [Jλ

v−ψ(u) + Jλ
u+ψ(v)

]
≤ Γ(λ + 1)

lnλ( v
u
) [ψ(α) + ψ(β)]

∫ v

u

[
h

(
ln
( z

v
)

ln
( u

v
))+ h

(
ln
( u

z
)

ln
( u

v
))] lnλ−1( z

u
)

zΓ(λ)
dz− 1

2h( 1
2 )

ψ(
√

uv) (32)

for all u, v ∈ J and λ > 0 and h( 1
2 ) 6= 0.

Corollary 13. Let h : [0, 1]→ [0, ∞) and ψ : J → [0, ∞) be two functions with ψ ∈ L(J). If ψ is
GA-h-CF, then

1
2h( 1

2 )
ψ
(√

αβ
)
≤ Γ(λ + 1)

2 lnλ
(

β
α

){Jλ
α+ψ(β) + Jλ

β−ψ(α)
}

≤ Γ(λ + 1)

lnλ
(

β
α

) [ψ(α) + ψ(β)]
∫ β

α

h

 ln
(

z
β

)
ln
(

α
β

)
+ h

 ln
(

α
z
)

ln
(

α
β

)
 lnλ−1( z

α

)
zΓ(λ)

dz

− Γ(λ + 1)

2 lnλ
(

β
α

)[Jλ
β−ψ(α) + Jλ

α+ψ(β)
]

≤ Γ(λ + 1)

lnλ
(

β
α

) [ψ(α)+ψ(β)]
∫ β

α

h

 ln
(

z
β

)
ln
(

α
β

)
+ h

 ln
(

α
z
)

ln
(

α
β

)
 lnλ−1( z

α

)
zΓ(λ)

dz− 1
2h( 1

2 )
ψ(
√

αβ)

for all u, v ∈ J and λ > 0 and h( 1
2 ) 6= 0.

Remark 6. By following a similar pattern as that provided in the previous section, we may also
acquire, as a special case, the results of this section for the classes of GA-s-convex (GA-Q-convex
and GA-P-convex) functions.

5. Weighted Hermite–Hadamard–Mercer Inequality for GA-h-Convex Functions via
Hadamard Fractional Integrals.

Let w : J = [α, β] → < be a non-negative and integrable function. If we take g(z) =
1

Γ(λ) lnλ−1
(

αβ
zu

)
w(z) and g(z) = 1

Γ(λ) lnλ−1
(

vz
αβ

)
w(z) in Theorem 9, then we establish the

following wHHMI for GA-h-CF via HFI.

Theorem 15. Let ψ : J → [0, ∞) with ψ ∈ L(J). If ψ ∈ GA− h− CF(J) then
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1

2h
(

1
2

)ψ

(
αβ√
uv

)
Jλ

αβ
v +

w(
αβ

u
) ≤ 1

2

{
Jλ

αβ
v +

ψ

(
αβ

u

)
+ Jλ

αβ
u −

ψ

(
αβ

v

)}

≤ 1
2

[
ψ

(
αβ

u

)
+ ψ

(
αβ

v

)] ∫ αβ
u

αβ
v

h

 ln
(

vz
αβ

)
ln
( v

u
)
+ h

 ln
(

αβ
uz

)
ln
( v

u
)
 lnλ−1

(
αβ
uz

)
Γ(λ)z

w(z)dz

≤ [ψ(α) + ψ(β)]
∫ αβ

u

αβ
v

h

 ln
(

vz
αβ

)
ln
( v

u
)
+ h

 ln
(

αβ
uz

)
ln
( v

u
)
2

lnλ−1
(

αβ
uz

)
Γ(λ)z

w(z)dz

−
[

ψ(u) + ψ(v)
2

] ∫ αβ
u

αβ
v

h

 ln
(

vz
αβ

)
ln
( v

u
)
+ h

 ln
(

αβ
uz

)
ln
( v

u
)
 lnλ−1

(
αβ
uz

)
Γ(λ)z

w(z)dz (33)

and

1

2h
(

1
2

)ψ

(
αβ√
uv

)
Jλ

αβ
u −

w(
αβ

v
) ≤ 1

2

{
Jλ

αβ
v +

ψ

(
αβ

u

)
+ Jλ

αβ
u −

ψ

(
αβ

v

)}

≤ 1
2

[
ψ

(
αβ

u

)
+ ψ

(
αβ

v

)] ∫ αβ
u

αβ
v

h

 ln
(

vz
αβ

)
ln
( v

u
)
+ h

 ln
(

αβ
uz

)
ln
( v

u
)
 lnλ−1

(
vz
αβ

)
Γ(λ)z

w(z)dz

≤ [ψ(α) + ψ(β)]
∫ αβ

u

αβ
v

h

 ln
(

vz
αβ

)
ln
( v

u
)
+ h

 ln
(

αβ
uz

)
ln
( v

u
)
2

lnλ−1
(

vz
αβ

)
Γ(λ)z

w(z)dz

−
[

ψ(u) + ψ(v)
2

] ∫ αβ
u

αβ
v

h

 ln
(

vz
αβ

)
ln
( v

u
)
+ h

 ln
(

αβ
uz

)
ln
( v

u
)
 lnλ−1

(
vz
αβ

)
Γ(λ)z

w(z)dz. (34)

By adding inequalities (33) and (34) we get

1

2h
(

1
2

)ψ

(
αβ√
uv

)[
Jλ

αβ
v +

w(
αβ

u
) + Jλ

αβ
u −

w(
αβ

v
)

]
≤
{

Jλ
αβ
v +

ψ

(
αβ

u

)
+ Jλ

αβ
u −

ψ

(
αβ

v

)}

≤ 1
2

[
ψ

(
αβ

u

)
+ ψ

(
αβ

v

)] ∫ αβ
u

αβ
v

h

 ln
(

vz
αβ

)
ln
( v

u
)
+ h

 ln
(

αβ
uz

)
ln
( v

u
)
 lnλ−1

(
αβ
uz

)
Γ(λ)z

+
lnλ−1

(
vz
αβ

)
Γ(λ)z


w(z)dz

≤ [ψ(α) + ψ(β)]
∫ αβ

u

αβ
v

h

 ln
(

vz
αβ

)
ln
( v

u
)
+ h

 ln
(

αβ
uz

)
ln
( v

u
)
2 lnλ−1

(
αβ
uz

)
Γ(λ)z

+
lnλ−1

(
vz
αβ

)
Γ(λ)z

w(z)dz

−
[

ψ(u) + ψ(v)
2

] ∫ αβ
u

αβ
v

h

 ln
(

vz
αβ

)
ln
( v

u
)
+ h

 ln
(

αβ
uz

)
ln
( v

u
)
 lnλ−1

(
αβ
uz

)
Γ(λ)z

+
lnλ−1

(
vz
αβ

)
Γ(λ)z

w(z)dz (35)

for all u, v ∈ J and λ > 0 and h( 1
2 ) 6= 0.
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Remark 7. If we take h(λ) = λ, then we get the following inequality, which coincides with
Corollary 2.3 in [21],

ψ

(
αβ√
uv

)[
Jλ

αβ
v +

w(
αβ

u
) + Jλ

αβ
u −

w(
αβ

v
)

]
≤
{

Jλ
αβ
v +

ψ

(
αβ

u

)
+ Jλ

αβ
u −

ψ

(
αβ

v

)}
≤ 1

2

[
ψ

(
αβ

u

)
+ ψ

(
αβ

v

)][
Jλ

αβ
v +

w(
αβ

u
) + Jλ

αβ
u −

w(
αβ

v
)

]
≤
[

ψ(α) + ψ(β)− ψ(u) + ψ(v)
2

][
Jλ

αβ
v +

w(
αβ

u
) + Jλ

αβ
u −

w(
αβ

v
)

]
,

for all u, v ∈ J and λ > 0.

If we take u = α and v = β in (35), we get the following inequality.

Corollary 14. Let h : [0, 1] → [0, ∞) and ψ : J → [0, ∞) be two functions. Let the function
ψ ∈ L[α, β] be the class of integrable function for any α, β ∈ J with α < β. If ψ is GA-h-CF on
[α, β] and let a nonnegative integrable function g : [α, β]→ <, and then

1

2h
(

1
2

)ψ
(√

αβ
)[

Jλ
α+w(β) + Jλ

β−w(α)
]
≤
{

Jλ
α+wψ(β) + Jλ

β−ψ(α)
}

≤ 1
2
[ψ(α) + ψ(β)]

∫ β

α

h

 ln
( z

α

)
ln
(

β
α

)
+ h

 ln
(

β
z

)
ln
(

β
α

)
 lnλ−1

(
β
z

)
Γ(λ)z

+
lnλ−1( z

α

)
Γ(λ)z

w(z)dz

≤ [ψ(α) + ψ(β)]
∫ β

α

h

 ln
( z

α

)
ln
(

β
α

)
+ h

 ln
(

β
z

)
ln
(

β
α

)
2 lnλ−1

(
β
z

)
Γ(λ)z

+
lnλ−1( z

α

)
Γ(λ)z

w(z)dz

−
[

ψ(α) + ψ(β)

2

] ∫ β

α

h

 ln
( z

α

)
ln
(

β
α

)
+ h

 ln
(

β
z

)
ln
(

β
α

)
 lnλ−1

(
β
z

)
Γ(λ)z

+
lnλ−1( z

α

)
Γ(λ)z

w(z)dz (36)

for all u, v ∈ J and λ > 0 and h( 1
2 ) 6= 0.

Remark 8. If we take h(λ) = λ, then we get the following inequality, which coincides with the
inequality in ([27], Theorem 2.1):

ψ
(√

αβ
)[

Jλ
α+w(β) + Jλ

β−w(α)
]
≤
{

Jλ
α+wψ(β) + Jλ

β−ψ(α)
}

≤
[

ψ(α) + ψ(β)

2

][
Jλ
α+w(β) + Jλ

β−w(α)
]
,

(37)

for all u, v ∈ J and λ > 0.

Remark 9. By following a similar pattern as that provided in the previous section, we may also
acquire, as a special case, results for the classes of GA-s-CF (GA-Q-CF and GA-P-CF.

6. Conclusions

In this paper, we have established several inequalities for GA-h-convex functions and
its subclasses including as GA-convex functions, GA-s-convex functions, GA-Q-convex
functions, and GA-P-convex functions. We proved the Jensen–Mercer inequality for GA-
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h-convex functions and give weighted Hermite–Hadamard inequalities by applying the
newly proved Jensen–Mercer inequality. We also established inequalities of Hermite–
Hadamard–Mercer type. Furthermore, we have applied our main results along with
Hadamard fractional integrals to prove weighted Hermite–Hadamard–Mercer inequalities
for GA-h-convex functions and its subclasses. As special case of the proven results, we
captured several well-known results from [20,21,25,27].
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