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Abstract: We consider a mechanical system that is comprised of three parts: a rigid outer shell with a
spherical cavity, a spherical core inside this cavity, and an intermediate layer of liquid between the
core and the shell. Such a model provides an adequate description of the behavior of a wide variety
of celestial bodies. The centers of the inner and outer liquid’s spherical boundaries are assumed to
coincide. Assuming that the viscosity of the liquid is high, we obtained an approximate solution to
the Navier–Stokes equations that describes a so called creeping flow of the liquid, which sets on after
all transient processes die out. We note that the effect of the liquid on the rotational motion of the
system can be modeled as a special torque acting upon the system with “solidified” fluid.
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1. Introduction

It is customary to model a celestial object as a three-component structure comprised of
an inner core, an intermediate layer of liquid, and an outer solid shell [1–8]. We will deal
with the simplest, but fairly common version of such an approach, which does not take
into account that in reality the interfaces between liquid and solid components represent a
mushy transition zone [9,10]. The mass proportion of each component strongly depends
on the object’s type. For example, the core of an Earth-like planet is considerably smaller
than the outer shell (mantle) (Figure 1a). At the same time, the icy crust, covering the
hypothetical subsurface oceans of some satellites of Jupiter and Saturn, is relatively thin
as compared to the satellites’ radii (Figure 1b) [11]. Studying the dynamics of the multi-
component object it is convenient to fix a coordinate frame to the most dominant component
(either outer shell or inner core) and investigate the behavior of the other components
relative to this frame.

In the theory of the rotating mass of liquid, the key role plays Ekman number [12],
which reads

E =
µ

ωrotρ f R2
c

.

Here, ωrot is the characteristic angular velocity of system’s components, Rc is the character-
istic size (e.g., the radius of the outer boundary of the liquid layer), ρ f is the density of the
liquid, and µ is the liquid’s viscosity.

If E � 1, the flow of the liquid within the layer is known to be Stokesian or creep-
ing [13]. In this case, the approximate relations for the liquid’s velocities can be obtained
from the Navier–Stokes equations with the relative-acceleration terms neglected. Stokes
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flow in the gap between two concentric spheres has been considered by many experts.
However, in the best part of the studies the motion of the bounding surfaces was assumed
to be known, and the effect the liquid invokes on their dynamics was not studied (e.g.,
see [14,15]).

Figure 1. Celestial objects modeled as multi-shell structures: (a) “planet” (small inner core), (b) “icy
satellite” with thin outer layer of ice, covering the subsurface ocean. In the case of a “planet,” the
radii of the inner and outer boundaries of the liquid layer are denoted by Rsc and Rlc; in the case of
an icy satellite, they are denoted by Rob and Ris, respectively. The visible contours of a body can have
any shape; the only thing that matters is that the center of mass of the outer component coincides
with the center of the cavity.

In [16], F.L. Chernousko showed that when E � 1 the analysis of the dynamics of a
body containing a cavity filled with liquid can be simplified: the liquid in the cavity is
considered “solidified”, and the liquid’s effect on the body is modeled as an additional
torque applied to the body. Various aspects of the Chernousko approach are discussed
in [17,18].

In the current paper, we show that in the case E� 1, a similar approach can be used
for analyzing the rotation of celestial objects containing liquid layers. A useful byproduct
of such an approach is an approximate formula for the velocity field of the liquid particles.

As far as we know, there are no multi-component celestial bodies with E� 1. Therefore,
at least at present, our results seem to have only a peripheral relationship to the dynamics
of actual astrophysical objects. At the same time, our results may be used, for example, for
testing software that simulates the dynamics of such objects when it is important to be able
to compare numerical results with a known analytical solution, regardless of whether this
solution represents a real phenomena [19].

The paper is organized as follows. In Section 2, the governing equations for a three-
component system mantle+liquid+core are presented. An approximate formula for the liquid
velocity field after Stokes (creeping) flow sets in is obtained in Section 3. A condition of
“dynamical agreement” between the motion of the core and the motion of the liquid near the
core’s surface is presented in Section 4. This condition helps to establish all of the parameters
of the liquid flow. Section 5 discusses some aspects of this flow. In Section 6, the approximate
relations describing the regular precession of the mantle relative to the core are given. Some
issues associated with the introduction of the additional torque that replicates the action of
the liquid (the Chernousko model) are covered in Section 7. Modifications to the formulas for
the liquid velocity to suit the case where the thin outer shell moves relative to the massive
core are discussed in Section 8. A brief outline of the results obtained is presented in Section 9.

2. Equations of Motion of a “Planet”

We assume that the external forces and torques applied to the system allow for a
motion in the course of which the center of mass of the outer shell (referred to further
as mantle) coincides with the center of mass of the inner core. Such a regime (at least
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approximately) occurs when a “planet” orbits a star. Under this assumption, the motion
of the core relative to a mantle-fixed frame Oxyz is a rotation with angular velocity ωr

sc.
For simplicity, we assume that the motion of the centers of mass is known (i.e., rO and
vO = drO/dt are known functions of time). Relative to the frame Oxyz, the motion of the
liquid is governed by the Navier–Stokes equations

1
ν

[
∂u
∂t

+ (u∇)u + 2ω× u +
dω

dt
× r
]
− ∆u +∇q = 0 , (1)

q =
1
ν

[
p

ρ f
+ Π− 1

2
|ω× r|2 −

(
r,

dvO
dt

)]
.

Here, u(r, t) is the liquid velocity, p(r, t) is the pressure in the liquid layer, Π is the potential
of the gravity attraction forces exerted on the liquid particles, ω is the angular velocity
of the frame Oxyz, and ν = µ/ρ f is the liquid’s kinematic viscosity. The velocity u(r, t)
satisfies the standard incompressibility condition

div u = 0 (2)

and the kinematic relations
u ||r|=Rlc

= 0. (3)

u ||r|=Rsc= ωr
sc × r, (4)

where Rlc and Rsc stand for the radius of the cavity and the core, respectively.
Within the core, the distribution of the matter’s density is assumed to be spherically

symmetric. In the frame Oxyz, the evolution of its rotational speed is governed by the equation

Isc
dωr

sc
dt

= M f luid − Isc
dω

dt
. (5)

Here, M f luid is the friction torque that the liquid exerts on the core. To find M f luid, we
integrate the tangential stress components over the core’s surface Ssc, that is,

M f luid =
∫

Ssc

r× (T · n) dS. (6)

Here, T is the stress tensor and n is the unit outward normal to the surface of the core.
The total angular momentum KΣ

p relative to the center of mass can be decomposed as

KΣ
p = Ks

p + Kr
f luid + Kr

sc.

Here, Ks
p is the angular momentum of the “solidified” planet in which the liquid and the

inner core are fixed relative to the mantle; the internal momentum of the liquid can be
written as Kr

f luid = ρ f
∫

Vlc
r× u dV; the attitude momentum of the core reads Kr

sc = Iscωr
sc;

and Ks
p = Ipω, where Ip stands for the tensor of inertia of the “solidified” planet. Let

MΣ be the net external torque applied to the system; then, the time evolution of the total
angular momentum is described by the Euler equation

d
dt

(
KS

p + Kr
f luid + Kr

sc

)
+ ω×

(
KS

p + Kr
f luid + Kr

sc

)
= MΣ.

The governing equations should be augmented with kinematic relations of the form

dz
dt

= k(z, ω), (7)
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where the parameters z quantify the orientation of the mantle-fixed frame (e.g., the
Euler angles).

Hereafter, the units of mass, length, and time are assumed to be so chosen that ρ f = 1,
Rlc ∼ Rsc ∼ 1 and therefore ν ∼ E� 1.

3. Stokes Flow in the Liquid Layer

If E � 1, after an initial transient process, the flow in the cavity becomes creeping
flow [13]. Omitting the inertial terms in (1) yields the following equation governing the
creeping flow:

∆u = ∇q +
dω

dt
× r

ν
, (8)

where the velocity u satisfies the incompressibility condition (2) and the kinematic relations (3)
and (4).

We seek a solution to (8) of the form

u = ν−1
(

dω

dt
×∇ f

)
, (9)

which upon substitution into (8) provides the following equation in the function f (r)

∆∇ f = r. (10)

The velocity field satisfies the boundary condition u ||r|=Rlc
= 0 provided that

∇ f ||r|=Rlc
= 0. (11)

To meet the boundary condition (3), the rotation of the inner core and the velocity (9)
must agree kinematically, that is,

ωr
sc = −

α

ν

dω

dt
, (12)

∇ f ||r|=Rsc= −αr. (13)

Moreover, Equation (5) implies a certain “dynamical” agreement between the motion
of the liquid and the motion of the inner core. In Section 4, we will derive the value of α for
which (12) provides an approximate solution to (5), thereby revealing the dynamics of all
of the system’s components. For simplicity, put

f ||r|=Rlc
= 0. (14)

By symmetry, it is quite natural to assume that the solution to the boundary-value
problems (10)–(12) and (14) lies among functions that depend solely on r = |r|. For such
functions, this problem reduces to the boundary-value problem for the third-order ODE

d
dr

(
r2 d2 f

dr2

)
− 2

d f
dr

= r3 (15)

of the form
f (Rlc) =

d f
dr

(Rlc) = 0,
d f
dr

(Rsc) = −αRsc. (16)

The solution to the boundary-value problems (15) and (16) looks like

f (r) =
r4

40
+ β1r2 +

β2

r
+ β3,
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where the constants β1, β2, β3 satisfy the linear relations

R4
lc

40
+ β1R2

lc +
β2

Rlc
+ β3 = 0,

R2
lc

10
+ 2β1 −

β2

R3
lc
= 0,

R2
sc

10
+ 2β1 −

β2

R3
sc

= 0.

It is straightforward to obtain

f (r) =
1

40

(
r2 − R2

lc

)2
+ β2

[(
1
r
− 1

Rlc

)
+

1
2R3

lc

(
r2 − R2

lc

)]
(17)

and

α =
1
10

(
R2

lc − R2
sc

)
− β2

(
1

R3
lc
− 1

R3
sc

)

4. “Dynamical” Agreement between the Motion of the Inner Core and the Liquid

From Equation (5), it follows that after the creeping flow onset one has

M f luid ≈ Isc
dω

dt
(18)

To obtain M f luid, one should calculate the integral (6). Following [14], introduce
spherical coordinates whose polar axis is aligned with dω

dt . The velocity components of a
liquid particle are

ur = uθ = 0, uϕ = −ν−1
(

r3

10
+ 2β1r− β2

r2

)∣∣∣∣dω

dt

∣∣∣∣ sin θ.

The force per unit area of the surface of the inner core can be determined with the help
of the τrϕ-component of the stress tensor T

τrϕ = ν

(
∂uϕ

∂r
−

uϕ

r

)
r=Rsc

= −
(

R2
sc

5
+

3β2

R3
sc

)∣∣∣∣dω

dt

∣∣∣∣ sin θ.

Integrating over the sphere’s surface yields

M f luid =
8π

3
ρR3

sc

(
R2

sc
5

+
3β2

R3
sc

)
dω

dt
= I f luid

(
1 +

15β2

R5
sc

)
dω

dt
, (19)

where I f luid is the central moment of inertia of the cavity of radius Rsc filled with liquid
with density ρ f = 1.

Equating (18) and (19) we obtain

β2 =
R2

sc
15

(
Isc

I f luid
− 1

)
. (20)

With this expression for β2 at our disposal, it is easy to find that

α = R2
scΞsc

(
Rsc

Rlc
,

I f luid

Isc

)

Ξsc(ξ, η) =
1

15
·
(

1
η
− 1
)(

1− ξ3
)
+

1
10
·
(

1
ξ2 − 1

)
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The graph of Ξsc is given in Figure 2. It can be easily checked that α > 0 when
I f luid < Isc, which is quite natural since usually the inner core is more dense than the liquid.

Figure 2. The graph of the function Ξsc(ξ, η). The argument ξ characterizes the ratio of the radii of
the inner and outer boundaries of the liquid layer, and the argument η represents the ratio of the
densities of the liquid and the substance of the inner core (assumed homogeneous).

5. Common Properties of the Flow in the Liquid Layer

Using (9), (17) and (20), it is possible to draw the lines of constant velocity magnitude
in a plane through the axis of relative rotation of the inner core (Figure 3). Obviously, the
magnitude acquires its maximum in the ”equatorial” plane, which is perpendicular to the
relative angular velocity of the core and passes through its center.

The most trivial distribution of the velocity magnitude occurs when

Isc = I f luid. (21)

Assuming that the core is uniform in density, Equation (21) implies that its density is
equal to the density of the ambient liquid. So, if (21) is fulfilled, then in the equatorial plane

uϕ =
1

10ν

(
r2 − R2

lc

)
r. (22)

Thus, if Rsc ≥ Rlc√
3

the maximum of the magnitude is reached on the surface of the

inner core, whereas for Rsc <
Rlc√

3
the maximum occurs at r = Rlc√

3
.
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Figure 3. Velocity level lines in a plane through the instantaneous axis of relative rotation of the inner
core (which is also the flow’s axis of symmetry) when Isc/I f luid = 1: (a) Rsc/Rlc = 0.6 > 1/

√
3 (the

velocity of the liquid reaches its maximum on the surface of the inner core), (b) Rsc/Rlc = 0.3 < 1/
√

3
(the maximal velocity of the flow is attained inside the layer).

6. Motion of the Core Relative to the Mantle

The attitude dynamics of the core is governed by Equation (5). Let us examine the
dynamics in greater detail assuming that the mantle is a dynamically symmetric rigid
body that is in a precession motion with parameters ωψ, ωϕ and θ; as usual, ωψ is the
precession angular velocity, ωϕ stands for the intrinsic angular velocity, and θ is the angle
between the mantle’s axis of symmetry and the precession axis. Suppose that the Oz-axis
of the mantle-fixed frame is aligned with the symmetry axis; then, in this frame the angular
velocity of the mantle and the relative angular velocity of the core (up to an inessential time
shift) can be written as

ω =
(
ωψ sin θ sin ωϕt, ωψ sin θ cos ωϕt, ωψ cos θ + ωϕ

)T ,

ωr
sc ≈ −

α

ν

dω

dt
= −α

ν

(
ωψωϕ sin θ cos ωϕt, −ωψωϕ sin θ sin ωϕt, 0

)T .

Let three orthogonal unit vectors esc
x′ , esc

y′ , esc
z′ be fixed to the core. The kinematic equations

desc
x′

dt
= ωr

sc × esc
x′ ,

desc
y′

dt
= ωr

sc × esc
y′ ,

desc
z′

dt
= ωr

sc × esc
z′ , (23)

admit a solution

esc
x′ =

(
1 + O

(
ν−2

)
, O
(

ν−2
)

, −
αωψ

ν
sin θ cos ωϕt + O

(
ν−2

))T

esc
y′ =

(
O
(

ν−2
)

, 1 + O
(

ν−2
)

, −
αωψ

ν
sin θ sin ωϕt + O

(
ν−2

))T
(24)

esc
z′ =

(
−

αωψ

ν
sin θ cos ωϕt + O

(
ν−2

)
,

αωψ

ν
sin θ sin ωϕt + O

(
ν−2

)
, 1 + O

(
ν−2

))T

This solution can be characterized as the core “swaying” with zero secular drift with
respect to the mantle. The other solutions to (23) can be obtained from (24) by the action of
the rotation group.

Remark. The secular drift of the core still can occur in the course of the mantle’s
moderate despinning or acceleration. For example, suppose α > 0 and the mantle gradually
decelerates; then, with respect to the frame Oxyz, the inner core rotates with angular velocity
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ωr
sc ≈ − α

ν

∣∣∣ dω
dt

∣∣∣ in the direction opposite the vector of angular acceleration. In a sense, this
mimics the superrotation of Earth’s inner core [20]. However, the current concept is that
quantitatively reliable estimates of the superrotation can only be obtained with due regard
for dynamo effects and turbulent convection within the liquid layer.

7. Chernousko’s Approach to Modelling Rotational Motion of the System

The total attitude angular momentum reads

Kr = ν−1
∫

Vlc

r×
(

dω

dt
×∇ f

)
dV + Iscωr

sc (25)

The integral evaluates as follows:∫
Vlc

r×
(

dω

dt
×∇ f

)
dV =

∫
Vlc

[
(r,∇ f )

dω

dt
−∇ f ·

(
r,

dω

dt

)]
dV =

∫
Vlc

{
[(r,∇ f ) + f ]

dω

dt
−∇

[
f ·
(

r,
dω

dt

)]}
dV = −2

∫
Vlc

f dV · dω

dt
= −κlc

dω

dt
.

(26)

Here,

κlc =
π

525
·
{

15
(

R7
lc − R7

sc

)
− 42R2

lc

(
R5

lc − R5
sc

)
+ 30R4

lc

(
R3

lc − R3
sc

)
+

+24R5
sc

(
Isc

I f luid
− 1

)[
5
(

R2
lc − R2

sc

)
+

1
R3

lc

(
R5

lc − R5
sc

)
+

5
Rlc

(
R3

lc − R3
sc

)]}
From (12) and (26), it follows that

Kr = −κΣ

ν

dω

dt
, κΣ = κlc + IscR2

scΞsc.

The approach proposed by F.L. Chernousko to modeling the dynamics of a rigid body
with a cavity entirely filled with a highly viscous liquid is as follows: the liquid is assumed
to be frozen or “solidified”; the influence of the liquid is then represented as a special torque
acting upon the body with solidified liquid [16]. In the context of this approach, the Euler
equations can be rewritten as

dKr
p

dt
+ ω×Kr

p = MΣ + Mc, (27)

where

Mc = −
dKr

dt
−ω×Kr ≈ κΣ

ν

(
d2ω

dt2 + ω× dω

dt

)
. (28)

Suppose that the derivatives dω/dt and d2ω/dt2 in (28) are found for the “zero
approximation” model, that is, when the “planet” is assumed to be a one-piece uniform
rigid body; then, Equation (27), together with the kinematic relations (7), forms a finite-
dimensional dynamical system that governs our originally infinite-dimensional system.
Such models (obtained within Chernousko’s approach) are as accurate as ∼ν−1 during
time ν [17,18].

8. Simple Dynamical Model of an “Icy Satellite” with Subsurface Ocean

We now turn to the dynamics of the so-called membrane worlds encountered in the
satellite systems of the giant planets [11]. Consider a satellite in the shape of a sphere
of radius Rob about which a thin icy shell (crust) is floating on a liquid layer (subsurface
ocean). The inner radius of the icy crust will be further denoted as Ris.
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By a similar argument as in Sections 3 and 4, it can be shown that the creeping flow of
the ocean is described by formula (9), in which

f (r) =
1

40

(
r2 − R2

ob

)2
−

R5
is

15

(
1 +

Iis
I f luid

)[(
1
r
− 1

Rob

)
+

1
2R3

ob

(
r2 − R2

ob

)]
.

Here, Iis is the moment of inertia of the icy crust, and I f luid = 8
15 πR5

is is the moment of
inertia of a ball of radius Ris, whose density is equal to the density of the liquid; both
moments are about an axis through the center of mass.

Lines of equal velocity magnitude in a plane through the axis of relative rotation of
the crust are shown in Figure 4.

Figure 4. Distribution of velocities in the ocean: lines of equal velocity magnitude in a plane through
the instantaneous axis of relative rotation of the icy crust (which is the flow’s axis of symmetry) for
Rob/Ris = 0.7, Iis/I f luid = 0.05, α ≈ 0.08308.

The relative angular velocity of the crust is ωr
is = −

α

ν

dω

dt
, where

α = R2
isΞis

(
Rob
Ris

,
Iis

I f luid

)

Ξis(ξ, η) =
1
15
· (1 + η)

(
1
ξ3 − 1

)
− 1

10
·
(

1− ξ2
)

.

It is easy to verify that for ξ = 1− ∆, 0 < ∆� 1, the following relation holds

Ξis(1− ∆, η) ≈ η∆
5

> 0. (29)

This means that for a relatively shallow ocean (Ris − Rob � Ris), the coefficient
α is positive. Thus, in this case when a satellite moves with angular acceleration (or

deceleration), the icy crust will drift relative to the core with angular velocity ωr
b =
|α|
ν

∣∣∣∣dω

dt

∣∣∣∣
in the direction opposite the vector

dω

dt
. The drift of the icy crust of some giant-planet

satellites is discussed in, for example, [21,22]. Since for these objects the condition E� 1
does not hold, our results can hardly help to obtain new observationally confirmed features
of their behavior.
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9. Conclusions

We studied the motion of the liquid in the layer between two concentric spherical
surfaces. In the case where the motion of one surface is solely determined by the moment
of the tangential stress, an approximate expression for the Stokes flow of the liquid is
derived. Using this expression, we identified an important class of motions of the three-
component system mantle+liquid+core, namely, where the motion of one of the bodies
and the liquid are subordinate to the motion imparted by the other body. We showed that
such a subordination can be used to obtain a finite dimensional model of the system (the
effect of intrinsic motion of liquid particles is modelled as a torque applied to “solidified”
system [16]).

Although our study was inspired by real models used to investigate the dynamics of
astrophysical objects, our main results were obtained under assumptions that can hardly be
met within these models’ framework. Nevertheless, it is worth noting that in the classical
problem of describing a creeping flow between two concentric spherical surfaces, we have
found a new class of approximate solutions that is valuable in its own right. For example,
such solutions can be useful for testing special flow analysis software (as mentioned in
the Introduction).

Future research may include the application of perturbation theory for obtaining
similar results when the surfaces bounding the flow are not spherical [23,24]. Additionally,
our approach may find its application in the study of porous bodies floating within liquid-
filled cavities [25,26].
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