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Abstract: This paper presents a new approach for modelling nonlinear dynamic processes (NDP).
It is based on a nonlinear autoregressive with exogenous (NARX) inputs model structure and a
deep convolutional fuzzy system (DCFS). The DCFS is a hierarchical fuzzy structure, which can
overcome the deficiency of general fuzzy systems when facing high dimensional data. For relieving
the curse of dimensionality, as well as improving approximation performance of fuzzy models, we
propose combining the NARX with the DCFS to provide a good approximation of the complex
nonlinear dynamic behavior and a fast-training algorithm with ensured convergence. There are three
NARX DCFS structures proposed, and the appropriate training algorithm is adapted. Evaluations
were performed on a popular benchmark—Box and Jenkin’s gas furnace data set and the four
nonlinear dynamic test systems. The experiments show that the proposed NARX DCFS method can
be successfully used to identify nonlinear dynamic systems based on external dynamics structures
and nonlinear static approximators.

Keywords: process identification; input-output modelling; NARX model; decomposed fuzzy system;
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1. Introduction

Many industrial processes are nonlinear with uncertainty and have time-varying
properties. In industrial process modelling, model structure and parameters often change
over time. Among the known structural time variations in process plants is the change
in the process delay. Obtaining an accurate mathematical model of industrial processes
is not an easy task and presents a challenge for system identification. An alternative
approach is to develop data-driven (DD) models that do not require a detailed physical
understanding of the process and can be extracted from data streams at the same time as
data collection. The concept, which assumes the adaptation of both the model structure and
the model parameters, is called an evolving system. In [1], an overview of the development
of evolving intelligent regression and classification systems is presented, focusing on fuzzy
and neuro-fuzzy methods.

In the past, various DD linear model structures have been established, such as state
space (SS) models, autoregressive exogenous (ARX) models, Box–Jenkins (BJ) models, and
output error (OE) models [2]. These structures can be easily extended to the nonlinear
structure, for example, ARX to nonlinear ARX (NARX). However, rule-based (RB) systems,
artificial neural networks (ANN) based systems, and a combination of both neuro-fuzzy sys-
tems (NFS) can be used to approximate a non-linear static characteristic or an input–output
transition function. Fuzzy modelling, as a representative of RB systems, provides fuzzy in-
ference to manage uncertainty and better understand modelling results than ANN or deep
learning (DL) methods. It is now well established that fuzzy systems (FS), ANN, and NFS
are approximators of all different types of non-linear functions within a compact domain.
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In the initial phase of the investigations, linguistic modelling [3] and fuzzy relation
equation-based methods [4] were suggested as the basic methods for fuzzy model identifi-
cation. The Takagi–Sugeno–Kang (TSK) models [5–7] have enabled the evolution of more
complex rule-based systems where the rules are supported by local regression models.
TSK training algorithms are characterised by a division into separate model structure
identification and parameter estimation, where structure identification is assumed to be
the determination of the number of rules and the parameters of the membership functions
of the fuzzy sets in the rules. On the consequent side of the rules are the parameters
of the linear models, which are usually determined by the least squares method. Later,
researchers started to pay attention to the integration of a non-linear autoregressive model
with exogenous input (NARX) into an intelligent model [8–12]. Intelligent models with
NARX structure have good predictive properties, and they are widely used for the mod-
elling and identification of nonlinear dynamical systems [13]. Paper [14] reviews hybrid
models that combine the advantages of FS and ANN using training algorithms based on
supervised learning methods. When modelling complex non-linear systems, these methods
have the disadvantage of a large rule base with many rules. Rule generation is complex
and often not understandable. In the case of a large training dataset, it is difficult to process
it efficiently with iterative learning algorithms, which are characterised by multiple passes
over the same pieces of data.

The applicability of FS or NFS is limited by the number of input variables and the num-
ber of fuzzy sets defined on the domains of the input and output variables. Increasing these
numbers leads to a problem known in the literature as the “curse of high dimensionality”.
Researchers have proposed some feature reduction approaches to be used before applying
the training algorithm. In our early work [15], we addressed this problem by proposing
a method to decompose a single large FS into smaller subsystems. By following the de-
composition mechanism of the fuzzy inference procedure, we have applied several simple
single-input-single-output (SISO) decomposed fuzzy inference systems (FIS) to model
dynamic systems. The proposed decomposition was based on a FS represented by a fuzzy
relational equation. In order to improve the performance we later presented the structure
of a decomposed NFS ARX model [16] for modelling unknown dynamical systems.

Today, we are dealing with a huge amount of data and many features when modelling
complex dynamic processes. As a result, the performance of traditional neuro-fuzzy classifi-
cation and prediction systems is reduced. A hierarchical fuzzy system (HFS), first proposed
by Raju et al. [17], shows better performance than general FS for big data prediction [18–22].
The training algorithms for HFS are mostly of the same types as those for ANN or deep
convolutional neural networks (DCNN) [23]. Those algorithms are mainly iterative in their
nature and, therefore, they are computationally intensive when applied to problems with a
huge amount of data and many features. The deep convolutional fuzzy system (DCFS),
proposed in [24], is a hierarchical fuzzy structure, which can overcome the deficiency of
general FS when facing high dimensional data. The DCFS hierarchical structure has the
form of a pyramid made up of several smaller simple fuzzy subsystems (FSs). A high
dimensional data set input into the DCFS is split into several small datasets and delivered
to FSs in the first structure layer. The first layer FSs are designed using the WM training
method [25,26] and may be represented as the ordinary week estimators [25]. By passing
the training data through FSs of the first level, a data set for the second level is generated,
and the training procedure may be repeated.

In this paper, we propose to use DCFS as approximators of unknown nonlinear
functions, in the NARX structure, to model nonlinear dynamic processes (NDPs). We
investigated the significance of the appropriate selection of the structure of the FSs at the
first level of the DCFS. We test the proper FSs input–output signal selection at the first level
of the DCFS, which has an impact on the final approximation properties. An important
result is the definition of three different NARX DCFS structures. For the proposed NARX
DCFS, we have adapted the WM algorithm to be suitable for training on the input/output
data of different processes.



Mathematics 2023, 11, 304 3 of 22

This paper consists of five sections. In Section 2, we present the basics of nonlinear
dynamic input/output modelling with an external dynamic’s principle, the concept and im-
plementation of the Wang–Mendel FS, and the idea of the DCFS. We continue by presenting
the main contribution of the research, which is the adaptation of the DCFS for modelling
the nonlinear static approximators of the nonlinear time-invariant dynamic systems. There
are three different NARX DCFS structures proposed, and the training algorithm is adapted.
Section 3 presents the experimental results tested on different data sets to validate the
proposed method. The modelling results are evaluated and are analysed in Section 4, where
we summarise the strengths and weaknesses of the proposed modelling method. Finally,
the last section concludes the paper.

2. Materials and Methods

In this section, we will give details on how to apply a NARX DCFS for nonlinear
system modelling. The non-linear behaviour of time-varying dynamical systems is often
modelled by approximating static non-linearities in combination with linear dynamical
systems. Such models are used to predict the output of a process, which can either be
one-step or long-term predictions. In the case of one-step forecasting, a nonlinear static
function approximator (NSFA) is used to predict the output of the model based on the past
inputs and outputs of the process. Such a model is often used in predictive and adaptive
control systems. Alternatively, a NSFA can be used to predict the output of a process over a
long-time horizon, in which case a multi-step prediction with a longer prediction horizon
is performed.

In the following subsections, we present models, methods, and notations needed
to implement and understand the proposed NARX DCFS model and its application for
modelling NDPs.

2.1. Nonlinear Dynamic Input/Output Models Based on External Dynamics

A nonlinear SISO system in the continuous time space is defined as

y(t) = H(u(t)) (1)

where u(t), y(t) ∈ R are the input variable and output variable, and H(t) is a bounded
continuous nonlinear function. By performing discretization with sampling time Ts,
t = k·Ts, a discrete-time SISO nonlinear system is given as follows

y(k) = f
(
y(k− 1), · · · y

(
k− ny

)
, u(k− τ − 1), · · · u(k− τ − nu)

)
(2)

where u(k) and y(k) are the system input and output at a discrete time k, respectively, nu
and ny are the discrete lags for the input and output signals depending on the unknown
system orders, τ is a delay, and f (·) is an unknown nonlinear function.

The external dynamics (ES) strategy is a popular and widely used structure for non-
linear dynamic system (NDS) modelling. ES means that the nonlinear dynamic model
can be divided into two parts: a static approximator of the nonlinear function and a delay
mechanism for the input and output signals, as shown in Figure 1.

The structure in the Figure 1 is also well known from linear dynamic models. Most
nonlinear dynamic input/output models can be expressed in the following form:

ŷ(k) = f (ϕ(k)) (3)

where ϕ(k) is a regression vector that may include the prior and, optionally, the actual input
process data, the previous output process (or model) data, and the prior prediction errors.
e(k− i), i = 1, 2 · · · ny. By choosing a regression vector, we choose a structure familiar
from linear dynamic models. If we only have lagged outputs in the regression vector, then
we model nonlinear time series (NTS). Other popular nonlinear input/output models are
summarised in Table 1.
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Table 1. Structures of regression vectors for common input/output models.

Model Regression Vector ϕ(k)

NTS ϕ(k) =
[
y(k− 1), · · · y

(
k− ny

)]
NARX ϕ(k) =

[
y(k− 1), · · · y

(
k− ny

)
, u(k− 1), · · · u(k− nu)

]
NARMAX ϕ(k) =

[
y(k− 1), · · · y

(
k− ny

)
, u(k− 1), · · · u(k− nu), e(k− 1), · · · e

(
k− ny

)]
OE ϕ(k) =

[
ŷ(k− 1), · · · ŷ

(
k− ny

)
, u(k− 1), · · · u(k− nu)

]
Note that, when modelling NDPs, complexity usually increases significantly as the

dimensionality of the input space increases. This is the reason why lower dimensionality
models—NTS, NARX, and OE—are more widespread.

Over the last three decades, regression techniques, as well as ANN, FIS, and AN-
FIS [27], have been widely employed for modelling the nonlinear static approximators
of the nonlinear time-invariant dynamic systems. ANNs allow accurate predictions, but
the resulting model structures are not useful for explaining the physical background of
the process being modelled. FSs and NFSs are inherently better suited for interpreting
physical behaviour, as their properties are usually described by if-then rules. A simple
FS and a corresponding DD learning method, called the Wang–Mendel (WM) method,
proposed in [25], was one of the first methods to model FSs from data and is still a strong
and applicable method for DD learning. As WM is the FS used in DCFS, we describe it, in
detail, in the next subsection.
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2.2. WM Fuzzy System

The WM fuzzy system is standard FS designed with fuzzy rules. Following fuzzy
IF-THEN rules allow for modelling the behaviour of the output variable y depending on
the input variables x = (x1, · · · , xn )T :

IF x1 is A(q)
1 and · · · and xm is A(q)

m THEN y is B(q) (4)

where A(q)
j and B(q) are fuzzy sets defined in rule base R, q is the index of the rule, and

(j = 1, · · · , m ) is a subset of (1, · · · , n ). The selection of the m input variables in (4) with
m ≤ n means that the rules can consist of a limited selection of input variables. Fuzzy
sets A(q)

j and B(q) are defined as shown in Figure 2, where the centers of the fuzzy sets are
equidistant between min xj and max xj. For simplicity, assume that M1 = Mj = Mm in the
following notation. Therefore, the maximum number of rules is M = Mm

i .
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A fuzzy inference mechanism aggregates the rules from a fuzzy rule base into a
mapping from fuzzy input set A′ in the input space Rm to fuzzy set B′ in the output space
R. The fuzzifier f uzz(x) converts the crisp input x, into the fuzzy set A′, and the defuzzifier
de f uzz(B′) determines a crisp single point y in the output space R that best represents the
fuzzy set B′. For fuzzy reasoning, the product fuzzy inference mechanism is

µB′(y) = max
q=1,M

{
sup
x∈Rm

[
µA′(x)∏m

j=1 µ
A(q)

j

(
xj
)
µB(q)(y)

]}
, (5)

where m is number of inputs xi1, · · · , xim we used following singleton fuzzifier

µA′
(
x′
)
= f uzz

(
x′
)
=

{
1, if x′ = x
0, otherwise

(6)
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and center–average defuzzifier

y = de f uzz
(

B′
)
=

∑M
q=1 y(q)c

(
∏m

j=1 µ
A(q)

j

(
xj
))

∑M
q=1

(
∏m

j=1 µ
A(q)

j

(
xj
)) , (7)

where y(q)c are the midpoints of the symmetric triangular membership functions of the
output fuzzy sets B(q). Note that, for the membership functions presented in Figure 2, we

simplify the expression by recognizing that ∑M
q=1

(
∏m

j=1 µ
A(q)

j

(
xj
))

= 1, and the denomina-

tor of the FS (7) is equal to 1, and FS is simplified to

y =
M

∑
q=1

y(q)c

(
m

∏
j=1

µ
A(q)

j

(
xj
))

. (8)

Note that the FS (8) is considered from the M fuzzy rules (4), with each rule covering
a cell (j1, · · · , jm ) in the m dimensional input space, which means that FS implements
local inference with one rule representing one input–output relationship. As a result, this
relationship can be represented by the parameter y(q)c .

The mapping of the non-linear function of the dynamical system (3) is created using
only the information, which is written into the appropriate regression vector depending
on the structure of the chosen nonlinear input/output model from Table 1. The inputs to
the FS (8) for modelling a nonlinear static approximator are, therefore, x(k) = ϕ(k) and the
dimension of the input vector can be quite large. Both FSs and non-FSs methods based on
fuzzy rules (4) are characterised by the problem of the curse of dimensionality. This means
that, in the case of many input variables m and a large number of fuzzy sets, Mi of fuzzy sets
per input variable greatly increases the number of rules M. In our previous research [28],
the problem of too many fuzzy rules to model more complex dynamical systems was
solved by decomposing the FS into several simple FSs with fewer input variables. The
principle is based on the decomposition of the inference mechanism. As an example, the
approximation of the nonlinear function with the decomposed FS having nu + ny input
variables would be replaced by nu + ny FSs with one input and one output, as well as
with two-dimensional fuzzy relations Ri. The output of the simplified decomposed fuzzy
model is

y = 1
nu+ny

·
{

de f uzz
[

f uzz(u(k− τ − 1))◦Rb1

]
+ · · ·+ de f uzz[ f uzz(u(k− τ − nu))◦Rbnu ]

+de f uzz
[

f uzz(y(k− 1))◦Ra1

]
+ · · ·+ de f uzz

[
f uzz

(
y
(
k− ny

))◦Rany

]}
,

(9)

where ◦ represents a set of composition operators (i.e., max–min, max–prod, sum–prod,
etc.) and R is the relational matrix. The structure of the dynamical system (9) used to model
the non-linear process is like that of the discrete linear ARX model. The difference is that the
linear parameters ai and bi of the linear ARX model are substituted with simple FSs. In [16],
we analyze the advantages of this approach and outline the drawbacks. Advantages of the
simplified decomposed fuzzy model are fewer rules in rule base; two-dimensional fuzzy
relations; code optimization and hardware inference realization are possible; similarity
between the structure of the suggested model and the discrete linear ARX model. However,
the analysis of the results also showed certain weaknesses resulting from the decomposition
of a FS into several simple ones. In the case of approximation of complex nonlinear dynamic
function, the trained model is worse at predicting the output of the process than in the case
of an undecomposed FS. We have concluded that simplifying the structure of a FS into
several simple FSs connected at a single level brings limitations in the approximation of
complex non-linear functions. We started to look for a solution in the multilevel connection
of simple FSs, which led us to study the hierarchical FSs, which include DCFS.
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2.3. Deep Convolutional Fuzzy System

The key idea behind deep modelling is mostly in the multi-layer nature of the method,
the transformation of features in the model, and the sufficient complexity of the model.
DCFS, proposed in [24], represents a new principle of development—a hierarchical FS
based on the WM method—in particular, for high-dimensional mappings. The DCFS is
based on the use of the WM method of learning from data to determine simple multilevel
multidimensional FSs. The design proceeds from lower levels to higher levels using the
WM method [25,26]. The number of inputs of simple FSs is determined by a so-called
moving window, which acts as a convolution operator.

In [24], DCFS was developed for stock index prediction. The structure of the DCFS is
presented in Figure 3. The DCFS contains n inputs mapped to the input vector

(
x0

1, x0
2, · · · , x0

n
)
,

and the scalar output xL. Level l (l = 1, 2, · · · , L− 1) is composed of nl fuzzy systems
FSl

i

(
i = 1, 2, · · · , nl

)
, the outputs of which are marked as xl

i , and represents inputs to higher

level l + 1 FSs. At the last level, there is only one FSL, which processes the nL−1 outputs
from level L − 1 and gives the final DCFS output xL. The fuzzy systems FSl

1, FSl
2, · · · ,

FSl
nl (l = 1, 2, · · · , L− 1) and their inputs were obtained as outputs from the lower level

FSl−1
i outputs xl−1

1 , xl−1
2 , · · · , xl−1

nl−1 . Those using a moving window are grouped into the input
sets Il

1, Il
2, · · · , Il

nl . The purpose of the moving window is to determine the number of FSs in
the layers and the number of inputs to a particular FSl

i . It performs a double task. Namely, it
determines the size ml of the moving window, and it determines the moving pattern, which
refers to the number of inputs that are moved in each step.
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The choice of the length m of the moving window is important and can be different for
FSl

i at different levels. The number should not be too large, as this will lose the advantages
of DCFS over a conventional FS. At the same time, it should not be too small. It is usually
chosen between 2, 3, 4, or 5, and it may move one input at a time or more than one input at
a time to cover all variables in the level. The strategy of moving inputs to individual FSl

i
can also be changed. This provides a variety of DCFS structure options.

In [24], the author argues that the DCFS learned from the data with the WM learning
method has a better model interpretation capability compared to the DCNN results. The
WM training method determines the parameters y(l)c , l = 1, 2, · · · , M of the FS (8), which
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is used for all FSl
i (i = 1, 2, · · · , nl) and (l = 1, 2, · · · , L− 1) in the DCFS. Details on the

adaptation of the WM training method [26] for DCFS training are detailed in [24].
In next section, we will give details on how to apply a DCFS for system modelling of

the nonlinear dynamic input/output models based on a nonlinear static approximator and
an external tapped delay line.

2.4. Nonlinear Dynamic Input/Output Models Based NARX DCFS

The main contribution of this research is the adaptation of DCFS for modelling the
nonlinear static approximators of the nonlinear time-invariant dynamic systems, which are
based on ED structures, such as the NARX structure. First, it is necessary to investigate the
appropriate structure of the DCFS input vector fitted to the input regression vector of the
NARX structure (Table 1). There are many possibilities, but several structures make more
sense, which we describe below.

2.4.1. Different NARX DCFS Structures

NARX DCFS structures differ in the number of l, (l = 1, 2, · · · , L) hierarchical levels of
the DCFS, the number of nl fuzzy subsystems FSl

i in each level, the selection and number
of inputs to the fuzzy subsystems (moving window Il

i ), and the way in which all the fuzzy
subsystems are implemented. The fuzzy subsystems FSl

i are defined by the number of
inputs, as well as the number of fuzzy sets on the input and output variables. The FSs
may be equal at all levels, or they may be different. In the following, we assume the same
number M = M1 = Mm of fuzzy sets on the inputs and outputs of all fuzzy subsystems FSl

i .
First, let’s start by defining the general structure of the order n.

Definition 1. The General NARX DCFS structure of the order nu, ny maps the input regression
vector ϕ(k) =

[
y(k− 1), · · · y

(
k− ny

)
, u(k− τ − 1), · · · u(k− τ − nu)

]
directly to the DCFS

input vector
(

x0
1, x0

2, · · · , x0
n
)
, where n = nu + ny, and τ is a dead-time. The input sets Il

1, Il
2, · · · , Il

nl

to the fuzzy systems FSl
1, FSl

2, · · · , FSl
nl (l = 1, 2, · · · , L− 1) are selected from the previous level’s

outputs xl−1
1 , xl−1

2 , · · · , xl−1
nl−1 using a moving window of the length m with moving scheme where

it may move one variable at a time starting from xl−1
1 until xl−1

nl−1 .

Note that the general NARX DCFS has FSs in the first level where the inputs in the
moving window I1

1 , I1
2 , · · · , I1

n1 are not arranged according to any rule. The inputs are
ordered sequentially, as they are written in the regression vector. An example of general
NARX DCFS with nu = 3, ny = 3, n1 = 4, m1 = m2 = 3, m3 = 2, and L = 3 is presented in
Figure 4a. When selecting the inputs for the FS1

i at the first level, it is reasonable to select
the inputs from the regressor vector ϕ(k) in a way that makes sense. The next NARX DCFS
structure choice is based on combining the delayed inputs u(k− τ − 1), · · · u(k− τ − nu)
together as inputs for the moving windows of the first half of FS1

i at the first level. Similarly,
the combined delayed outputs y(k− 1), · · · y

(
k− ny

)
of the regression vector are inputs

for the second half of FS1
i at the first level. This principle can be continued at higher levels

up to the last level. Due to the division of FSs into input and output parts, we called this
structure the Input-output NARX DCFS structure.

Definition 2. The Input-output NARX DCFS structure of the order nu, ny maps the input re-
gression vector ϕ(k) =

[
y(k− 1), · · · y

(
k− ny

)
, u(k− τ − 1), · · · u(k− τ − nu)

]
to the DCFS

input vector
(

x0
1, x0

2, · · · , x0
n
)
, where n = nu + ny, and τ is a dead-time. At the first level, FSs are

divided into input part consisting of FS1
ui with the moving windows I1

ui which contain input
regressors u(k− τ − 1), · · · u(k− τ − nu), and output part consisting of FS1

yi with the moving
windows I1

yi which contain input regressors y(k− 1), · · · y
(
k− ny

)
.
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An example of input–output NARX DCFS with nu = 3, ny = 3, n1 = 4, m1 = 2, m2 = 3,
m3 = 2, and L = 3 is presented in Figure 4b. The first two FSs at the first level, FS1

1 and FS1
2,

process delayed inputs, and the second two, FS1
3 and FS1

4, process delayed outputs.
The next option for selecting the inputs for the FS1

i at the first level, which is frequently
used in hierarchical FSs-based dynamical models, is the selection of lower-order dynamic
sub-models.

Definition 3. The Sub-model NARX DCFS structure of the order nu, ny maps the input regression
vector ϕ(k) =

[
y(k− 1), · · · y

(
k− ny

)
, u(k− τ − 1), · · · u(k− τ − nu)

]
to the DCFS input

vector
(

x0
1, x0

2, · · · , x0
n
)
, where n = nu + ny, and τ is a dead-time. At the first level, FSs are

organized as lower order sub-models with the moving windows I1
i which contain input regressors

u(k− τ − i), · · · u
(
k− τ − i− n1

ui
)
,y(k− i), · · · y

(
k− i− n1

yi

)
, where n1

ui ≤ nu and n1
yi ≤ ny

are lags for the output and input signals if sub-models.

An example of input–output NARX DCFS with nu = 3, ny = 3, n1 = 3, n1
u1 = n1

u2 =
n1

u3 = 1, n1
y1 = n1

y2 = n1
y3 = 1, m1 = m2 = m3 = 2, and L = 3 is presented in Figure 4c. We

see that, at the first level, we have three FSs that approximate the dynamic behaviour of the
first order. Similarly, we could have higher-order systems. Structures of each of the FSs are
not necessarily always the same, and the possibilities are almost unlimited.

Remark 1. With the proper selection of parameters, practically any FS may be presented as a DCFS.
The selection of parameters l = 1, n1 = nu + ny, m1 = nu + ny fuzzy subsystem FS1

1 gives a structure
which is the same as general fuzzy system (GFS) based on the ARX model structure presented in [4].
In a similar way, the choice of parameters l = L, n1 = nu + ny, m1 = 1, ml = 2, l = 2, 3 · · · L can be
combined to give a structure like the simple decomposed fuzzy ARX model of the SISO dynamic
system (9) proposed in detail in reference [16]. Instead of a multi-level structure, the outputs of the
first level can be averaged, resulting in exactly same structure.

The system identification procedure of a nonlinear dynamic input–output model
involves constructing an appropriate model from input–output data. In the next subsection,
we present a training algorithm that enables fast parameter training of FSl

i based on input–
output data.

2.5. Fast Training Algorithm for NARX DCFS Structures

The main training algorithm of DCFS is the Wang–Mendel (WM) method [25,26].
The original MATLAB code of the DCFS training algorithm [24] is published in a text
file at: https://ieeexplore.ieee.org/ielx7/91/9130783/8788632/code_training_algorithm.
pdf?arnumber=8788632&tag=1, accessed on 27 December 2022.

https://ieeexplore.ieee.org/ielx7/91/9130783/8788632/code_training_algorithm.pdf?arnumber=8788632&tag=1
https://ieeexplore.ieee.org/ielx7/91/9130783/8788632/code_training_algorithm.pdf?arnumber=8788632&tag=1
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We have adapted the training algorithm code to the proposed NARX DCFS structures.
It is not an iterative method; rather, it is based on a rule extraction approach from data.
Given the N input–output data pairs u(k), y(k), k = 1, 2 · · ·N, where y(k) and u(k) are the
at time k, the task of the training algorithm is to design a NARX DCFS parameter to match
this input–output pair. The training method for DCFS proposed in [24] has been modified
to allow effective training of the NARX DCFS structures. We continue with the description
of the extended training method, which we present as an Algorithem 1, as follows.
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among the 𝑀 fuzzy sets 𝐴ଵ, ⋯ , 𝐴ெ at 𝑥(𝑘), ⋯ , 𝑥ାିଵ (𝑘). Determine 𝑗ଵ∗ = arg max∈ሼଵ,ଶ,⋯ெሽ ቀ𝐴 ቀ𝑥(𝑘)ቁ ቁ⋮𝑗∗ = arg max∈ሼଵ,ଶ,⋯ெሽ ቀ𝐴 ቀ𝑥ାିଵ (𝑘)ቁ ቁ (11)
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Note that the proposed training algorithm is much faster than the standard gradient
descent-based algorithms, such as back propagation (BP). All the FSl

i in the DCFS are
designed with N data, which are applied once in the training procedure, rather than itera-
tively several times, as is necessary for gradient-based and other iterative learning methods.
In the following, we present the proposed NARX DCFS structure for the prediction of
nonlinear dynamical systems.

3. Experimental Studies

With the aim of evaluating the applicability of the NARX DCFS for modelling non-
linear dynamic systems, all three structures defined in Section 2.4.1 were tested on different
sets of benchmark test data in ordering, gas furnace system input–output modelling, and
several nonlinear dynamic test processes. All experiments were performed in MATLAB
R2021b on a PC with Intel® Core™ i7 CPU 870 @ 2.93 GHz 2.93 GHz and Windows 10 Pro
operating system. The program code for all experiments in the study and the necessary
data sets are available as Supplemental Material.



Mathematics 2023, 11, 304 12 of 22

3.1. Gas Furnace Model Identification

We selected Box and Jenkin’s benchmark [29] to test, analyse, and validate the mod-
elling results. The data in this dataset were obtained as measurements from the combustion
process in an industrial furnace. The input data is the methane flow rate, while the output
data is the CO2 concentration in the combustion gases. The modelling data represent
296 measurements that were sampled with a sampling time of 9s. The modelling objective
is to predict y(k) at a fixed iteration k based on the available knowledge of the behaviour
of the system at previous time instances. The objective of the modelling is to predict the
output based on the past input–output data and, since it is a dynamic system, a regression
vector of appropriate dimensions and with appropriate delay is first chosen. The new y(k) is
affected by the following input–output variables [y(k-1), · · · y(k-ny), u(k-τ-1), · · · u(k-τ-nu)].
In the above examples, nu = 3 and ny = 3 were chosen, and the delay τ was varied between
1 and 4.

For comparing the quality of performance, a mean square error (MSE) was chosen as
a measure of the prediction quality

MSE =
1

N − τ − nu + 1

N

∑
k=τ+nu

[y(k)− ŷ(k)]2 (16)

Calculating the MSE of the output variable tells us what the average estimation error
of our model is. For example, MSE = 0.5 represents an average estimation error of about
1.3%. From this, we conclude that the MSE ≤ 0.5 values for this benchmark are already a
reasonably good result. In this study, we take the MSE index as a measure to compare the
output prediction results of different fuzzy models against the predictions of the proposed
NARX DCFS model structures.

In our first experiment, we used a WM FS (7) proposed and the WM system identifica-
tion method. When modelling with FSs, some standard steps must be implemented at the
start, such as the choice of the number of fuzzy sets M on each input and output variable,
the shape of the membership functions, and the placement of these fuzzy sets on the
definition ranges of the input and output variables. Triangular shapes of the membership
functions, which were placed symmetrically to equally cover the entire definition ranges
of the variables, were chosen. Another important step in modelling dynamical systems is
the correct choice of the delay τ and orders nu, ny, of the system, which have important
impacts on the structure of the regressor vector that is the input to the FS. Setting a suitable
delay is related to prior knowledge of the process and is often chosen empirically. In our
research, we set the delay between 0 and 4, and we mostly found a suitable result with a
value of τ = 3.

We simulated five cases where we varied the number of M fuzzy sets on each input
variable from 5, 7, 11, 13, and 15. Since a WM FS (7) has six input variables, the number
of possible rules increases exponentially as the number of fuzzy sets M increases. Accu-
racy rises with larger M, but at the same time, the processing time tCPU of the training
algorithm increases dramatically. The performance result of this fuzzy model is shown in
Figure 5, where Figure 5a depicts the original input u of the system, namely gas flow rate,
and Figure 5b compares the output of the process y with the predicted output ym of the
identified model.

Figure 5b shows the error e between the model output and the predicted process
output for the data used for training and for the input test signal. The MSE obtained of
our model is 0.08962 by train input signal and 0.62777 by test input signal. By selecting a
relatively large number of fuzzy sets M = 11 on the six inputs, we were faced with a large
processing time of the training algorithm tCPU = 29.32 s. An important conclusion from
testing with WM FS is that, as the number of fuzzy sets M increases, the running time tCPU
of the training algorithm increases exponentially. Figure 5b,c shows that the MSEtest of the
prediction with the test input signal is much larger than the MSEtrain of the prediction with
the training input.
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Over the same set of input–output data, all three proposed NARX DCFS structures
for output prediction were tested. The results are summarised and presented in Table 2.
We first tested out the general NARX DCFS as defined in Definition 1, and with selected
parameters, nu = 3, ny = 3, n1 = 4, m1 = m2 = 3, m3 = 2, and L = 3 are presented in Figure 4a.
Such a DCFS structure is characterised by seven FSs with three input variables and one
output variable, which are organised into three levels. The inputs are ordered sequentially,
as they are written, in the regression vector. For comparison purposes, we have kept the
same delay τ but varied the number of fuzzy sets M. As expected, accuracy improved
as M increased. Note that the processing time tCPU of the training algorithm increased
more slowly with increasing M than in the case of the WM FS, although M is much larger
(30 compared to 11). Similarly, we tested the other two proposed NARX DCFS structures, as
defined by Definitions 2 and 3 and presented in Figure 4b,c. We observe that the processing
time tCPU of the training algorithm is even smaller for the same number of fuzzy sets M.
This is the result of fewer inputs to FSs at some levels, and it is a consequence of fewer FSs
inputs at some levels, which, in turn, results in a slightly worse MSE performance measure.

The prediction results are given in Table 2. The results for the General NARX DCFS
with M = 30, where we achieved the best performance measures MSEtrain = 0.02411 and
MSEtest = 0.28357, are highlighted. The prediction result of General NARX DCFS-based
model is shown in Figure 6. The figure indicates that the testing error of the model is larger
than the training model. Although we have chosen a relatively large number of fuzzy sets
M = 30, the processing time of the training algorithm was relatively small tCPU = 5.07s.

To evaluate the results, we made a comparative analysis of the results of the proposed
NARX DCFS structure with other identification methods known from the literature. The
methods are different by structure, by the fuzz systems used, and by the methods of
learning from the data. We have selected some identification methods [3,4,15,30,31] based
on fuzzy relational matrix identification to describe the inference mechanism of the FS.
In these methods, we are dealing with comparable learning algorithms, which belong to
non-iterative learning methods. We also selected two results based on Sugeno’s fuzzy
inference [5,6]. One method is from the field of classical modelling [29]. The three methods
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described in papers [15,16] are characterised by the use of the FS decomposition principle.
The results of these methods compared to NARX DCFS are presented in Table 3.

Table 2. Comparison of the performance of the proposed methods in Box–Jenkins system identifica-
tion problem.

Model τ M MSEtrain MSEtest tCPU [s]

3 5 0.28235 0.76069 1.10
3 7 0.17843 0.54243 3.21

WM FS (7) [26] 3 11 0.08962 0.62777 29.32
3 13 0.05681 0.55120 94.25
3 15 0.04051 0.90677 261.52
3 5 0.49303 0.38133 0.79

General NARX DCFS 3 15 0.11042 0.32413 1.83
3 30 0.02411 0.28357 5.07
3 5 0.45535 0.50022 0.77

Input-output NARX DCFS 3 15 0.12208 0.24639 1.18
3 30 0.04537 0.4484 3.58
3 5 0.38298 0.59655 0.50

Sub-model NARX DCFS 3 15 0.13069 0.34904 0.85
3 30 0.03697 0.58240 1.11
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Table 3. Identification results for the Box–Jenkins gas furnace.

Reference No. of Variables MSE

Box Jenkins [29] - 0.71
Tong [3] y(k-1), u(k-4) 0.469

Pedrycz [4] y(k-1), u(k-4) 0.320
Xu [30] y(k-1), u(k-4) 0.328

Costa Branco [31] y(k-1), u(k-4) 0.312

Sugeno-Yasukawa [6] y(k-1), y(k-2), y(k-3)
u(k-1), u(k-2), u(k-3) 0.190

Takagi Sugeno [5] y(k-1), u(k-3), u(k-4) 0.068
Golob ARX min-max [15] y(k-1), u(k-4) 0.73
Golob ARX sum-prod [15] y(k-1), u(k-4) 0.57

Golob DNF ARX [16] y(k-1), u(k-4) 0.196

General NARX DCFS y(k-1), y(k-2), y(k-3),
u(k-4), u(k-5), u(k-6) 0.024

The table shows that the Sugeno-type FS [5] model is the closest to the General NARX
DCFS model in terms of MSE. It should be noted that Sugeno FS is based on rules with
linear functions on the consequent side of the rule. Verification result MSE = 0.024 of
proposed General NARX DCFS indicates that identification methods based on hierarchical
structures, such as the proposed NARX DCFSs, allow for avoiding the use of gradient
identification methods and enable the efficient use of identification methods based on a
rule extraction approach from data.

3.2. Nonlinear Dynamic Test Processes Identification

The four nonlinear dynamic test systems presented below serve as examples to il-
lustrate the suitability of NARX DCFS for modelling various non-linear processes [2].
They cover different types of non-linear behaviour to demonstrate the universality of
the approach.

• For a Hammerstein system, which is the typical coupling of a static non-linear function
and a dynamic linear system, the example is given by a differential equation:

y(k) = 0.01867·arctan[u(k− 1)] + 0.01746·arctan[u(k− 2)]
+1.7826·y(k− 1)− 0.8187·y(k− 2)

(17)

• As the opposite, a Wiener system is a linear dynamic system in series with a static,
non-linear function, and the example is given by a differential equation:

y(k) = arctan[0.01867·u(k− 1) + 0.01746·u(k− 2)
+1.7826·tan(y(k− 1))− 0.8187·tan(y(k− 2))]

(18)

• A nonlinear differential equation (NDE) system is the approximation of a non-minimum
phase system of a second order with parameters: gain 1, time constants 4 s and 10 s,
and a zero at 0.25 s. Output feedback is a parabolic nonlinearity:

y(k) = −0.07289·
[
u(k− 1)− 0.2·y2(k− 1)

]
+0.09394·

[
u(k− 2)− 0.2·y2(k− 2)

]
+1.68364·y(k− 1)− 0.70469·y(k− 2)

(19)

• A not separable dynamic (NSD) system has a nonlinearity which cannot be divided into a
static non-linear part and a dynamic linear part. The behaviour of the system depends
on the input variable:

y(k) = 0.133·u(k− 1)− 0.0667·u(k− 2) + 1.5·y(k− 1)
−0.7·y(k− 2) + u(k)·[0.1·y(k− 1)− 0.2·y(k− 2)]

(20)
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To identify NARX DCFSs, we excited the non-linear processes with an amplitude
modulated pseudo random binary signal (APRBS), which is shown in Figure 7a. APRBS
are designed to ensure good excitation of the process at different operating points and are,
therefore, suitable for the excitation of non-linear processes. To test the NARX DCFSs, we
generated the test signal presented in Figure 7b.
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input signal is an amplitude modulated pseudo random binary signal; (b) testing input signal.

The test signal consists of step functions over the entire range of the input signal,
followed by a ramp, and finally ending with a period of the sinusoidal signal.

Figure 8 shows the results of training the model with the General NARX DCFS
structure to model the first of the four test non-linear processes, namely the Hammerstein
system with the parameters given in Equation (17). Figure 8a shows the input signal
used for training in a discrete time space from k = 0 to approximately k = 5000, as well as
for model testing from k = 5000 to the end. The training and testing results are good, as
confirmed by the acceptable MSEtrain = 0.021 and MSEtest = 0.023 values. A comparison
of the model output signal ym(k) and the output y(k) of the process is given in Figure 8b,
and the corresponding error e(k) is given in Figure 8c. We continued testing with the test
signal shown in Figure 9a. Comparison of the results in Figure 9b, where the model output
and the process output are presented, shows a good match between the model and the
process. The error in the figure is also within acceptable limits. In addition to errors due to
transients in step excitation, the largest deviations of the model output from the process
output are in the region k = 3400 to k = 3800 and in the k = 6000 to k = 6200.
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Figure 8. Comparison between desired outputs y and predicted outputs ym for the Hammerstein
nonlinear dynamic test process obtained in the training session: (a) amplitude modulated pseudo
random binary signal (APRBS); (b) model output signal ym and the output y of the process; (c) model
error e. A dotted green line separates the training area and the testing area.
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The training and testing results of the other three nonlinear dynamic test processes
implemented by Equations (18)–(20) were similar. A slightly worse prediction model was
obtained in the case of NDE system identification, which resulted in a larger acceptable
MSEtrain and MSEtest. Comparison between all four NDPs and identified NARX DCFS
model outputs on training data and test data for all four NDPs is presented in Figure 10.
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4. Discussion

We were interested in the modelling results with different combinations of input
signals into DCFS and, therefore, we were defined three different families of possible
NARX DCFS structures. The first experiment showed, as illustrated by the modelling
results presented in Table 2, that all three structures are useful. The results are comparable
to the similar WM FS, which, however, requires much more CPU time to execute the
training algorithm. Note that, in the case of the presented results we have chosen the
simple structures presented in Figure 4, especially in the case of the input–output NARX
DCFS structure and the sub-model NARX DCFS structure. Better prediction accuracy is
obtained by increasing the number of M fuzzy sets on the input variables of fuzzy systems.
In contrast to WM FS, increasing the number of M results in a reasonable increase in the
time tCPU required to execute the training algorithm. This is an important advantage of
NARX DCFS over WM FS, as M can be scaled up to large numbers, much higher than 30,
improving the accuracy of the model prediction.

Figures 8–10 show that the results of the second experiment, namely modelling four
different types of NDSs for prediction purposes, are also encouraging. The results also show
some weaknesses. From the model output responses in Figure 9b and the associated error,
an increase in the deviation is seen in the interval from k = 3400 to k = 3800 and, similarly, in
the interval from k = 6000 to k = 6200. The error varies depending on the range of the input
signal, and in this range, the dynamic system was not sufficiently excited during training.
This is due to two reasons. The first is in the input excitation signal, which did not provide
enough information in this region to successfully generate FSs’ rules to cover this area. The
results can be improved by a more appropriate distribution of the amplitude levels of the
excitation input signal presented in Figure 7a. The second reason is an inappropriate choice
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of the parameter M. If too small of a value is chosen, the training algorithm generates
fewer rules, and the result is expressed in worse approximation properties. Comparison
of the modelling results of the Hammerstein NDS in Figure 10a and the Wiener NDS in
Figure 10b, obtained with the General NARX DCFS structure, shows similar properties.
Small deviations are present, which differ from the operating point within the process
definition range. Where the process has been adequately excited by the training procedure,
the results are better, while others show a slight increase in the deviation between the
model and the output of the process. The feature of these two NDSs, a separate non-linear
static system and a linear dynamic system, proves to be suitable for modelling with NARX
DCFS structures. The order of nonlinearity before the linear system (Hammerstein) or
the nonlinearity after the linear system (Wiener) does not significantly affect the result.
However, the decoupling of the nonlinear and linear system is not significant for the third
and fourth test NDSs. Comparatively, the MSE results are slightly worse, but the deviation
is not significant. From Figure 10c,d, we observe slightly more oscillations when tracking
the model to the ramp excitation and harmonic signal. Either way, the results are useful for
applications with single-step output predictions.

In Table 3, we compare the results of the NARX DCFS modelling with other similar
methods. Some are based on fuzzy relational systems with non-iterative training algo-
rithms, and others use FIS, where a combination of linear function rules and training from
the data is implemented iteratively. There are several studies that also address neuro-fuzzy
modelling of non-linear dynamical systems. We have reviewed recent publications, and the
following is a brief overview. In [32], a review of fuzzy and neural prediction interval mod-
elling of nonlinear dynamical systems is presented. The difference between the methods
summarised in this review article and our method is that these methods predict a prediction
interval, which has the advantage of specifying an interval of model output values. Most
of these methods are based on various more-complex FIS structures, such as Type-2 fuzzy
system, and use complex iterative training algorithms. Such a FIS was proposed in [33]
for predicting the short-term wind power. The advantage of this method over the NARX
DCFS is its ability to predict very precisely. The disadvantage lies in the complexity of the
learning methods, as it uses the gravitational search algorithm (GSA) for an optimization
interval Type-2 fuzzy system. The most similar in concept to our NARX DCFS model is
the prediction model proposed in the paper [34] and called the deep neural network-based
fuzzy cognitive maps model. It is characterised by both good prediction properties and
good possibilities for linguistic interpretation of the results. An alternate function gradient
descent, combined with a BP method, is used for a training algorithm. A partial similarity
with the NARX DCFS structure can be detected in the study [35], where WM FSs and a
combined learning method, consisting of the WM method and a complex-valued neural
network, are used to predict dynamic nonlinear systems. The training algorithm is non-
iterative. The study [36] presents a similar DCFS with an improved WM method adapted to
solve complex classification problems. The use of ANNs to model and predict the outputs
of nonlinear systems is a hot research area with many published studies. We highlight this
research [37], which presents a new ANN training algorithm based on a hybrid artificial
bee colony algorithm that has been used to efficiently approximate nonlinear static systems
as well as dynamic systems. Due to the complexity, it is difficult to compare the results
with our method. We also reviewed more recent studies [38–41] that used the same Box
and Jenkin’s benchmark in experimental studies. Compared to NARX DCFS, the results are
better or comparable. This is a consequence of the proposed more time-consuming training
algorithms and optimization methods.

To conclude the discussion, let us summarise the advantages and disadvantages of the
proposed method. The good features of the NARX DCFS models are:

• The hierarchical multilevel structure of DCFS allows the approximator of a non-linear
function to be implemented with many more inputs in the regressor vector and without
exponential growth in the number of rules.
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• There are many different possibilities when creating a DCFS input vector from a
regression vector. This allows us to have different structures. In this work, we present
three of them.

• The training algorithm remains non-iterative, as is typical for DCFS. The N input–output
data are processed only once.

• The ability to predict the output of the nonlinear system is satisfactory.

However, the following drawbacks are also present:

• The excitation signal must be chosen appropriately, providing both an adequate
frequency bandwidth and a large variety of amplitude levels.

• The results of testing with a training signal are often much better than the results with
a test signal, such as in Figure 6b.

• Once the NARX DCFS parameters and the input signal have been selected, the predic-
tion results cannot be improved by repeating the training procedure.

The above features require further improvements.

5. Conclusions

This study provides a new NARX DCFS model for modelling dynamic nonlinear
processes that is simple, allows fast training from input–output data, and does not suffer
from the problem of rule explosion in the case when a nonlinear function approximator
has many inputs. The main contributions of our study are the definitions of three struc-
tures, which differ in the number of hierarchical levels of the DCFS, the number of fuzzy
subsystems at each level, the choice of the moving window, and the way in which all fuzzy
subsystems are implemented. With the appropriate choice of parameters, practically any
FS can be represented as a DCFS. Only minor changes were needed to adapt the DCFS
training algorithm to model the NARX DCFS. The experimental results show that NARX
DCFS structures are useful for modelling nonlinear dynamical systems where there are
many inputs to the static nonlinearity approximator and the speed and convergence of the
training algorithm are important, while the accuracy of the model prediction is less relevant.

Our future work will be oriented to research the impact of NARX DCFS system
structure on prediction accuracy, as well as applying NARX DCFS models to real process
modelling, identification, and control problems.
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