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Abstract: Recently, deep neural networks (DNNs) have achieved exciting things in many fields.
However, the DNN models have been proven to divulge privacy, so it is imperative to protect the
private information of the models. Differential privacy is a promising method to provide privacy
protection for DNNs. However, existing DNN models based on differential privacy protection
usually inject the same level of noise into parameters, which may lead to a balance between model
performance and privacy protection. In this paper, we propose an adaptive differential privacy
scheme based on entropy theory for training DNNs, with the aim of giving consideration to the
model performance and protecting the private information in the training data. The proposed scheme
perturbs the gradients according to the information gain of neurons during training, that is, in
the process of back propagation, less noise is added to neurons with larger information gain, and
vice-versa. Rigorous experiments conducted on two real datasets demonstrate that the proposed
scheme is highly effective and outperforms existing solutions.

Keywords: deep neural networks; differential privacy; Laplace noise

MSC: 68P27; 68T01; 68T07

1. Introduction

In recent years, deep learning has led to impressive successes in a wide range of
applications, such as computer vision [1,2], natural language processing [3,4], Internet
of Things [5,6], and healthcare [7–11]. However, since training deep neural networks
usually requires the use of a large number of real data, despite the aforementioned progress,
protecting model privacy has attracted public attention.

Deep neural networks have been proved to memorize training data [12,13] rather
than learning the potential attributes of these data, so some attack methods against deep
neural networks have been derived, such as membership-inference attack [14–17] and
model-inversion attack [18–20]. For instance, Shokri et al. [14] proposed a membership-
inference attack method against machine learning models. The authors used the adversarial
learning strategy to train the inference model to identify the difference between the target
model’s prediction of its training input and that of its untrained input. Khosravy et al. [18]
proposed a search strategy of the model-inversion attack, which uses the pre-trained depth-
generation model to generate face images from random feature vectors and reduce the
image search space to the feature vector space with low dimensions. In the semi-white box
scenario, this method only obtains the model structure and parameters, without obtaining
any user data, and verifies the severity of the model-inversion attack threat.

To defend deep learning-based systems against attacks, novel and existing privacy
tools are constantly being explored by researchers to deal with these emerging issues. Dif-
ferential privacy is a private information protection mechanism that prevents an adversary
from inferencing any information about any particular record, even if the adversary holds
all of the other records except the target one.
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Since Dwork [21] proposed a mechanism to add noise to machine learning methods,
differential privacy has gradually become a popular tool to protect machine learning
models, including deep neural networks. Generally, noise can be added to the training
neural network in four stages: input data, model parameters, loss function, and sample
labels. For example, Wang et al. [22] proposed a differential-privacy-domain adaptation
method, in which differential private noise is added to the gradient of the specific layer
and training process to guarantee private training data. Their experimental results show
that the proposed method achieves high accuracy with only a modest privacy loss in many
adaptive tasks. Yu et al. [23] proposed an image privacy protection framework, which aims
to identify the privacy sensitive content in an image using deep neural network technology
and protect it with a generation with differential privacy against the synthetic content
generated by the network. Their experimental results show that the suggested method
can effectively protect user’s privacy while maintaining the utility of IoMT images. In
these methods, the magnitude of injected noise and the privacy budget are accumulated
in proportion to the number of training epochs, so it may consume an unnecessarily large
portion of the privacy budget.

Recently, scholars have focused on the research of adaptive differential privacy al-
gorithm [24–27], whose main idea is to adaptively adjust the privacy budget during the
training process according to the contribution of neurons or features to the model output re-
sults, adding less noise to more important neurons or features. For example, Phan et al. [25]
proposed an adaptive Laplacian mechanism, which is completely independent of the train-
ing time consumed by the privacy budget, to preserve differential privacy for deep learning.
Gong et al. [26] proposed a general differential privacy deep neural network learning
framework that adaptively adds noise to the gradients according to the relevance between
the neurons and the model output. These studies show that the adaptive differential privacy
mechanism is superior to the traditional differential privacy mechanism.

In this paper, we propose an Entropy theory-based Adaptive Differential Privacy
Preserving (EnADPP) framework for deep neural networks. The proposed EnADPP
framework adds noise to the gradient adaptively according to the change of information
gain of neurons during training. The main idea is to add less noise to neurons with
larger information gain, and vice-versa. To achieve this, the training process of the neural
network is regarded as a system, and the entropy theory is employed to calculate the
information gain of neurons to estimate the amount of noise injected for the neuron
gradients. Specifically, in each training iteration, a neural network interpretable algorithm
(i.e., layer-wise relevance propagation, LRP [28]) is utilized to calculate the relevance
between each neuron and the model outcome, and then the relevance value is used to
calculate the information entropy of each layer and the information gain of each neuron.
Noise is added to the gradient in light of the information gain. The experimental results
show that, compared with the conventional differential privacy method, the proposed
EnADPP framework provides strong privacy protection for the privacy information in the
training data and improves the accuracy of the model.

2. Preliminaries

Representative data, which may contain sensitive information, are required for training
deep neural networks. Therefore, the released model parameters may reveal private
information on training data. As a promising privacy protection mechanism, differential
privacy is widely used in deep neural networks to protect the privacy of trained models.

Definition 1 (ε-Differential Privacy [29]). A random algorithmM takes D as the input set and
R as the output set, formalized asM : D → R, which satisfies differential privacy if and only if
the following inequality for all O ⊆ R (i.e., O is the subset ofR) is established:

Pr[M(D) = O] 6 eε Pr
[
M
(

D′
)
= O

]
, (1)
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where D, D′ ⊆ D are two adjacent datasets that differ by at most one record, ε is the privacy budget
that controls the strength of privacy protection, and the smaller privacy budget provides stronger
privacy protection.

The Laplace mechanism is a general method for ε-differential privacy that employs
global sensitivity (denoted as GSF (D)) of F : D → R on two adjacent databases that differ
at most by one tuple. The Laplace mechanism ensures that the algorithmM = F (D) + η
satisfies ε-differential privacy by injecting noise η, where η ∼ Lap(GSF (D)/ε).

3. Related Works

Deep neural networks are widely used in artificial intelligence fields, including Internet
of Things, computer vision, and healthcare. As we all know, training neural networks
requires representative data sets, which are usually collected from real samples. Therefore,
the training data usually contain private information, such as passwords, clinical records,
and face images. Moreover, a series of attack methods have been proposed against the
neural network, such as gradient leak attack, model-inversion attack, and membership-
inference attack. Therefore, it is imperative to protect the privacy of neural network models.

A promising approach to protect neural network patterns from attacks is to introduce
differential privacy into neural network training. Ye et al. [30] proposed a differential
privacy-defense method, which uses the differential privacy mechanism to modify and
normalize the confidence score vector. This mechanism not only preserves privacy but
also blurs membership and reconstructs data. By ensuring the order of fractions in the
vector, the loss of classification accuracy is avoided. Xiao et al. [31] proposed a user-profile
perturbation recommendation system scheme based on deep reinforcement learning. Deep
reinforcement learning is employed in the scheme to select a differential privacy budget
against inference attackers to protect users’ privacy. Wei et al. [27] analyzed existing
implementations of neural networks with differential privacy using fixed noise levels and
proposed a deep neural network approach for differential privacy assurance by employing
dynamic privacy levels. They suggest that the dynamic noise allocation strategy is superior
to the traditional fixed noise variance strategy. Yu et al. [32] performed formal and refined
privacy loss analysis for two different data-batch processing methods using centralized
differential privacy and implemented a dynamic privacy budget allocator during training
to improve the accuracy of the model. Xu et al. [33] reduced the privacy cost by using the
adaptive learning rate to increase the convergence speed and mitigated the negative impact
of differential privacy on model accuracy by introducing adaptive noise. In recent years,
a growing number of works have proved that adaptive and dynamic differential privacy
budget allocation strategies have obvious advantages [27,32–34].

4. Proposed Methods

In this section, we formally introduce the proposed EnADPP framework. We first
introduce the calculation of system entropy and neuron information gain based on the
LRP algorithm [28]. Then, the application of the proposed framework in SGD algorithm
is introduced.

The LRP is a widely accepted algorithm, which is applied to compute the relevance
of each input feature xij to the network outcome. For a neural network composed of l
hidden layers, let Rl

q(xi) denote the relevance of the neuron q at a certain layer l to the
model outcome. For more details about LRP algorithm, please refer to [28].

4.1. Privacy Budget Ratio Based on Entropy Theory

Adding an equal amount of noise to the gradient may affect the utility of the model,
resulting in an imbalance between the effectiveness of the model and the privacy protection
of the training data. Therefore, we propose an adaptive differential privacy method to
improve the model performance.
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In the first place, we derive the information entropy of the certain layer, which can be
calculated by

En(hl) = − ∑
q∈hl

p
(

Rl
q(xi)

)
log p

(
Rl

q(xi)
)

, (2)

where hl represents the set of neurons in l-th layer and p
(

Rl
q(xi)

)
= Rl

q(xi)/ ∑q∈hl
Rl

q(xi).
Then, we further estimate the information gain of each neuron in l-th layer, which is
computed by

Ga(q) = En(hl)− p
(

Rl
q(xi)

)
log p

(
Rl

q(xi)
)

. (3)

To guarantee Ga(q) ∈ [0, 1], the Ga(q) is normalized to

Ga(q)−minq∈hl
Ga(q)

maxq∈hl
Ga(q)−minq∈hl

Ga(q)
. (4)

Then, the privacy budget ratio αq is introduced to adaptively add noise so that more
noise is injected to gradients of neurons with smaller information gain value, while less
noise is added to gradients of neurons, which is greater information gain at a certain layer.
For the q-th neuron in a certain layer, the privacy budget ratio is

αq = Ga(q). (5)

Furthermore, the adaptive privacy budget is expressed as εq = αq × ε.

Finally, the Laplace noise with Lap
(

∆ωt
εq

)
is injected to gradients to preserve the

differential privacy for neural networks. Algorithm 1 outlines the basic steps of the
EnADPP framework.

Algorithm 1 the proposed EnADPP framework

Input: Training dataset D = {x1, . . . , xi, . . . , xn}, the number of batches T, clipping bound
C, batch size |L|, privacy budget ε, and loss function L(ω).

1: for q ∈ hl do
2: Calculate the relevance Rl

q(xi) of the q-th neuron at l-th hidden layer.
3: Calculate the entropy En(hl) of the l-th hidden layer.
4: Calculate the gain Ga(q) of the q-th neuron at l-th hidden layer.
5: The privacy budget ratio αq = Ga(q).
6: Compute the adaptive privacy budget εq = αq × ε.
7: end for

8: for t ∈ [T] do
9: Take a random set of training samples L with batch size |L| on dataset D.

10: Compute gradient: g(xi)← 5L(ωt, xi).
11: if ‖ g(xi) ‖1> C then
12: Gradient clipping: ĝ(xi)←

C·g(xi)
‖g(x1)‖1

.
13: end if

14: Inject noise: g̃(xi)← 1
|L|

(
∑

xi∈Lt

ĝ(xi) + Lap
(

∆ωt
εq

))
.

15: end for
Output: The noisy gradient g̃(xi).

4.2. Gradient Perturbation for SGD Optimization Algorithm

The proposed method is a general strategy, which can be applied to existing gradient
descent methods. In this section, the proposed EnADPP framework is applied to the SGD
optimization algorithm for minimizing loss functions.
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Gradient perturbation for SGD. SGD is a useful optimization algorithm during the
training of neural networks, which is used to optimize the loss function L(ω) with respect
to parameters ω on T random training batches. At each training step, a random set of
training samples L on dataset D is used. For mini-batch SGD, when we start at an initial
point ω0 and update the parameters ω at t steps, we have

ωt+1 = ωt − γ

(
λωt +

1
|L| ∑

xi∈Lt

g(xi)

)
, (6)

where γ is the learning rate, λ is a regularization parameter, and g(xi) is the gradient on
the samples.

We apply the proposed framework to SGD optimization algorithm, as shown in
Algorithm 2.

Algorithm 2 Adaptive differential privacy SGD optimization algorithm

Input: Training dataset D = {x1, . . . , xi, . . . , xn}, learning rate γ, the number of batches T,
clipping bound C, batch size |L|, privacy budget ε, and loss function L(ω).

1: Randomly initialize the model parameter ω0.
2: Compute the noisy gradient: g̃(xi) = EnADPP(D, ε, T, |L|,L(ω), C).
3: for t ∈ [T] do
4: Gradient descent: ωt+1 = ωt − γ(λωt + g̃(xi)).
5: end for

Output: The noisy gradient g̃(xi).

Proof. Suppose T training batches L1, . . . , Lt, . . . , LT with same batch size |L| are disjointed.
Given two adjacent batches Lt and L′t, let ωt+1(Lt) and ωt+1(L′t)

denote the parameters on
batch Lt and L′t, respectively. According to Equation (6), let ∆ωt =‖ ωt+1(Lt) −ωt+1(L′t)

‖1;
we have the following inequality.

∆ωt =
γt
|L| ∑

ω∈ωt

∥∥∥∥∥ ∑
xt∈Lt

ĝ(xi)− ∑
x′i∈L′t

ĝ
(
x′i
)∥∥∥∥∥

1

6 γt
|L| ∑

ω∈ωt

(∥∥∥∥∥ ∑
xt∈Lt

ĝ(xi)

∥∥∥∥∥
1

+

∥∥∥∥∥ ∑
x′i∈L′t

ĝ
(
x′i
)∥∥∥∥∥

1

)
6 2 γt

|L| max
xi∈Lt

∑
ω∈ωt

‖ĝ(xi)‖1

6 2 γt
|L|C.

(7)

where ĝ(xi) is the gradient after gradient clipping and C is the pre-defined clipping bound
in Algorithm 1 (lines 10–12).

The SGD algorithm with gradient perturbation can be expressed as

ωt+1 = ωt − γ

(
λωt +

1
|L|

(
∑

xi∈Lt

ĝ(xi) + Lap
(

∆ωt

εq

)))
. (8)

As in Algorithm 1 (line 13), the gradient perturbation is expressed as

∑
xi∈Lt

ĝ(xi) + Lap
(

∆ωt

εq

)
. (9)
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Then, we have that

Pr{ωt+1(L)}
Pr
{

ωt+1(L′)

}

=

∏
ω∈ωt

∏
q∈hl

exp


εq

γ
|L|

∥∥∥∥∥∥ ∑
xi∈Lt

ĝ(xi)−

 ∑
xi∈Lt

ĝ(xi)+Lap
(

∆ωt
εq

)∥∥∥∥∥∥
1

∆ωt



∏
ω∈ωt

∏
q∈hl

exp


εq

γ
|L|

∥∥∥∥∥∥∥ ∑
x′i∈L′t

ĝ(x′i)−

 ∑
x′i∈L′t

ĝ(x′i)+Lap
(

∆ωt
εq

)
∥∥∥∥∥∥∥

1
∆ωt


6 ∏

ω∈ωt
∏

q∈hl

exp

(
εq

γ
|L|

∆ωt

∥∥∥∥∥ ∑
xi∈Lt

ĝ(xi)− ∑
x′i∈L′t

ĝ
(
x′i
)∥∥∥∥∥

1

)
6 ∏

ω∈ωt
∏

q∈hl

exp
(

2εq
γ
|L|

∆ωt
max
xi∈Lt
‖ĝ(xi)‖1

)
6 ∏

ω∈ωt
∏

q∈hl

exp
(

ε
2 γ
|L|

∆ωt
max
xi∈Lt
‖ĝ(xi)‖1

)
6 exp

(
ε

2 γ
|L|

∆ωt
max
xi∈Lt

∑
ω∈ωt

‖ĝ(xi)‖1

)
6 exp

(
ε

2 γ
|L|C

∆ωt

)
6 exp(ε).

5. Results

In this section, we carried out extensive experiments on the two well-known datasets
(i.e., MNIST, ADNI) with several deep learning algorithms to verify the practicability of
the model. First, the performances of the SGD optimization algorithm with the proposed
framework on the two datasets are analyzed. Then, we investigate the impact of different
privacy budgets (i.e., different noise levels) on model performances. In this work, we set
the privacy budget ε ∈ [0.2, 0.4, 0.8, 1, 2, 4, 8]. The accuracy is selected as the evaluation
indicator, which is calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
The proposed EnADPP framework is compared with three types of algorithms; both

the proposed framework and the comparison methods are performed on the SGD optimiza-
tion algorithm.

• The pSGD algorithm [35] is a classical differential privacy algorithm, which uses the
same privacy level during the neural network training process.

• The APPDL algorithm [36] is an adaptive privacy preserving a deep learning algo-
rithm, which injects noise with a specific decay rate based on the Gaussian mechanism
into the gradient.

• The ADPPL framework [26] is an adaptive-noise-adding differential privacy algorithm,
which dynamically adjusts the privacy budget according to the neuron’s contribution
to the model output during training.

5.1. The Accuracy on MNIST Dataset

The MNIST dataset [37] consists of 70,000 handwritten digits, including 60,000 training
samples and 10,000 test samples, where each sample is a 28× 28-size gray-level image. The
architecture for MNIST uses two hidden layers with 512 and 256 neurons, respectively.
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Table 1 shows the accuracy of the EnADPP framework and the comparison methods on
the MNIST dataset. For the proposed framework, according to Table 1, we derive that the
accuracy of MNIST dataset exceeds 93%. When ε = 0.2, the accuracy is 93.03%, while when
ε = 8, the accuracy of the model reaches 95.89% and the difference is only 2.86%. When ε
is between 0.2 and 8, the accuracy will be steadily improved. In addition, for comparison
methods, when ε = 0.2, the pSGD algorithm achieves 62.33% accuracy, which is the lowest
accuracy among all methods. The APPDL algorithm achieves 91.52% accuracy, which
is the highest accuracy among comparison methods. ADPPL achieves 84.10% accuracy.
When ε = 8, it is still the pSGD algorithm that obtains the lowest accuracy, and there is no
significant difference between the accuracy obtained by APPDL and ADPPL.

It is easy to conclude from Table 1 that the accuracy of all methods increases with the
increase in the privacy budget ε. This is because the smaller the privacy budget ε, the more
noise is injected into the gradient, and the greater the protection of the model, which means
the greater the impact on the model performance.

Table 1. The accuracy of EnADPP framework and comparison methods on MNIST dataset.

ε = 0.2 ε = 0.4 ε = 0.8 ε = 1 ε = 2 ε = 4 ε = 8

pSGD 62.33% 70.91% 73.51% 75.79% 83.68% 89.08% 91.66%
APPDL 91.52% 91.89% 92.06% 92.29% 92.77% 93.09% 93.12%
ADPPL 84.10% 86.14% 88.12% 90.11% 92.22% 93.06% 93.24%
EnADPP 93.03% 94.04% 94.21% 94.95% 95.16% 95.68% 95.89%

5.2. The Accuracy on ADNI Dataset

The ADNI (Alzheimer’s Disease Neuroimaging Initiative) database collects data on
Alzheimer’s disease, including rs-fMRI and PET images, and genetics and cognitive tests.
In this study, 319 rs-fMRI images (including 154 normal controls and 165 cases of early mild
cognitive impairment) were selected for the experiment. The same data-processing flow
as in [38] is adopted. The sliding window strategy is used to extract dynamic functional
connectivity features from the data. The architecture for ADNI uses a Siamese network
with two subnetworks sharing parameters, each of which is composed of an auto encoder.

Table 2 shows the classification results of 2way 1shot based on an EnADPP framework
and comparison methods on the ANDI dataset. In Table 2, the accuracy of EnADPP
framework exceeds 60%, when ε = 0.2, the accuracy is 60.85%, and when ε = 8, the
accuracy is 66.50%. In the comparison methods, APPDL achieves the lowest accuracy
when ε = 0.2, and ADPPL achieves the highest accuracy when ε = 8. From Table 2, we
can drawn the same conclusion as with the experiments on the MNIST dataset: that the
accuracy increases with the increase in the privacy budget. This is in line with the general
expectations and similar conclusions that were reached in previous studies [26,27].

Table 2. The accuracy of EnADPP framework and comparison methods on ADNI dataset.

ε = 0.2 ε = 0.4 ε = 0.8 ε = 1 ε = 2 ε = 4 ε = 8

pSGD 58.11% 59.45% 59.91% 60.58% 61.51% 62.66% 63.86%
APPDL 58.10% 59.45% 60.81% 61.42% 62.16% 64.28% 65.15%
ADPPL 59.81% 60.79% 61.16% 62.50% 63.51% 64.86% 65.21%
EnADPP 60.85% 61.81% 62.16% 63.25% 64.86% 66.21% 66.50%

6. Discussion

From Tables 1 and 2, we can see that the adaptive-noise-adding methods achieve
better accuracy than the fixed-amount noise-adding method. For the MNIST dataset, our
approach has obvious advantages, especially when the privacy budget is small. When the
privacy budget is 0.2, our method achieves an accuracy of about 7% higher than ADPPL and
30% higher than pSGD. With the increase in the privacy budget, the accuracy gap between
the four methods becomes smaller. For the ADNI dataset, although the gap between



Mathematics 2023, 11, 330 8 of 11

accuracy has not changed much with the change of the privacy budget, our method is still
more advanced.

The pSGD injects the same amount of Gaussian noise protection into the gradient
during the training. As the number of training iterations increases, the noise superposition
amount of each neuron gradient increases. In fact, for some neurons, it is unnecessary to add
so much noise. Therefore, compared with the adaptive-noise-adding methods, the pSGD
algorithm achieves lower accuracy. Although APPDL dynamically adjusts the noise added
to the gradient during training through Gaussian noise with a specific decay rate, it adds the
same amount of noise to all gradients in each training iteration. The variance of Gaussian
noise decreases with the increase in training iterations, and the amount of noise added is
not dynamically adjusted according to the relationship between the neurons and the model
outcome. ADPPL uses the ratio of feature and outcome’s relevance to the total relevance
of the certain layer as the privacy budget ratio, while EnADPP uses the normalized value
of the neurons’ information gain as the privacy budget ratio. Figure 1 shows the privacy
budget ratio of the two methods given the correlation between 10 features and the model
output. It can be seen from Figure 1 that under the same relevance trend, compared with
the ADPPL framework, the privacy budget ratio in the EnADPP method has a greater range
of change. This means that when EnADPP adds noise adaptively, the amount of noise
added by different neuron gradients varies greatly, which helps to fully consider the impact
of different neurons on the model results when updating the model. Therefore, compared
with the comparison methods, the proposed EnADPP method achieves better accuracy.

1 2 3 4 5 6 7 8 9 10
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1

V
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Figure 1. Comparison of the privacy budget ratio between ADPPL and EnADPP.

Moreover, Table 3 shows the accuracy without differential privacy on the two datasets,
which is higher than that obtained by any differential privacy method. The accuracy of the
proposed EnADPP algorithm is closer to this result.

Table 3. The accuracy on MNIST and ADNI dataset without differential privacy.

MNIST ADNI

Accuracy 97.60% 67.57%
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7. Conclusions

A differential privacy mechanism with adaptive noise addition for deep neural net-
works is presented in this paper. This method adaptively adjusts the privacy budget
according to the importance of the neural network to the training system in the process
of training the neural network and allocates more of a privacy budget to the neurons that
contribute more to the model output. Rigorous experiments on well-known MNIST and
ADNI datasets using a fully connected neural network and Siamese network, respectively,
verify the practicability of our method. The experimental results show that our method is
superior to the comparison methods.In future work, we will explore more adaptive differ-
ential privacy algorithms to protect deep neural networks, such as an adaptive differential
privacy policy based on dynamic gradient clipping.
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