
Citation: Dučinskas, K.; Karaliutė,
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Abstract: This article is concerned with an original approach to generative classification of spatiotem-
poral areal (or lattice) data based on implementation of spatial weighting to Hidden Markov Models
(HMMs). In the framework of this approach data model at each areal unit is specified by conditionally
independent Gaussian observations and first-order Markov chain for labels and call it local HMM.
The proposed classification is based on modification of conventional HMM by the implementation
of spatially weighted estimators of local HMMs parameters. We focus on classification rules based
on Bayes discriminant function (BDF) with plugged in the spatially weighted parameter estimators
obtained from the labeled training sample. For each local HMM, the estimators of regression coef-
ficients and variances and two types of transition probabilities are used in two levels (higher and
lower) of spatial weighting. The average accuracy rate (ACC) and balanced accuracy rate (BAC),
computed from confusion matrices evaluated from a test sample, are used as performance measures
of classifiers. The proposed methodology is illustrated for simulated data and for real dataset, i.e.,
annual death rate data collected by the Institute of Hygiene of the Republic of Lithuania from the
60 municipalities in the period from 2001 to 2019. Critical comparison of proposed classifiers is done.
The experimental results showed that classifiers based on HMM with higher level of spatial weighting
in majority cases have advantage in spatial–temporal consistency and classification accuracy over
one with lower level of spatial weighting.

Keywords: Markov chain; transition probabilities; Bayes discriminant function; confusion matrix;
spatial weights

MSC: 62H30; 62C10; 62M05

1. Introduction

This article is concerned with a generative approach (see, e.g., [1]) to supervised
classification of spatiotemporal data collected at fixed areal units (sites, locations) and
specified by HMMs with continuous observations in each class (state) and traditionally
invoked conditional independence assumption for observation distribution and Markov
assumption for label transition probabilities (see, e.g., [2]). That is an extension to the basic
HMM when observation may be signified by continuous real value instead of discrete value.
We focus on the models that describes the process of randomly generating an unobservable
class label (state) sequences from the first-order Markov chain and generating an Gaussian
observation from each class to produce an observable sequence from single probabilistic
distribution [3,4]. Unlike the conventional conditional density HMM, the proposed HMMs
consider the temporal information of each areal unit obtain the most possible sequence
of label by the incorporating the spatial information through spatial weights. It should
be noted that HMM with spatial weighting have been successfully used in land-cover
classification [5]. Shekhar [6], Atkinson [7], Tang et al. [8] extended pixel-based geostatis-
tically weighted classifiers to object-based image classifications. Kadhem, Hewson, and
Kaimi [9] developed Poisson HMM to model spatial dependence in network. However,
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only the cases with geostatistical models of observation based on spatial covariances or
semivariograms are considered there.

Comprehensive literature survey on state-of-the-art advances in spatiotemporal data
analysis is proposed by Ali Hamdi et al. [10]. Systematic review of methods in spatial deep
learning is reported by Mishra et al. [11]. It should be noted that in the environmental
agricultural and other research, data are often collected across space and through time.
The spatiotemporal data are usually recorded at regular time intervals (time lags) and at
irregular stations (areas) in compact area (see, e.g., [12,13]). Modeling and prediction of
a such type of data has been studied by the numerous authors (see, e.g., [14–17]). Often
before analyzing spatiotemporal datasets, spatiotemporal discretization (or aggregation)
is applied. The discretization is useful to summarize information and help in extracting
features within a spatiotemporal range rather than measuring a single point [18]. Compared
with the general classification problem, spatial classification needs to consider the location
information of the data and the interaction among feature and label variables at every time
moment. There are currently a variety of ways to achieve the classification goal, but one of
the most effective one is to use the BDF. The generative approach to spatial classification is
studied by numerous authors (see, e.g., [19–22]). The approach to Bayesian classification of
Gaussian Markov Random Fields (GMRF) observation on the lattice has been developed
by Dreižienė and Dučinskas [23–25], and generative classification method for geostatistical
spatiotemporal Gaussian model is introduced by Karaliutė and Dučinskas [26,27].

Novelty of our approach lies in the incorporation of spatial weights in HMM parameter
estimation from labeled training sample and using plug-in BDF for classification (decoding)
of the test observation. This enables us to enrich and generalize the existed generative
classification methods of spatiotemporal data modeled by HMM.

Our approach is aimed at situation when BDF is implemented for data that are
collected at fixed areal units (or sites as they are also known) over the fixed sequential time
periods. At the beginning, for each local HMM, the maximum likelihood estimators of
regression coefficients and variances and two types of transition probabilities estimators
are derived from labeled training sample.

Furthermore, HMM parameter estimators in two spatial weighting levels are plugged
in BDF. Two levels of spatial weighting are specified as follows:

• lower level called as partial spatial weighting (PSW) indicates that parameter esti-
mators of Gaussian component are spatially weighted when transition probability
estimators remain unweighted;

• higher level called as complete spatial weighting (CSW) comprise the cases with
spatially weighted estimators of Gaussian parameters and transition probabilities.

Performance measure of the classifier are chosen to be the ACC and BAC evaluated
from the confusion matrices for a test sample. The proposed methodology is illustrated for
simulated data and for real dataset, i.e., annual death rate data collected by the Institute of
Hygiene of the Republic of Lithuania from the 60 municipalities in the period from 2001
to 2019. Presented critical comparison of proposed classifier by the introduced criteria
with existing ones can aid in the selection of proper classification rules of spatiotemporal
areal data.

The experimental results showed that proposed HMM in CSW level in majority
cases have advantage in classification accuracy over HMM in PCW level by both perfor-
mance measures.

In order to carry out the study, this paper is organized as follows. First, Section 2
introduces the HMM for spatial–temporal Gaussian data. Next, Section 3 introduces
Bayesian classification based on HMM, while Section 4 compares them by two criteria via
simulation. In Section 5, we offer a real application of our approach of classification of
annual death rate data collected by the Institute of Hygiene of the Republic of Lithuania
from the 60 municipalities in the period from 2001 to 2019. Finally, conclusions and
comments are made in the last section.
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2. HMM for Spatiotemporal Data

Formally, we identify the set of possible labels of classes (e.g., diseases, land cover labels,
etc.) as Ω = {0, 1} across n areal units over T years in the time series. Let S = {si ∈ D; i =
1, . . . , n} be a set of n nonoverlapping areal units (AUs). Assume that S is endowed with a
neighborhood system N = {Ni : i = 1, . . . , n}, where Ni denotes the collection of areas that
are neighbors of area si. Usually, the neighborhood Ni could be defined to be those areas
with which area si shares a common border. For each area unit si, data consist of feature
variable observation Z(si, t) (further simply observation) and label Y(si, t) ∈ Ω observed at
consecutive time periods at t = 1, 2, . . .. Let |Ni| denote number of elements in the set Ni.

Furthermore, use the following notation Y(si, t) = Y(i)
t , Z(si, t) = Z(i)

t , for i = 1, . . . , n
and t = 1, . . . , T + 1.

In this study, we assume that for l = 0, 1, the model of observation Z(i)
t conditional on

Y(i)
t = l is

Z(i)
t = µl(si; t) + ε

(i)
t ,

where µl(si; t) is deterministic spatiotemporal mean and errors ε
(i)
1 , . . . , ε

(i)
T , . . . are indepen-

dent normally distributed random variables with zero mean and finite variance σ2
i .

In what follows with an insignificant loss of generality, we focus on the linear inde-
pendent of time mean µl(si; t) =

(
β
(i)
l
)′x(s), where x(s) = (x1(s), . . . , xq(s))′ is the vector

of an explanatory variables and β
(i)
l is a q-dimensional vector of parameters, l = 0, 1. That

choice is motivated by considering only the cases when explanatory variables represent only the
spatial coordinates or their functions.

Then design matrix X(i) for observation vector Z(i) has the form

X(i) =


1− y(i)1 y(i)1

1− y(i)2 y(i)2
...

...
1− y(i)T y(i)T

⊗x′i where xi = x(si), i = 1, . . . , n.

Conditional distribution of Z(i) conditional on {Y(i) = y(i)} is T dimensional Gaussian, i.e.,(
Z(i)|y(i)

)
∼ N

(
X(i)β(i), σ2

i IT
)
,

where β(i) =

(
β
(i)
0

β
(i)
1

)
and IT is T × T identity matrix.

Denote by Z(i) = (Z(i)
1 , . . . , Z(i)

T ) and Y(i) = (Y(i)
1 , . . . , Y(i)

T ) the vectors of observations
and class labels associated ith AU over T temporal periods.

As it follows, denote the realized values of random variables Y(i)
t and Z(i)

t by y(i)t and

z(i)t , respectively.
It is known that the label sequence Y constitutes a first-order Markov chain, and the

observed sequence Z is only related to the corresponding class label sequence, assuming
that the label of the observation is only related to the last year’s label. Hence, dependence
between Y and Z constitutes a first-order HMM. Label variable Y for ith AU is specified by
transition probabilities matrix A(i) = (a(i)kl ) where a(i)kl = P(Y(i)

t+1 = l|Y(i)
t = k) for k, l = 0, 1.

An obvious extension to the basic HMM model is to allow continuous observation space
instead of a finite number of discrete symbols. In this model, the emission probabilities
matrix cannot be described as a simple matrix of point probabilities but rather as a complete
probability density function (PDF) over the continuous observation space for each state.
Therefore, the values emission probabilities must be replaced with a conditional PDF of Z(i)

t ,

given class label Y(i)
t = k, is denoted by pk(z

(i)
t ) = p(Z(i)

t = z(i)t |Y
(i)
t = k). The conditional

distributions can in principle be arbitrary but usually they are restricted to be simple
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parametric distributions, like Gaussians. The set of all possible values of parameters of
above conditional densities is denoted by B(i) = {β(i), σ2

i } .The last component of HMM

is called an initial label distribution over classes and is denoted by π(i) = (π
(i)
1 , π

(i)
2 ),

where π
(i)
k = P(Y(i)

t = k), k = 0, 1. Specify the HMM parameter set for ith AU by
λ(i) = (π(i), A(i), B(i)), i = 1, . . . , n.

The HMM allows us to talk about both observed events that we meet in the input and
hidden events that we think of as causal factors in our probabilistic model. A first-order
HMM instantiates two simplifying assumptions.

First, Markov Assumption: as with a first-order Markov chain, the probability of a
particular state depends only on the previous state: P(Y(i)

t+1|Y
(i)
1 , . . . , Y(i)

t ) = P(Y(i)
t+1|Y

(i)
t ).

Second, Output Independence: the probability of an output observation oi depends
only on the class that produced the observation qi and not on any other states or any other
observations: P(Z(i)

t |Z
(i)
1 , . . . , Z(i)

T , Y(i)
1 , . . . , Y(i)

T ) = P(Z(i)
t |Y

(i)
t ).

The goal of HMMs is to infer the most likely Y by giving the observed variables Z.
Then, under HMM independence assumption, the conditional distribution of Z(i)

T+1

given Z = z and Y(i)
T+1 = l, is Gaussian, i.e.,

(
Z(i)

T+1|z
(i), y(i), y(i)T+1 = l

)
∼ N

((
β(i))′xi, σ2

i
)
, l = 0, 1. (1)

Recall that for HMM, each label realization produces only a single observation. Thus,
the sequence of labels and the sequence of observations have the same length.

Given this one-to-one mapping and the Markov assumptions, for a particular hidden
state sequence y(i) and an observation sequence z(i), the conditional likelihood of the
observation sequence is

li
(
z(i)
∣∣y(i), β(i), σ2

i
)
=

T

∏
t=1

p
(
z(i)t
∣∣y(i)t

)
=

T

∏
t=1

n
(
z(i)t
∣∣(β(i)

y(i)t

)′xi, σ2
i
)

where n
(
z(i)t |

(
β
(i)

y(i)t

)′xi, σ2
i
)

denotes PDF of univariate Gaussian distribution N
((

β
(i)

y(i)t

)′xi, σ2
i
)
.

Given an λ(i) = (π(i), A(i), B(i)) and an observation z(i) and label y(i) sequences (i.e.,
labeled training sample is known), the likelihood Li = L(z(i), y(i), λ(i)) has the following

form Li = P(y(i))li(z(i)|y(i)) where P(y(i)) = P(Y(i)
1 = y(i)1 )

T−1
∏

t=1
P(Y(i)

t+1 = y(i)t+1|Y
(i)
t = y(i)t ).

Specify a matrix of spatial weights W = (wij : i, j = 1, . . . , n) with wij = 0 if sj /∈ Ni
and wij > 0 elswhere.

Define an augmented likelihood

L+
i
(
z(i)T+1, y(i)T+1, λ(i)) = L

(
z(i), z(i)T+1, y(i), y(i)T+1, λ(i)) = P

(
y(i), y(i)T+1

)
li
(
z(i), z(i)T+1|y

(i), y(i)T+1
)

(2)

where P(y(i), y(i)T+1) = P(Y(i)
1 = y(i)1 )

T
∏

t=1
P(Y(i)

t+1 = y(i)t+1|Y
(i)
t = y(i)t ) and li

(
z(i), z(i)T+1

∣∣y(i),
y(i)T+1

)
=

T+1
∏

t=1
p
(
z(i)t
∣∣y(i)t

)
.

Then, the criterion for Bayes classification rule is ŷ(i)T+1 = arg max
k=0,1

(L+
i (z

(i)
T+1, y(i)T+1 =

k, λ(i))).
In the HMM and machine learning context, this problem is called as decoding problem.

3. Bayesian Classification Based on HMM

Under the assumption that the HMM is completely specified given labeled training
sample

(
z(i), y(i)

)
, it is that known BDF minimizing the total probability of misclassification
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of Z(i)
T+1 is formed by the log-ratio of augmented conditional likelihoods of distributions

(see [28]) specified in Equation (2), that is,

WZ
(
z(i)T+1|y

(i)
T , λ(i)) = ln

L+
i
(
z(i)T+1, y(i)T+1 = 1, λ(i))

L+
i
(
z(i)T+1, y(i)T+1 = 0, λ(i)

) . (3)

So, BDF classifies the observation Z(i)
T+1 = z(i)T+1 in following way: class label takes

value 1 if WZ(z
(i)
T+1|y

(i)
T , λ(i)) ≥ 0, and 0 otherwise.

Definition 1. Probability of correct classification (PCC) incurred by WZ
(
z(i)T+1|y

(i)
T , λ(i)) given

y(i)T+1 = l is defined as

P(i)
l =

∫
H
(
(−1)lWZ(z

(i)
T+1|y

(i)
T , λ(i))

)
nl(z

(i)
T+1)dz(i)T+1

where H(.) denotes Heaviside step function, and nl(z
(i)
T+1) denotes the PDF of Gaussian distribution

N
((

β
(i)
l
)′xi, σ2

i
)
.

Lemma 1. Under the above HMM, the BDF defined in Equation (3) has the form

WZ(z
(i)
T+1|y

(i)
T , λ(i)) =

(
z(i)T+1 −

(β(i))′Fxi
2

)
(β(i))′Gxi/σ2

i + γ(i) (4)

with PCC
P(i)

l = Φ((−1)l+1∆(i)/2 + γ(i)/∆(i)) (5)

where F = (Iq, Iq) and G = (Iq,−Iq), ∆(i) =
∣∣(β(i))′Gxi/σi

∣∣ and γ(i) = ln
a(i)

y(i)T ,1

a(i)
y(i)T ,0

, Φ(.) is the

standard Gaussian distribution function.

Proof of Lemma 1. From Equations (1) and (2), we observe that

L+
i
(
z(i)T+1, y(i)T+1 = l, λ(i)) = P

(
y(i), y(i)T+1 = l

)
li
(
z(i), z(i)T+1|y

(i), y(i)T+1 = l
)

with P(y(i), y(i)T+1 = l) = P(Y(i)
1 = y(i)1 )

T−1
∏

t=1
P(Y(i)

t+1 = y(i)t+1|Y
(i)
t = y(i)t )P(Y(i)

t+1 = l|Y(i)
T =

y(i)T ) and li
(
z(i), z(i)T+1

∣∣y(i), y(i)T+1 = l
)
=

T
∏

t=1
p
(
z(i)t
∣∣y(i)t

)
p
(
z(i)T+1

∣∣y(i)t
)
, l = 0, 1.

Substituting these expressions directly in Equation (3), we obtain closed-form expres-
sion for BDF presented in Equation (4).

Under the assumptions described above and formula (4), it follows that given Y(i)
T+1 = l,

the conditional distribution of WZ(Z(i)
T+1|y

(i)
T , λ(i)) is Gaussian distribution with mean

(−1)l+1(∆(i))2/2 + γ(i) and variance (∆(i))2, l = 0, 1.
Consequently, using the properties of Gaussian distribution, we complete the proof of

Lemma 1.

So, it is obvious from Equation (5) that P(i)
l depends only the one label realization

of training sample, i.e., Y(i)
T = y(i)T . The PCC and its plug-in versions are one of the

natural performance measures to the BDF similar as the mean squared prediction error
(MSPE) for the universal kriging predictor (see [29]). MSPE and its plug-in versions are
usually used for spatial sampling design criterion for prediction (see [30]). These facts
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strengthen the motivation for the deriving an explicit expression of the PCC for any of
spatial classification procedures.

However, in practical applications, all statistical parameters β(i), σ2
i , a(i)

y(i)T,0

, a(i)
y(i)T,1

of

populations are rarely known.
Then, the estimators of unknown parameters β̂(i), σ̂2

i are derived by the maximum

likelihood (ML) method by maximizing li(z(i)|y(i)) and â(i)
y(i)T ,0

, â(i)
y(i)T ,1

by maximizing P(y(i)).

In classical HMM context, it is also called the learning problem.
Hence, we obtain the estimators of local HMM parameters:
ML estimator of regression parameters β̂(i) = ((X(i))′X(i))−1(X(i))′Z(i); and bias-

adjusted ML estimator of variance σ̂2
i = (Z(i) − X(i) β̂(i))′(Z(i) − X(i) β̂(i))/(T − 2q).

ML estimators of transition probabilities

â(i)00 =

T
∑

t=2
I(y(i)t−1 = 0)I(y(i)t = 0)

T
∑

t=2
I(y(i)t−1 = 0)

, â(i)01 =

T
∑

t=2
I(y(i)t−1 = 0)I(y(i)t = 1)

T
∑

t=2
I(y(i)t−1 = 0)

,

â(i)10 =

T
∑

t=2
I(y(i)t−1 = 1)I(y(i)t = 0)

T
∑

t=2
I(y(i)t−1 = 1)

, â(i)11 =

T
∑

t=2
I(y(i)t−1 = 1)I(y(i)t = 1)

T
∑

t=2
I(y(i)t−1 = 1)

,

where I(A) is the indicator of event A.
It should be noted that we do not care about initial label distributions π(i) = (π

(i)
1 , π

(i)
2 )

and consider it fixed, since it does not presented in BDF expression Equation (4).
In this study, we propose two types of the transition probability estimators for the ith AU:

(M1) â(i)
y(i)T ,1

= â(i)01 I(y(i)T = 0) + â(i)11 I(y(i)T = 1) and â(i)
y(i)T ,0

= â(i)00 I(y(i)T = 0) + â(i)10 I(y(i)T = 1)

(M2) â(i)
y(i)T ,1

= q(i) I(y(i)T = 0) + p(i) I(y(i)T = 1) and â(i)
y(i)T ,0

= p(i) I(y(i)T = 0) + q(i) I(y(i)T = 1)

where p(i) =

T
∑

t=2
I(y(i)t−1=y(i)t )

T−1 and q(i) = 1− p(i) =

T
∑

t=2
I(y(i)t−1 6=y(i)t )

T−1 denote label persistence
rate and change rate, respectively.

For greater interpretability, we impose the following popular for the areal data spatial weights

wij =


0, i f i = j
1, i f sj ∈ Ni
0, otherwise

and w∗ij =
wij

n
∑

k=1
wik

.

We propose the following spatial weighting procedures for local model parameter
estimators

β̃(i) =
( n

∑
j=1

w∗ij β̂
(j) + β̂(i))/2, σ̃2

i =
( n

∑
j=1

w∗ijσ̂
2
j + σ̂2

i
)
/2,

ã(i)
y(i)T ,1

=
( n

∑
j=1

w∗ij â
(j)

y(j)
T ,1

+ â(i)
y(i)T ,1

)
/2, ã(i)

y(i)T ,0
=
( n

∑
j=1

w∗ij â
(j)

y(j)
T ,0

+ â(i)
y(i)T ,0

)
/2.

Replacing parameters with their estimators for BDF, we introduce four plug-in BDFs (PBDF):

1. ŴZ(z
(i)
T+1) =

(
z(i)T+1 −

(β̃(i))′Fxi
2

)
((β̃(i))′Gxi)/σ̃2

i + ln
â(i)

y(i)T ,1

â(i)
y(i)T ,0

partial spatial weighting

level with inserted M1 type transition probability estimators and denote it by (PSW1);
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2. ŴZ(z
(i)
T+1) =

(
z(i)T+1 −

(β̃(i))′Fxi
2

)
((β̃(i))′Gxi)/σ̃2

i + ln
â(i)

y(i)T ,1

â(i)
y(i)T ,0

partial spatial weighting

level with inserted M2 type transition probability estimators and denote it by (PSW2);

3. ŴZ(z
(i)
T+1) =

(
z(i)T+1 −

(β̃(i))′Fxi
2

)
((β̃(i))′Gxi)/σ̃2

i + ln
ã(i)

y(i)T ,1

ã(i)
y(i)T ,0

complete spatial weighting

level with inserted M1 type transition probability estimators and denote it by (CSW1);

4. ŴZ(z
(i)
T+1) =

(
z(i)T+1 −

(β̃(i))′Fxi
2

)
((β̃(i))′Gxi)/σ̃2

i + ln
ã(i)

y(i)T ,1

ã(i)
y(i)T ,0

complete spatial weighting

level with inserted M2 type transition probability estimators and denote it by (CSW2).

They differ on the type and level of the incorporated spatiotemporal information.
Performance criteria of the generative classifier based on PBDF is evaluated by confu-

sion matrix formed for test data and that records the results of correctly and incorrectly
recognized test observations of each class.

That procedure is realized via partitioning the observed data into training and testing
sets. Then, classifier being designed on the training data and its accuracy being validated
on the test data. In this paper, our focus is on using T temporal observations for training
and the observations at time moment t = T + 1 are used for testing.

Label prediction in areal unit si at time moment t = T + 1 based on PBDF is given by
Ŷ(i)

T+1 = H(ŴZ(Z(i)
T+1)).

The form of the confusion matrix that will be applied for the assessment of the
proposed classifier performances is shown in Table 1.

Table 1. Confusion matrix for ith AU.

Ŷ(i)
T+1

Y(i)
T+1 0 1

0 m(i)
00 m(i)

01
1 m(i)

10 m(i)
11

where m(i)
kl = I(Y(i)

T+1 = k)I(Ŷ(i)
T+1 = l), for k, l = 0, 1.

Define nkl =
n
∑

i=1
m(i)

kl , for k, l = 0, 1.

Traditionally, the most commonly used empirical measure of classifier performance is called
accuracy rate that shows the percentage of correctly classified test data is given by the formula

ACC =
n00 + n11

n00 + n01 + n10 + n11
. (6)

However, in practice, situations with significant disbalance between the majority
and minority class examples frequently occur (see, e.g., [31–33]). Then, the evaluation of
the classifiers’ performance must be carried out using specific metrics to take the class
distribution into account. In this article, we also used other performance evaluation
measures based on confusion matrix usually called Balanced Accuracy (see, e.g., [31,34])
and is specified by the formula

BAC =
( n00

n00 + n01
+

n11

n10 + n11

)
/2. (7)

Below, we applied the Receiver Operator Characteristic (ROC) chart [35] that allows
to visualize the trade-off between sensitivity (true positive rate), i.e., TPR = n00

n00+n01
and
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1-specificity (false positive rate), i.e., FPR = n10
n10+n11

for any confusion matrix corresponding
to selected PBDF.

4. Simulation Study

To conduct the critical comparison of four proposed classifiers, we begin with some
simulation studies that based on spatial layout of n = 20 AUs distributed in S ∈ [0, 5]×
[0, 5]. Data collected in each locations followed the follows HMM with T = 50 and normally
distributed observations and q = 3 like first order trend surface model, i.e., the first
explanatory variable is constant equal 1, these second and third explanatory variables are x

and y coordinates. Define the imbalance ratio for training sample by IR =
T
∑

t=1
I(Y(i)

t = 1)/T

assuming that it is constant for all i = 1, . . . , n.
Spatial sampling set illustrated by the graph with 20 vertices is depicted in Figure 1.

The neighborhood system is specified by the graph edges.
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Figure 1. Spatial sampling set S20.

For all 20 AUs, spatially weighted estimates of Gaussian distribution parameters and
transition probabilities are presented in Table 2.

Conditional distribution of Y(i)
T+1 given Y(i)

T = 1 is Bernoully with parameter â(i)11 , i.e.,

(Y(i)
T+1|Y

(i)
T = 1) ∼ Be(â(i)11 ). Hence, it is obvious that (Y(i)

T+1|Y
(i)
T = 0) ∼ Be(â(i)00 ).

At first, we generate m = 100 simulation runs (replications) for test label by the Bernoulli
distribution described above and corresponding conditional Gaussian observation.

Furthermore, we compute performance measures ACC and BAC for each AUs and
present their spatially averaged values in Table 3.

As we can see from Table 3, classifiers based on HMM with CSW level of spatial
weighting in majority cases have an advantage over one with PSW level of spatial weighting
by ACC as well as BAC performance measures for various IR values.

Estimation method M1 has advantage against M2 for smaller values of IR = 0.1, 0.3, 0.4.
However, M2 ensures greater classification accuracy for IR = 0.6, 0.7, 0.9.
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Table 2. Spatially weighted estimators of the HMM parameters for 20 AUs IR = 0.7.

i
(

β̃
(i)
0
)′ (

β̃
(i)
1
)′

σ̃2
i ã(i)

y(i)
T ,0

: M1 ã(i)

y(i)
T ,0

: M2 ã(i)

y(i)
T ,1

: M1 ã(i)

y(i)
T ,1

: M2

1 −0.043, −0.133, −0.126 0.043, 0.133, 0.126 0.249 0.361 0.561 0.341 0.439
2 −0.035, −0.095, −0.128 0.044, 0.125, 0.164 0.323 0.167 0.684 0.200 0.316
3 −0.040, −0.103, −0.141 0.044, 0.117, 0.157 0.317 0.806 0.342 0.777 0.658
4 −0.015, −0.069, −0.065 0.044, 0.206, 0.194 0.320 0.369 0.663 0.241 0.337
5 −0.015, −0.069, −0.068 0.043, 0.205, 0.201 0.314 0.329 0.663 0.233 0.337
6 −0.099, −0.114, −0.262 0.008, 0.013, 0.021 0.318 0.665 0.469 0.635 0.531
7 −0.044, −0.122, −0.140 0.044, 0.121, 0.138 0.280 0.708 0.403 0.706 0.597
8 −0.015, −0.069, −0.066 0.044, 0.206, 0.197 0.317 0.651 0.337 0.763 0.663
9 −0.049, −0.024, −0.211 0.024, 0.012, 0.101 0.316 0.751 0.429 0.699 0.571

10 −0.142 −0.351, −0.067 −0.028, −0.061, −0.010 0.261 0.646 0.459 0.639 0.541
11 −0.165, −0.256, −0.296 −0.013, −0.014, −0.021 0.279 0.413 0.602 0.298 0.398
12 −0.119, −0.233, −0.232 0.015, 0.031, 0.030 0.331 0.672 0.429 0.692 0.571
13 −0.201, −0.405, −0.080 −0.092, −0.180, −0.037 0.324 0.726 0.480 0.633 0.520
14 −0.049, −0.024, −0.211 0.024, 0.012, 0.101 0.316 0.751 0.429 0.699 0.571
15 −0.263, −0.064, −0.466 −0.132, −0.033, −0.223 0.263 0.523 0.327 0.767 0.674
16 −0.171, −0.378, −0.073 −0.060, −0.120, −0.024 0.293 0.314 0.531 0.364 0.469
17 −0.142, −0.244, −0.264 0.001, 0.008, 0.005 0.305 0.630 0.413 0.697 0.587
18 −0.099, −0.114, −0.262 0.008, 0.013, 0.021 0.318 0.665 0.469 0.635 0.531
19 −0.561, −0.150, −0.466 −0.464, −0.125, −0.348 0.338 0.400 0.653 0.252 0.347
20 −0.412, −0.107, −0.466 −0.298, −0.079, −0.285 0.301 0.562 0.337 0.758 0.663

Table 3. Averaged performance of classifiers based on PBDF for simulated data.

IR PSW1 CSW1 PSW2 CSW2

0.1 ACC 0.8395 0.8850 0.5480 0.6125
BAC 0.8864 0.9241 0.6778 0.7075

0.3 ACC 0.8660 0.8875 0.8100 0.8235
BAC 0.8647 0.8823 0.8300 0.8450

0.4 ACC 0.7395 0.7525 0.7365 0.7455
BAC 0.7421 0.7568 0.7413 0.7519

0.5 ACC 0.8790 0.9240 0.8770 0.9220
BAC 0.8853 0.9278 0.8831 0.9261

0.6 ACC 0.7825 0.7945 0.8035 0.8260
BAC 0.7879 0.7938 0.8114 0.8283

0.7 ACC 0.9150 0.9175 0.9215 0.9255
BAC 0.9053 0.9095 0.9066 0.9137

0.9 ACC 0.8610 0.8585 0.9625 0.9655
BAC 0.7878 0.7864 0.8777 0.8891

5. Real Data Example

The numerical analysis of annual death rate data collected by the Institute of Hygiene
of the Republic of Lithuania from the 60 municipalities in the period from 2001 to 2019 is
carried out.

Crude death rate for each municipality measured in units per one hundred thousand
population is considered as variable Z. We consider two label variables: one is specified
by the threshold mortality index due to acute cardiovascular event (ACE) and other is
specified by the threshold mortality index due to diseases of the circulatory system (CSD).

Cases with index values less than threshold have label value equal 0 and have label
value equal 1. Here, we consider the case with constant mean, i.e., µl(s; t) = βl , with
x(s) = 1.
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Then, for i = 1, . . . , 60

X(i) =


1− y(i)1 y(i)1

1− y(i)2 y(i)2
...

...
1− y(i)T y(i)T

.

Numerical illustrations are performed on 60 areas in two dimensional areas that are
depicted in Figure 2.

Figure 2. Classified Lithuanian municipalities in 2018 (left) and 2019 (right). Yellow color areas
indicate municipalities with low level of mortality due to ACE (with label value 0) and red areas
indicates municipalities with high level of mortality due to ACE (with label value 1).

Data in the period from 2001 to 2018 (t = 1, . . . , 18) are used for training and remaining
data (period 2019) are used for testing. Hence, T = 18 and n = 60, i.e., we consider 18× 60
observations for training and 60 for testing. Here, IR values are calculated for testing data
by changing the thresholds in specification of the mortality levels.

The values of performance measures for the proposed classifiers specified in Equations (6) and
(7) are presented in Table 4.

Table 4. Performance measures of classifiers based on PBDF for real data.

IR PSW1 CSW1 PSW2 CSW2

ACE

0.2 ACC 0.7167 0.8333 0.9167 0.9500
BAC 0.8559 0.9153 0.9576 0.9746

0.3 ACC 0.6667 0.7833 0.8000 0.8667
BAC 0.8246 0.8860 0.8947 0.7719

0.4 ACC 0.6000 0.6833 0.7500 0.8333
BAC 0.6296 0.6759 0.7130 0.6852

0.5 ACC 0.6333 0.6500 0.7500 0.8333
BAC 0.6471 0.5654 0.6699 0.7190

CSD

0.2 ACC 0.6500 0.8167 0.7833 0.8500
BAC 0.5804 0.6696 0.6518 0.6875

0.3 ACC 0.7500 0.8167 0.8167 0.8167
BAC 0.7500 0.7857 0.6696 0.6696

0.4 ACC 0.6667 0.7833 0.8000 0.7667
BAC 0.6979 0.8021 0.7813 0.7604

0.5 ACC 0.6000 0.6167 0.7500 0.7000
BAC 0.6125 0.6375 0.7500 0.7000
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As it might be seen from Table 4, classifiers based on HMM with CSW level of spatial
weighting in majority cases have an advantage over one with PSW level of spatial weighting
by ACC as well BAC performance measures for various IR values. The similar trend is
detected for CSD disease case. Exceptions to this rule is depicted in the table by bold figures.

ROC plot of is presented in Figure 3 visualizes the classifier performances with
IR = 0.2 induced by different classifiers. Depicted points represent four considered classi-
fiers and a random classifier. It is easy to check that the area under the curve in the ROC
plot is equal the performance measure BAC.

As can be seen from Figure 3, the classifier CSW2 shows advantage against others
since has the largest area under the curve that is equal to 0.95 (see in Table 4).
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Figure 3. ROC plots for the problems with class label variables ACE with IR = 0.2.

6. Conclusions

In this paper, we developed the novel supervised generative approach to Bayesian
classification of areal Gaussian data based on HMM implementing spatial weighting in
several levels. A real data study has been conducted, and critical comparison of the
performance of the classifiers with decision threshold values induced by different spatial
autocorrelation indexes are performed.

The proposed methodology has several attractive features that make it compare
favorably against other approaches to generative supervised spatial classification based on
HMM.

First, the method is applicable to HMM with discrete and continuous observation on
regular and irregular areal units.

Second, the approach provides an easily interpretable methods of spatial weighting
for the local HMM parameters.

Third, proposed classification methodology can be easily specified in terms of undi-
rected and directed graphs.

The obtained results with simulated and real data showed that the spatial weighting
level significantly influenced the performance of proposed classifiers.

Based on the calculation results, the suggestions for the selection of transition proba-
bilities estimation method is presented.

It should be also noted that derived closed form PCC could be essentially used in
specifying theoretical values of model parameters.
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There are several reasons for further research. First, there is further scope for exploring
techniques supervising classification due to HMM of spatiotemporal Gaussian data to
multiclass case. Second, future research may also include implementation of the proposed
classification technique in the context of other continuous non-Gaussian models of obser-
vations. Third, in future research, it is reasonable to consider second-order Markov chain
model for labels instead of first-order Markov chain. That will enable us to incorporate
more information on stochastic temporal dependence.

Presented critical comparison of the performances of classifiers with different level of
incorporated spatial information and types of parameter estimators can aid in the selection
of proper classification rules of spatiotemporal areal data specified by HMM with Gaussian
or other continuous observations.
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The following abbreviations are used in this manuscript:

HMM Hidden Markov Model
BDF Bayes discriminant function
ACC Average accuracy rate
BAC Balanced accuracy rate
PSW Partial spatial weighting
CSW Complete spatial weighting
AU Areal unit
PDF Probability density function
PCC Probability of correct classification
MSPE Mean squared prediction error
ML Maximum likelihood
PBDF Plug-in Bayes discriminant function
ROC Receiver Operator Characteristic
ACE Acute cardiovascular event
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