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Abstract: We present a mathematical model based on ordinary differential equations to investigate
the spatially homogeneous state of tumor growth under virotherapy. The model emphasizes the
interaction among the tumor cells, the oncolytic viruses, and the host immune system that generates
both innate and adaptive immune responses. We conduct a rigorous equilibrium analysis and derive
threshold conditions that determine the growth or decay of the tumor under various scenarios.
Numerical simulation results verify our analytical predictions and provide additional insight into the
tumor growth dynamics.
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1. Introduction

Tumor virotherapy is a relatively new, yet propitious, strategy in treating cancer [1]. It
has shown promising results in preclinical tests and clinical trials for a number of tumor
types [2–5]. This therapy makes use of genetically engineered oncolytic viruses that are
specific to tumors. Once injected into a tumor, the viruses infect cancer cells, while leaving
healthy cells and tissues unharmed. Through the lysis of the infected cells, the viruses
replicate and spread within the tumor and continue infecting other cancer cells. There
are several distinct advantages of using virotherapy. First, the replication of oncolytic
viruses is highly tumor-selective, and, thus, is generally non-pathogenic to normal tissues.
Second, the success rate of viral infection is typically high, as viruses can utilize multiple
genetic means to attack tumor cells and cause cell lysis. Moreover, viruses can be genetically
manipulated to include additional features so as to achieve improved safety and efficacy [6].

A complication involved in the tumor oncolysis process is the response from the
host immune system. Once the viruses start attacking tumor cells, the innate immune
response is stimulated by the viruses and the infected tumor cells, which tends to limit
virus replication and spread, as well as eliminate infected cells. This anti-virus effect of
innate immunity has been well observed and documented [7–9]. Recent clinical studies,
however, revealed that through the lysis of infected cells, an inflammatory response is
induced with the presentation of tumor antigens, which leads to T-cell mediated adaptive
immunity against the tumor [6,10]. Thus, the interaction of oncolytic viruses and the
immune system contributes to the therapeutic efficacy in two opposite ways: a negative
contribution through the anti-virus innate immune response, and a positive contribution
through the anti-tumor adaptive immune response.

Ideally, the virotherapy aims to completely remove the tumor cells and the viruses;
in the end, though, it is unclear whether such a perfect outcome is realistic. Meanwhile,
challenges remain on how to effectively combine the oncolysis and the virus-mediated
immunity to ensure the success of the treatment, and how to strategically manipulate
the balance between anti-virus and anti-tumor immune responses to achieve the best
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outcome [1,6,10]. Theoretical investigations and quantitative analysis, particularly using
mathematical modeling, can improve our understanding of tumor virotherapy and provide
useful guidelines for clinical studies toward overcoming these challenges.

A number of mathematical models have been published on the study of virother-
apy and its impact on tumor growth. Wodarz [11] proposed a model based on ordinary
differential equations (ODEs), with two compartments representing the infected and unin-
fected tumor cell populations where each cell population is assumed to grow in a logistic
fashion. The model does not explicitly consider viral dynamics, and a main focus of the
work is to explore conditions required for maximum reduction of the tumor load. This
model was later extended to a more general formulation [12], and two distinct types of
dynamics (representing the success and failure of the treatment, respectively) were found,
depending on the spread rate of the viruses. Karev et al. [13] employed a similar model-
ing framework, but with an emphasis on tumor cell heterogeneity. Novozilov et al. [14]
incorporated a ratio-dependent functional response into the model of Wodarz [11], and
discussed several possible outcomes of oncolytic virus infection, including no effect on the
tumor, stabilization or reduction of the tumor load, and complete elimination of the tumor.
Tian [15] analyzed the interaction among the infected tumor cells, uninfected tumor cells,
and viruses, also using an ODE model, with a focus on the bifurcation study of the virus
replicability measured by the burst size. Wang et al. [16] added a nutrient compartment
to a model that includes normal cells, tumor cells, and viruses, and explicitly determined
the minimum viral dosage in order for the treatment to be effective. None of these ODE
models, however, considered the effects of immune responses and their contribution to the
efficacy of the therapy.

Meanwhile, virotherapy models based on partial differential equations (PDEs) have
also been used. For example, Wu et al. [17] employed a PDE model to compare the
evolution of a tumor under different initial conditions that resulted from three virus-
injection strategies. This model was later extended in [18] to incorporate a cytokine-based
immune response against the virus-infected tumor cells. In addition, Friedma et al. [19]
proposed a reaction-convection-diffusion system to investigate tumor virotherapy in the
presence of host innate immune response. Although the PDE models in [18,19] both added
a separate equation to represent the effects of the host immune response, they only included
the innate immunity and did not consider the adaptive immunity, leading to an incomplete
picture for the host immune system dynamics in the course of tumor virotherapy. In a
more recent study, Timalsina et al. [20] proposed a PDE modeling framework for tumor
virotherapy that incorporates both the innate and adaptive immune responses in the
description of the interaction among tumor cells, oncolytic viruses, and host immune
systems. Due to the complexity of their PDE system, however, the study in [20] was
primarily focused on numerical simulation under a variety of parameter settings, and no
mathematical analysis was conducted.

The present paper aims to improve our knowledge of the tumor growth dynamics
under virotherapy and the tumor–virus–immunity interaction involved in this process,
through a rigorous analysis of an ODE model closely related to the PDE model proposed
in [20]. Specifically, we are interested in better understanding the spatially homogeneous
state of tumor growth, where theory of differential equations and dynamical systems [21,22]
can be applied and a detailed equilibrium analysis can be conducted. The simplified ODE
model retains all the variables and the essential temporal dynamical features from the
original PDE system. Particularly, it remains as a moving boundary problem where the
tumor size changes with time, and the innate and adaptive immune responses are both
included. Using this ODE model, we will carefully investigate the complex interaction
among tumor cells, oncolytic viruses, and innate and adaptive host immune systems,
and derive threshold conditions to quantify the success and failure of the virotherapy.

The remainder of this paper proceeds as follows. In Section 2, we describe our
ODE model that depicts the spatially homogeneous state in the course of tumor growth
under virotherapy. In Section 3, we analyze the equilibria of the model and their stability
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properties, as well as their impact on the growth of the tumor. We present some numerical
simulation results in Section 4, and conclude the paper with some discussion in Section 5.

2. Model Formulation

As a starting point, we first present the PDE model proposed in [20] that describes
the interaction between the tumor cells, oncolytic viruses, and innate and adaptive host
immune responses. This model, formulated as a moving boundary problem, considers a
spherical tumor with radial symmetry and consists of the following equations

∂X
∂t

+
1
ρ2

∂

∂ρ
(ρ2UX) = λX− βXV − k2XZ2,

∂Y
∂t

+
1
ρ2

∂

∂ρ
(ρ2UY) = βXV − k1YZ1 − δY,

∂Z1

∂t
+

1
ρ2

∂

∂ρ
(ρ2UZ1) = s1YZ1 − c1Z1,

∂Z2

∂t
+

1
ρ2

∂

∂ρ
(ρ2UZ2) = s2YZ2 − c2Z2,

∂N
∂t

+
1
ρ2

∂

∂ρ
(ρ2UN) = k1YZ1 + k2XZ2 + δY− µN,

∂V
∂t
− D

ρ2
∂

∂ρ

(
ρ2 ∂V

∂ρ

)
= bδY− k0Z1V − γV,

1
ρ2

∂

∂ρ
(ρ2U) = λX + s1YZ1 + s2YZ2 − c1Z1 − c2Z2 − µN,

dR
dt

= U(R, t),

(1)

for t > 0 and 0 ≤ ρ ≤ R(t), where t denotes the time and ρ denotes the spatial distance
measured from the center of the tumor. The variables X(ρ, t), Y(ρ, t) and N(ρ, t) are the
numbers of normal (i.e., not yet infected), infected, and dead tumor cells, respectively;
Z1(ρ, t) and Z2(ρ, t) are the numbers of the innate and adaptive immune cells, respectively;
V(ρ, t) is the number of viruses, and R(t) denotes the moving boundary of the tumor. The
motion of all the cells is modeled as a convection process along the radial direction with
a velocity U(ρ, t), whereas the motion of the viruses (which are much smaller than cells)
is modeled as a diffusion process. Since the total cell density is approximately a constant
(≈106 cells/mm3) [19], with a normalization procedure, it can be assumed that

X + Y + Z1 + Z2 + N = 1; (2)

i.e., each of these variables represents a portion of the total density. In addition, all the
parameters involved in this model are described in Table 1.

We will focus on the spatially homogeneous state of tumor growth. To that end,
we assume

X = X(t) = density of uninfected tumor cells at time t,

Y = Y(t) = density of infected tumor cells at time t,

Z1 = Z1(t) = density of innate immune cells at time t,

Z2 = Z2(t) = density of adaptive immune cells at time t,

N = N(t) = density of dead tumor cells at time t,

V = V(t) = density of viruses at time t.

(3)

That is, all the cells and viruses are uniformly distributed over the spatial domain
0 ≤ ρ ≤ R(t) so that each of these density variables only depends on time. Meanwhile, we
retain the spatiotemporal dependence of the convective velocity field:

U = U(ρ, t) = velocity of cells at distance ρ and time t. (4)
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However, we remark that if we assume a spatially uniform velocity field U = U(t),
it would lead to a stationary tumor with a fixed boundary (i.e., dR

dt = 0), which is much
easier to analyze but is unrealistic in some sense. A detailed discussion of that scenario is
provided in the Appendix A. The spatiotemporal variation of U defined in Equation (4)
allows us to study a more realistic and complex tumor with a moving boundary.

With these assumptions, we can manipulate the convection terms in system (1). For ex-
ample, from the first equation of system (1) we have

1
ρ2

∂

∂ρ
(ρ2UX) = X

1
ρ2

∂

∂ρ
(ρ2U) = X f (X, Y, Z1, Z2), (5)

where

f (X, Y, Z1, Z2) = (λ + µ)X + (µ + s1Z1 + s2Z2)Y + (µ− c1)Z1 + (µ− c2)Z2 − µ. (6)

Equation (6) is obtained by adding up the first five equations in system (1) and using
the condition (2). Meanwhile, since V = V(t), we have

D
ρ2

∂

∂ρ

(
ρ2 ∂V

∂ρ

)
= 0;

i.e., the diffusion term in the virus equation vanishes. In addition, Equation (5) yields

∂

∂ρ
(ρ2U) = ρ2 f (X, Y, Z1, Z2).

Integrating both sides for ρ yields

U(ρ, t) =
ρ

3
f
(
X(t), Y(t), Z1(t), Z2(t)

)
, 0 ≤ ρ ≤ R. (7)

Table 1. Model parameters.

Symbol Description Unit

λ Proliferation rate of tumor cells h−1

β Infection rate of viruses mm3 h−1 virus−1

k1 Killing rate of innate immune response mm3 h−1 cell−1

k2 Killing rate of adaptive immune response mm3 h−1 cell−1

s1 Stimulation rate of innate immunity mm3 h−1 cell−1

s2 Stimulation rate of adaptive immunity mm3 h−1 cell−1

c1 Clearance rate of innate immune cells h−1

c2 Clearance rate of adaptive immune cells h−1

D Diffusion coefficient of viruses mm2 h−1

b Burst size of viruses virus cell−1

δ Lysis rate of infected tumor cell h−1

k0 Take-up rate of viruses by innate immunity mm3 h−1 cell−1

γ Clearance rate of viruses h−1

µ Removal rate of dead tumor cells h−1
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Thus, we obtain the following ODE system

dX
dt

= λX− βXV − k2XZ2 − X f (X, Y, Z1, Z2),

dY
dt

= βXV − k1YZ1 − δY−Y f (X, Y, Z1, Z2),

dZ1

dt
= s1YZ1 − c1Z1 − Z1 f (X, Y, Z1, Z2),

dZ2

dt
= s2YZ2 − c2Z2 − Z2 f (X, Y, Z1, Z2),

dV
dt

= bδY− k0Z1V − γV,

dR
dt

=
R
3

f (X, Y, Z1, Z2).

(8)

Note that we have dropped the equation for N in the system above. Substituting the
expression of f from Equation (6), we may rewrite the first five equations in system (8)
as follows:

dX
dt

= (λ + µ)X− (µ− c1)XZ1 − (µ + k2 − c2)XZ2

− (λ + µ)X2 − µXY− βXV − s1XYZ1 − s2XYZ2,
dY
dt

= βXV − (µ + k1 − c1)YZ1 − (µ− c2)YZ2

− (δ− µ)Y− (λ + µ)XY− µY2 − s1Y2Z1 − s2Y2Z2,
dZ1

dt
= (µ− c1)Z1 + (s1 − µ)YZ1 − (µ− c1)Z2

1 − (µ− c2)Z1Z2

− (λ + µ)XZ1 − s1YZ2
1 − s2YZ1Z2,

dZ2

dt
= (µ− c2)Z2 + (s2 − µ)YZ2 − (µ− c1)Z1Z2 − (µ− c2)Z2

2

− (λ + µ)XZ2 − s2YZ2
2 − s1YZ1Z2,

dV
dt

= bδY− k0Z1V − γV.

(9)

Meanwhile, the last equation in system (8) yields

R(t) = R(0) e
1
3
∫ t

0 f (X(τ),Y(τ),Z1(τ),Z2(τ))dt . (10)

In what follows, we will focus our attention on the analysis of the equlibria of sys-
tem (9); each equilibrium represents a steady state in the tumor virotherapy, where the
tumor would grow or decay at a constant rate. Ideally, we would hope that the virother-
apy can eliminate all the uninfected tumor cells (i.e., X) to ensure a successful outcome.
Practically, however, the uninfected tumor cells may or may not be eradicated, yet the
tumor could still be effectively controlled in the presence of some level of uninfected tumor
cells [19,20]. Thus, in this study we measure the success of the tumor virotherapy by the
(exponential) decay of the tumor radius, whose motion is described by Equation (10), at a
stable equilibrium. On the other hand, when an equilibrium is unstable, that implies such a
steady state cannot be sustained, or may not be reached at all.

3. Equilibrium Analysis

Let the unknowns of system (9) be ordered as (X, Y, Z1, Z2, V). Each density variable
is non-negative to be biologically meaningful. To facilitate our analysis, we introduce
the notations

λµ = λ + µ, λδ = λ + δ, λi = λ + ci, µi = µ− ci, δi = δ− ci, i = 1, 2. (11)



Mathematics 2023, 11, 360 6 of 20

We also assume that µ1 > 0, µ2 > 0 and λ2 > k2. These assumptions are consistent
with the published parameter values in the literature (see, e.g., [18,19]).

3.1. Trivial Equilibria

It is straightforward to observe that there are four simple boundary equilibria (or,
trivial equilibria):

M0 = (0, 0, 0, 0, 0), M1 = (1, 0, 0, 0, 0), M2 = (0, 0, 0, 1, 0), M3 = (0, 0, 1, 0, 0).

By computing the Jacobian matrices associated with these points, we obtain their
characteristic polynomials

P0(u) = (u− λµ)(u + δ− µ)(u− µ1)(u− µ2)(u + γ),

P1(u) = (u + λ1)(u + λ2)(u + λµ)(u2 + (λµ + λδ)u + γλδ − bβδ),

P2(u) = (u + k2 − λ2)(u + δ2)(u + c1 − c2)(u + µ2)(u + γ),

P3(u) = (u− λ1)(u + µ1)(u + k1 + δ1)(u + c2 − c1)(u + k0 + γ),

respectively. Let us define the threshold value of system (9) by

R0 =
bδβ

γλδ
. (12)

The threshold value R0, which is analogous to the basic reproductive number in
an infectious disease model, quantifies the capability that the oncolytic viruses can ef-
fectively invade the tumor. Specifically, Equation (12) expresses the threshold value as a
ratio of two factors which have opposite effects on the outcome of the virotherapy: the
‘positive-effect’ factor represented by the product of the viral reproduction rate and infec-
tion rate, and the ‘negative-effect’ factor represented by the virus removal rate and tumor
cell reproduction rate.

We then obtain that the equilibrium M1 is locally asymptotically stable if R0 < 1
and unstable if R0 > 1. Biologically, the point M1 represents a steady state indicating a
complete ‘failure’ of the tumor virotherapy; i.e., uninfected tumor cells occupy 100% of
the domain while all other cells and viruses are gone. Our observation here is that when
the viral infection/invasion capability is low (such that R0 < 1), the virotherapy would
most likely fail. In that scenario, we have f (X, Y, Z1, Z2) = λ at the stable equilibrium
M1, so that the tumor radius would exponentially grow at a constant rate λ/3 based on
Equation (10). On the other hand, as long as the threshold value is higher than unity, M1
becomes unstable which implies that such a state (of complete treatment failure) would
not be attained. Meanwhile, the other three equilibria M0, M2 and M3 are always unstable
as their characteristic polynomials each has at least one positive root. Each of these three
points represents an ‘ideal’ steady state of the tumor treatment which is free of tumor cells
and viruses. Our results show that the tumor growth cannot stabilize at these equilibria
regardless of the value of the threshold value, implying that, practically, such a perfect
treatment outcome may not be achieved.

3.2. Immunity-Free Equilibria

In addition to these four simple equilibria, system (9) possesses a number of equilib-
rium points which are more complex in nature. We proceed to first analyze those equilibria
that are free of immune cells, i.e., Z1 = Z2 = 0. We will distinguish two cases, depending
on the values of the lysis rate of the infected tumor cells (δ) and the removal rate of the
dead tumor cells (µ).

Case 1: δ > µ.
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It is easy to find that there exists a biologically feasible, immunity-free, equilibrium

I0 = (x0, y0, 0, 0, v0) =

(
(δ− µ)R0 + µ

R0(λδR0 − λ)
,

λµ(R0 − 1)
R0(λδR0 − λ)

, 0, 0,
λδλµ(R0 − 1)
β(λδR0 − λ)

)
,

if and only ifR0 > 1. The Jacobian matrix at I0 is

JI0 =


−λµx0 −µx0 −(µ1 + s1y0)x0 −(µ2 + k2 + s2y0)x0 −β x0

( bβδ
γ − λµ)y0 −µy0 − bβδx0

γ −(µ1 + k1 + s1y0)y0 −(µ2 + s2y0)y0 β x0

0 0 ξ1 0 0
0 0 0 ξ2 0
0 bδ −k0v0 0 −γ

,

where ξi = µi − λµx0 + (si − µ)y0, i = 1, 2. Hence, the characteristic polynomial of JI0 is

PI0(u) = (u− ξ1)(u− ξ2)(u3 + Au2 + Bu + C),

with

A = γ + λδR0x0 + λx0 +
µ

R0
> 0,

B = (γ + λδR0x0)

(
λx0 +

µ

R0

)
> 0,

C = γλµλδx0(R0 − 1) > 0.

Let w =
λµ

λδR0−λ , then w ∈ (0, λµ/δ) andR0 =
λw+λµ

λδw , x0 = w(λw+δ−µ)
λw+λµ

. Hence,

A = γ + δ− µ + 2δw,

B = δw(γ + δ− µ + δw),

C = γλµ

(
δ− µ− δ2w

λ
+

µλ2
δw

λ(λw + λµ)

)
.

Consider the following function

D(w) = A(w)B(w)− C(w), w ∈ (0, λµ/δ).

One can easily verify that (A(w)B(w))′′ > 0 and C′′(w) < 0, hence D′′(w) > 0.
In addition, since

D(0+) = γλµ(µ− δ) < 0 < A(λµ/δ−)B(λµ/δ−) = D(λµ/δ−),

there exists a w∗ ∈ (0, λµ/δ) such that D(w) < 0 for w ∈ (0, w∗) and D(w) > 0 for

w ∈ (w∗, λµ/δ). Hence, if we let r =
λw∗+λµ

λδw∗ > 1, then AB < C for R0 ∈ (r, ∞) and
AB > C for R0 ∈ (1, r). Thus, by Routh–Hurwitz stability criterion, each root of PI0(s)
has a negative real part if and only if R0 ∈ (1, r) and ξi < 0, i = 1, 2. Moreover, ξi < 0 is
equivalent to

µiλδR2
0 + ((si − δ)λµ − λµi)R0 − siλµ < 0.

Hence, it is easy to obtain that 1 < R0 < Ri, where

Ri =

√
((si − δ)λµ − λµi)2 + 4siµiλδλµ − ((si − δ)λµ − λµi)

2µiλδ
, i = 1, 2.
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Therefore, we conclude that I0 is locally asymptotically stable if 1 < R0 < min{r, R1, R2}
and unstable ifR0 > min{r, R1, R2}. At the point I0, direct calculation yields

f (X, Y, Z1, Z2) = λµx0 + µy0 − µ =
λµδ

λδR0 − λ
− µ.

Hence, the tumor radius will be exponentially increasing ifR0 < 1 + λδ
µλδ

, and decreas-

ing ifR0 > 1 + λδ
µλδ

.
The immunity-free equilibrium I0 represents a steady state where uninfected tumor

cells, infected tumor cells, and viruses co-exist, but both innate and adaptive immune cells
vanish. In particular, the density of the infected tumor cells is positive at I0, indicating
some degree of success for the viral invasion into the tumor. Effective control of the tumor,
however, depends on the stability of I0 and the value of f (X, Y, Z1, Z2) at that steady
state. Consequently, the threshold value has to be in a certain range, i.e., 1 + λδ

µλδ
< R0 <

min{r, R1, R2}, to ensure a successful outcome of the tumor virotherapy.

Case 2: δ < µ.

One can verify that the immunity-free equilibrium I0 exists if and only if 1 < R0 < µ
µ−δ .

Furthermore, C
(

w
(

µ
µ−δ

))
= 0 and thus D

(
w
(

µ
µ−δ

))
> 0, which implies µ

µ−δ < r. Hence,

I0 is locally asymptotically stable if 1 < R0 < min{ µ
µ−δ , R1, R2} and thereby the tumor

radius would decrease if 1 + λδ
µλδ

< R0 < min{ µ
µ−δ , R1, R2}.

When µ > δ, there is an additional immunity-free equilibrium in the form of

E0 =

(
0,

µ− δ

µ
, 0, 0,

bδ(µ− δ)

γµ

)
,

and −γ, δ − µ, δ1 +
(µ−δ)s1

µ , δ2 +
(µ−δ)s2

µ , and λδ

(
1− µ−δ

µ R0

)
are all eigenvalues of the

Jacobian at E0. Note that

δi +
(µ− δ)si

µ
< 0⇐⇒ Ri >

µ

µ− δ
.

Hence, E0 is locally asymptotically stable if min{R0, R1, R2} > µ
µ−δ . This additional

equilibrium represents a success of the tumor virotherapy, where only the infected tumor
cells and viruses co-exist while the uninfected tumor cells and immune cells all vanish.
At E0, it is straightforward to obtain f (X, Y, Z1, Z2) = −δ < 0, i.e., the tumor radius would
exponentially decrease to 0.

3.3. Single-Immunity Equilibria

Next, we explore the equilibria of system (9) where one of the immune components (Z1
and Z2) may be nonzero. If Z1 = 0 and XYZ2V 6= 0, we can solve the following equations

λ = βV + k2Z2 + f (X, Y, 0, Z2), (13)

βXV = δY + Y f (X, Y, 0, Z2), (14)

s2Y = c2 + f (X, Y, 0, Z2), (15)

bδY = γV. (16)
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Substitute V = bδ
γ Y from Equation (16) to obtain

X =
1

λδR0
(s2Y + δ2), (17)

Z2 =
λ2

k2
− λδR0 + s2

k2
Y, (18)

λµX + (s2Z2 − s2 + µ)Y + µ2(Z2 − 1) = 0. (19)

Substituting Equations (17) and (18) into Equation (19), we obtain a quadratic equation

g(Y) := A2Y2 + B2Y + C2 = 0,

where

A2 =− s2

k2
(λδR0 + s2) < 0,

B2 =µ +
(λ2 − k2)s2

k2
+

s2λµ

λδR0
− µ2

k2
(λδR0 + s2),

C2 =
δ2λµ

λδR0
+

(λ2 − k2)µ2

k2
> 0.

Since A2C2 < 0, then g(Y) = 0 has a unique positive solution

y2 =
B2 +

√
B2

2 − 4A2C2

−2A2
.

In addition, x2 = X(y2) > 0, v2 = V(y2) > 0 since y2 > 0, and

z2 = Z2(y2) > 0⇐⇒y2 <
λ2

λδR0 + s2

⇐⇒B2 +
√

B2
1 − 4A2C2 <

2s2λ2

k2

⇐⇒− A2C2 <
λ2s2

k2

(
λ2s2

k2
− B2

)
⇐⇒µ2λδR2

0 + ((s2 − δ)λµ − λµ2)R0 − s2λµ > 0

⇐⇒R0 > R2 .

Hence, there exists a unique innate-immunity-free equilibrium

I2 = (x2, y2, 0, z2, v2)

if and only ifR0 > R2.
Similarly, if Z2 = 0 and XYZ1V 6= 0, then

λ = βV + f (X, Y, Z1, 0), (20)

βXV = Y(k1Z1 + δ + f (X, Y, Z1, 0)), (21)

s1Y = c1 + f (X, Y, Z1, 0), (22)

bδY = V(k0Z1 + γ). (23)
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Solve X and Y as functions of Z1,

Y(Z1) =
λ1(k0Z1 + γ)

s1(k0Z1 + γ) + γλδR0
, (24)

X(Z1) =
(s1Y(Z1) + k1Z1 + δ1)(k0Z1 + γ)

γλδR0
, (25)

λµX + (Z1 − 1)(s1 + µ1) + µY = 0. (26)

Let

h(Z1) = λµX(Z1) + (Z1 − 1)(s1Y(Z1) + µ1) + µY(Z1), Z1 ∈ [0, 1].

One can verify that Y′(Z1) > 0, Y′′(Z1) =
−2k0s1Y′(Z1)

s1(k0Z1+γ)+γλδR0
, and thereby

h′′(Z1) = λµX′′(Z1) + s1(2Y′(Z1) + (Z1 − 1)Y′′(Z1)) + µY′′(Z1)

>
2k0s1λµY′(Z1)

s1(k0Z1 + γ) + γλδR0
+

2s1Y′(Z1)(s1γ + γλδR0 + k0(s1 − µ))

s1(k0Z1 + γ) + γλδR0

=
2s1Y′(Z1)(s1γ + γλδR0 + k0(s1 + λ))

s1(k0Z1 + γ) + γλδR0

> 0.

Since h(1) = λµX(1) + µY(1) > 0, then h(Z1) = 0 has a unique soultion z1 ∈ (0, 1) if
h(0) < 0; i.e.,

λµX(0)− (s1Y(0) + µ1) + µY(0) < 0

⇐⇒
λµ

λδR0
(s1Y(0) + δ1)− (s1 − µ)Y(0)− µ1 < 0

⇐⇒
(

s1λµ

λδR0
− s1 + µ

)
λ1

s1 + λδR0
+

δ1λµ

λδR0
− µ1 < 0

⇐⇒− µ1λδR2
0 − ((s1 − δ)λµ − λµ1)R0 + s1λµ < 0

⇐⇒R0 > R1.

Thus, ifR0 > R1, system (8) has a unique adaptive-immunity-free equilibrium

I1 = (x1, y1, z1, 0, v1).

Each of the two equilibrium points I1 and I2 represents a tumor steady state where
uninfected tumor cells, infected tumor cells, viruses, and one type (either innate or adaptive)
of immune cells co-exist. Through direct calculation, we find f (X, Y, Z1, Z2) = siyi − ci at
Ii, for i = 1, 2. Hence, the tumor would grow if siyi − ci > 0 and decay if siyi − ci < 0 at
the state Ii (i = 1, 2).

3.4. Dual-Immunity Equilibria

Lastly, if both immune components are nonzero at an equilibrium, Z1Z2 6= 0, then
Y = c1−c2

s1−s2
:= y∗. Hence, there exists an equilibrium such that Z1Z2 6= 0 only if c1−c2

s1−s2
∈ (0, 1);

i.e.,
(c1 − c2)(s1 − s2) > 0 and |c1 − c2| < |s1 − s2|.

Let
f0 = s1y∗ − c1 = s2y∗ − c2 =

s2c1 − s1c2

s1 − s2
. (27)

Then we can show that only two equilibrium points can possibly exist under this
setting: one which is free of uninfected tumor cells when f0 + δ < 0, and the other whose
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components are all positive (an interior equilibrium) when f0 + δ ≥ 0. We discuss these
two cases separately as follows.

Case (i): f0 + δ < 0.

Through some algebraic manipulation, one can obtain that the first such equilibrium
must take the form

EX =

(
0, y∗,

− f0 − δ

k1
, 1 +

f0 + δ

k1
− µy∗

f0 + µ
,

k1bδy∗

k1γ− k0( f0 + δ)

)
.

The equilibrium EX exists if and only if

( f0 + µ)( f0 + δ + k1) > k1µy∗.

This equilibrium represents another steady state of successful tumor virotherapy,
where all normal (i.e., uninfected) tumor cells are eliminated. In fact, at EX we can easily
calculate f (X, Y, Z1, Z2) = f0 < −δ < 0, which indicates that the tumor radius would
exponentially decrease toward 0.

Case (ii): f0 + δ ≥ 0.

On the other hand, to find the interior equilibrium, we solve the following equations

λ = βV + k2Z2 + f (X, Y, Z1, Z2), (28)

βXV = Y(k1Z1 + δ + f (X, Y, Z1, Z2)), (29)

s1Y = c1 + f (X, Y, Z1, Z2), (30)

s2Y = c2 + f (X, Y, Z1, Z2), (31)

bδY = V(k0Z1 + γ), (32)

and obtain

Y = y∗, (33)

V(Z1) =
bδy∗

k0Z1 + γ
, (34)

X(Z1) =
(k0Z1 + γ)(k1Z1 + f0 + δ)

γλδR0
, (35)

Z2 =
1
k2

(
λ− f0 −

γλδR0y∗

k0Z1 + γ

)
:= ψ1(Z1), (36)

Z2 = 1− Z1 −
λµX(Z1) + µy∗

f0 + µ
:= ψ2(Z1). (37)

Let ψ(Z1) = ψ1(Z1)− ψ2(Z1), then the interior equilibrium is determined by the root
of ψ(Z1) = 0, Z1 ∈ (0, 1). Note that ψ(Z1) is an increasing function, hence, there is a
unique root z∗1 ∈ (0, 1) if and only if ψ(0) < 0 < ψ(1); i.e.,

y∗λδR2
0 +

(
f0 − λ + k2 −

k2µy∗

f0 + µ

)
R0 −

k2λµ( f0 + δ)

λδ( f0 + µ)
> 0

and
γλδy∗R2

0
k0 + γ

+

(
f0 − λ− k2µy∗

f0 + µ

)
R0 −

k2λµ(k0 + γ)(k1 + f0 + δ)

γλδ( f0 + µ)
< 0,

These yield
R3 < R0 < R4,
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where

R3 =

√(
f0 − λ + k2 − k2µy∗

f0+µ

)2
+

4y∗k2λµ( f0+δ)
f0+µ −

(
f0 − λ + k2 − k2µy∗

f0+µ

)
2y∗λδ

,

R4 =

√(
f0 − λ− k2µy∗

f0+µ

)2
+

4y∗k2λµ(k1+ f0+δ)
f0+µ −

(
f0 − λ− k2µy∗

f0+µ

)
2γλδy∗
k0+γ

.

For the existence of an interior equilibrium in the form of

E∗ = (x∗, y∗, z∗1 , z∗2 , v∗)

with all positive components, it clearly only requires z∗2 > 0; i.e.,R0 <
(λ− f0)(k0z∗1+γ)

γλδy∗ based
on Equation (36). Since z∗1 > 0, the following condition

R3 < R0 < min
{

λ− f0

λδy∗
, R4

}
is sufficient to ensure the existence of E∗ where all the tumor cells (uninfected and infected),
immune cells, and viruses co-exist and balance each other. If E∗ is stable, the success of the
tumor treatment at this steady state also depends on the value of f0 defined in Equation (27):
the tumor grows if f0 > 0 and decays if f0 < 0.

4. Numerical Results

We now conduct numerical simulation to verify our analytical results presented in
Section 3. Meanwhile, since the stabilities of several equilibria (such as I1, I2, EX and E∗) are
challenging to analyze mathematically, our numerical findings will provide useful insight
into the system dynamics near these equilibrium points.

The definition and units of all the model parameters are listed in Table 1. We first
conduct a numerical simulation using a set of baseline values for these parameters from
the literature [19,20], where such parameters have been fitted to experimental data. The
simulation results are presented in Figure 1, with the left panel showing the evolution
of the density variables (X, Y, Z1, Z2, V) and the right panels showing the evolution of
the tumor radius R. The parameter values are given in the caption. We observe that
shortly after the start of the therapy (i.e., t = 0), the tumor radius stops growing and
even decreases slightly, indicating that the virotherapy is taking effect. This period lasts
about 1.5–2 days, after which the oncolytic virus loses its effectiveness and the tumor starts
to grow exponentially. Correspondingly, the density of the uninfected tumor cells first
decreases, and then increases to and stabilizes at a level close to 100%, while the density of
the viruses decreases to a level near 0 after about 1.5 days. This pattern of tumor evolution
is qualitatively consistent with the experimental observations [8,20].

Next, we vary some of these parameters within their biologically feasible ranges to
explore the rich dynamics of tumor growth under different settings that represent a range
of possible treatment scenarios. For each figure set presented below, the left panel shows
the time evolution of the density variables and the right panel depicts the change of the
tumor radius with respect to time. The parameter values are specified for each set of results
(see the caption of each figure).

Regarding the trivial equilibria studied in Section 3.1, Figure 2 demonstrates that M1
is locally asymptotically stable whenR0 < 1. In particular, note that the percentage of the
uninfected tumor cells (X) is 100% at this steady state. Correspondingly, the tumor radius
R(t) is exponentially increasing (in a hypothetic way) with a constant rate once the tumor
growth stabilizes at the equilibrium M1.
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For the immunity-free equilibria, Figures 3–6 provide numerical verification of the ana-
lytical predictions in Section 3.2. Figures 3 and 4 show that I0 is locally asymptotically stable
when δ > µ and 1 < R0 < min{r, R1, R2}. At this stable equilibrium, the tumor would
grow ifR0 < 1 + λδ

µλδ
; this is illustrated in Figure 3 whereR0 = 1.11 < 1 + λδ

µλδ
= 1.67. On

the other hand, the tumor would decay if R0 > 1 + λδ
µλδ

, as illustrated in Figure 4 where

R0 = 3.18 > 1 + λδ
µλδ

= 2.52. Figures 5 and 6 illustrate the dynamics associated with
I0 and E0 when µ > δ. Figure 5 shows that I0 is locally asymptotically stable and the
tumor radius decreases to 0 when 1 + λδ

µλδ
= 1.25 < R0 = 1.50 < µ

µ−δ = 1.75. Note also
that the percentage of the uninfected tumor cells is pretty low (10%) at this steady state.
Figure 6 shows that E0 is locally asymptotically stable when R0 > µ

µ−δ , and in this case,
f (X, Y, Z1, Z2) = −δ, thereby the tumor radius is exponentially decreasing to 0.

Concerning the single-immunity equilibria analyzed in Section 3.3, Figures 7 and 8
depict the local stabilities of I1 and I2, respectively. At the equilibrium point Ii, the tumor
growth rate is determined by f (X, Y, Z1, Z2) = siyi − ci for i = 1, 2. With the parameter
setting in Figure 7, s1y1 − c1 = 2 > 0, and with that in Figure 8, s2y2 − c2 = 1 > 0.
Thus, the tumor radius is exponentially increasing in each case. We note that the levels
of the uninfected tumor cells remain very high (more than 70%) for both steady states.
In contrast, Figure 9 shows that at the equilibrium I2 the tumor radius is decreasing to 0,
where s2y2 − c2 = −0.3 < 0 and where the uninfected tumor cells are only about 35%.

Regarding the dual-immunity equilibria investigated in Section 3.4, Figure 10 illus-
trates that when the equilibrium EX exists and is stable, the tumor radius R(t) at that state
will decay and approach 0, where f (X, Y, Z1, Z2) = f0 < −δ < 0. In addition, if there is a
stable interior equilibrium E∗, then the tumor radius at E∗ would also be decreasing to 0 if
f0 < 0. This is verified in Figure 11, where −δ ≤ f0 = −0.18 < 0.

0 1 2 3 4 5 6 7 8 9 10

days

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Uninfected tumor cells

Infected tumor cells

Innate immune cells

Adaptive immune cells

Viruses

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

days

2

4

6

8

10

12

14

16

18

tu
m

o
r 

ra
d
iu

s

Figure 1. Simulation results for the base scenario. The values of the the parameters are: λ = 2,
β = 3.5, k1 = 2, k2 = 2, s1 = 56, s2 = 56, c1 = 2, c2 = 2, δ = 5.6, k0 = 1, γ = 2.5, µ = 2.1, b = 1.
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Figure 2. The equilibrium M1 = (1, 0, 0, 0, 0) is asymptotically stable and the tumor radius is
exponentially increasing when R0 = 0.93 < 1. The values of the the parameters are: λ = 2,
β = 3.5, k1 = 1, k2 = 2, s1 = 60, s2 = 20, c1 = 2, c2 = 1, δ = 10, k0 = 1.5, γ = 2.5, µ = 2.5, b = 0.8.
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Figure 3. The equilibrium I0 = (0.86, 0.04, 0, 0, 0.15) is asymptotically stable and the tumor radius
is exponentially increasing when δ > µ and R0 = 1.11 < min{r = 6.05, R1 = 1.17, R2 = 1.36}.
The values of the parameters are: λ = 2, β = 3.5, k1 = 1, k2 = 2, s1 = 60, s2 = 20, c1 = 2, c2 = 1,
δ = 10, k0 = 1.5, γ = 2.5, µ = 2.5, b = 0.95.
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Figure 4. The equilibrium I0 = (0.28, 0.03, 0, 0, 0.65) is asymptotically stable and the tumor radius
is exponentially decreasing when δ > µ and R0 = 3.18 < min{r = 6.05, R1 = 4.42, R2 = 3.60}.
The values of the parameters are: λ = 2, β = 3.5, k1 = 1, k2 = 2, s1 = 22, s2 = 21, c1 = 1.1, c2 = 1,
δ = 20, k0 = 1.5, γ = 2.5, µ = 1.2, b = 2.5.
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Figure 5. The equilibrium I0 = (0.10, 0.56, 0, 0, 0.84) is asymptotically stable and the tumor radius is
exponentially decreasing when δ < µ and 1 < R0 = 1.50 < min{ µ

µ−δ = 1.75, R1 = 2.06, R2 = 1.85}.
The values of the parameters are: λ = 2, β = 3.5, k1 = 1, k2 = 2, s1 = 2, s2 = 1.5, c1 = 3, c2 = 2.5,
δ = 1.5, k0 = 1.5, γ = 2.5, µ = 3.5, b = 2.5.
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Figure 6. The equilibrium E0 = (0, 0.57, 0, 0, 1.20) is asymptotically stable and the tumor radius is
exponentially decreasing when δ < µ and min{R0 = 2.10, R1 = 2.06, R2 = 1.85} > µ

µ−δ = 1.75. The
values of the parameters are: λ = 2, β = 3.5, k1 = 1, k2 = 2, s1 = 2, s2 = 1.5, c1 = 3, c2 = 2.5,
δ = 1.5, k0 = 1.5, γ = 2.5, µ = 3.5, b = 3.5.
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Figure 7. The equilibrium I1 = (0.75, 0.05, 0.05, 0, 0.23) is asymptotically stable and the tumor
radius is exponentially increasing when R0 = 1.28 > R1 = 1.12. The values of the parameters are:
λ = 2, β = 3.5, k1 = 1, k2 = 2, s1 = 80, s2 = 20, c1 = 2, c2 = 1, δ = 10, k0 = 1.5, γ = 2.5,
µ = 2.5, b = 1.1.
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Figure 8. The equilibrium I2 = (0.73, 0.04, 0, 0.08, 0.19) is asymptotically stable and the tumor
radius is exponentially increasing when R0 = 1.28 > R2 = 1.14. The values of the parameters are:
λ = 2, β = 3.5, k1 = 1, k2 = 2, s1 = 60, s2 = 50, c1 = 2, c2 = 1, δ = 10, k0 = 1.5, γ = 2.5,
µ = 2.5, b = 1.1.
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Figure 9. The equilibrium I2 = (0.35, 0.08, 0, 0.21, 0.55) is asymptotically stable and the tumor radius
is exponentially decreasing when R0 = 2.33 > R2 = 1.67. The values of the parameters are:
λ = 2, β = 3.5, k1 = 1, k2 = 2, s1 = 20, s2 = 10, c1 = 2, c2 = 1, δ = 10, k0 = 1.5, γ = 2.5,
µ = 2.5, b = 2.
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Figure 10. The equilibrium EX = (0, 0.03, 0.5, 0.42, 0.03) is asymptotically stable and the tumor radius
is exponentially decreasing whenR0 = 1.2. The values of the parameters are: λ = 2, β = 3.5, k1 = 1,
k2 = 9.3, s1 = 30, s2 = 15, c1 = 3, c2 = 2.5, δ = 1.5, k0 = 1.5, γ = 2.5, µ = 2.5, b = 2.
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Figure 11. The equilibrium E∗ = (0.38, 0.09, 0.1, 0.082, 0.57) is asymptotically stable and the tumor
radius is exponentially decreasing when R3 = 2.05 < R0 = 2.24 < min{ λ− f0

λδy∗ = 2.4, R4 = 5.84}. The
values of the parameters are: λ = 2, β = 3.5, k1 = 1, k2 = 9.3, s1 = 9, s2 = 20, c1 = 1, c2 = 2,
δ = 8, k0 = 1.5, γ = 2.5, µ = 2.5, b = 2.

5. Discussion

We have presented an ODE model to describe the spatially homogeneous state of
tumor growth under virotherapy. This model, derived and simplified from the PDE
system (1), enables us to conduct a detailed analysis on the time evolution of the tumor
radius and the various equilibrium points, their stability properties, and their impact on
tumor growth.
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Our model describes the process of tumor growth as a moving boundary problem. The
threshold valueR0 introduced in our analysis represents the capability that the oncolytic
viruses can effectively invade the tumor. When R0 < 1, for example, the stability of the
equilibrium M1 and the exponential increase of the tumor radius at M1 indicate a failure of
the tumor treatment due to the insufficient invasion capability of the viruses. Consequently,
R0 > 1 provides a necessary condition for effective viral invasion, though the eventual
outcome of the tumor therapy would be determined by the specific dynamical properties
at an equilibrium and the associated tumor growth rate. WhenR0 is above unity, both the
number of the equilibrium points and the complexity of the dynamics increase. In general,
each equilibrium represents a steady state, and the tumor growth dynamics near such a
steady state are shaped by the interaction among the uninfected and infected tumor cells,
the innate and adaptive immune cells, and the viruses. Although the dynamical behaviors
for some of the equilibria (I1, I2, EX and E∗) have not been fully resolved analytically, our
numerical simulation results provide helpful insight into their stability and connection to
the growth rate of the tumor.

Our results show that the threshold valueR0 can be used to as an indicator regarding
the chance of success for tumor virotherapy. The value ofR0 can be modified by genetically
manipulating the viruses; for example, increasing the burst size b (which leads to a larger
R0) is an effective strategy to improve the efficacy of the virotherapy [19]. From the
modeling perspective, the higher R0 is, the better outcome the therapy might achieve.
From the practical point of view, however, it is not possible to increaseR0 in an arbitrary
manner. Meanwhile, high value of R0 might come at the price of some side effects of
the tumor treatment, such as harming normal body tissues surrounding the tumor [19].
Our analysis and simulation results show that the virotherapy can achieve a success for
relatively lowR0 (for example, between 1 and 2), as long as we can push the solution orbit
into the basin of attraction for one of those stable equilibrium points where the associated
tumor growth rate is negative. These findings could provide useful guidelines for the
design of practical virotherapy protocols to improve the rate of success for tumor treatment.

It is known that some tumors (such as melanoma, kidney cancer, and lung cancer) are
likely to trigger a strong adaptive immune response and are commonly referred to as “hot
tumors”, while some other tumors (such as glioblastoma, prostate cancer, and breast cancer)
are able to suppress the adaptive immune response and are commonly referred to as “cold
tumors”. Our model could offer useful insight into the treatment of these two types of
tumors. In particular, the parameter k2 in our model measures the rate of fighting cancerous
cells due to the adaptive immune response. Our results suggests that an increased value
of k2 could improve the performance of the tumor therapy, as shown in Figures 10 and 11
where the tumor radius quickly decays and approaches 0. This parameter represents the
T-cell infiltration rate in practical tumor treatment. In fact, many therapeutic strategies have
been proposed to increase the T-cell infiltration rate so as to possibly turn a cold tumor into
a hot tumor [23].

Our model can be naturally extended to include other approaches for tumor treatment,
such as chemotherapy and radiation therapy. The combination of these different treatment
options could potentially achieve a better performance than using a single therapy, and the
mathematical model could help to quantify and predict the treatment outcome. In addition,
the current model does not take into account potential mutations of the oncolytic viruses.
This could be an interesting direction for our future modeling effort.

Tumor growth is a highly complex process that involves rich temporal and spatial
dynamics. This paper is focused on the temporal growth dynamics of the tumor and related
equilibrium analysis, without considering the spatial heterogeneity. It may be important to
mathematically investigate the spatial heterogeneity of tumor growth in some situations,
and a few quantitative studies have been performed in this direction (see, e.g., [24,25]).
These models are generally simpler than the PDE model (1), though their analytical tools
might be generalized to handle more complex tumor models such as (1).
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Appendix A. Homogeneous State with a Fixed Boundary

With the assumption in (3), if we additionally assume that the velocity field is spatially
uniform; i.e., U = U(t), then we have

U(t)
∂

∂ρ
(ρ2) = ρ2 f

(
X(t), Y(t), Z1(t), Z2(t)

)
.

This yields U(t) ≡ 0 and f (X, Y, Z1, Z2) ≡ 0. Consequently, we obtain dR
dt = 0, and the

tumor would be stationary with a fixed boundary under this setting.
As a result, we obtain the following ODE system

dX
dt

= λX− βXV − k2XZ2,

dY
dt

= βXV − k1YZ1 − δY,

dZ1

dt
= s1YZ1 − c1Z1,

dZ2

dt
= s2YZ2 − c2Z2,

dV
dt

= bδY− k0Z1V − γV.

(A1)

To simplify the notation, let us define

R0 =
γλ

bβδ
. (A2)

Clearly, the system (A1) has a trivial equilibrium Q0 = (0, 0, 0, 0, 0) and an immunity-
free equilibrium Q1 = ( γ

bβ , R0, 0, 0, λ
β ). Based on their Jacobian matrices

J0 =


λ 0 0 0 0
0 −δ 0 0 0
0 0 −c1 0 0
0 0 0 −c2 0
0 bδ 0 0 −γ

 and J1 =


0 0 0 − k2γ

bβ − γ
b

λ −δ −k1R0 0 γ
b

0 0 s1R0 − c1 0 0
0 0 0 s2R0 − c2 0
0 bδ −k0λ

β 0 −γ

,

their characteristic polynomials are

p0(u) = (u− λ)(u + δ)(u + c1)(u + c2)(u + γ),

p1(u) = (u− s1R0 + c1)(u− s2R0 + c2)(u3 + (δ + γ)u2 + γλδ),
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respectively. Hence, Q0 and Q1 are both unstable since λ is a positive eigenvalue for J0,
and the polynomial u3 + (δ + γ)u2 + γλδ has at least one root with positive real part based
on the Routh–Hurwitz criterion. In addition, R0 < c1

s1
leads to the equilibrium

Q2 =

(
c1

s1λ
(k1Z1 + δ),

c1

s1
,

γ(c1 − s1R0)

k0s1R0
, 0,

λ

β

)
and R0 > c2

s2
leads to the equilibrium

Q3 =

(
γ

bβ
,

c2

s2
, 0,

λ(s2R0 − c2)

k2s2R0
,

c2bδ

s2γ

)
.

Their associated characteristic polynomials can be written as follows

p2(u) =
(

u− c1s2

s1
+ c2

)
(u4 + a3u3 + a2u2 + a1u + a0),

p3(u) =
(

u− c2s1

s2
+ c1

)
(u4 + b3u3 + b2u2 + b1u + b0),

where ai, bi (i = 0, 1, 2, 3) are constants determined by the parameters in model (A1).
One can verify that a0 < 0 and b2 = 0. Hence, Q2 and Q3 are both unstable by the
Routh–Hurwitz criterion.

Our analysis of this scenario, which represents a spatially homogeneous tumor state
with a fixed boundary, shows that all the equilibrium points are unstable. This result
implies that a tumor cannot stabilize under such a setting; instead, the tumor size has to
change with time in the presence of tumor–virus–immune interaction, leading to the more
realistic (and more complex) scenario with a moving tumor boundary.
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