
Citation: Ma, X.; Shen, W.

Generalized de Boor–Cox Formulas

and Pyramids for Multi-Degree

Spline Basis Functions. Mathematics

2023, 11, 367. https://doi.org/

10.3390/math11020367

Academic Editors: Juan Cao, Li

Zhang and Hongwei Lin

Received: 22 November 2022

Revised: 27 December 2022

Accepted: 5 January 2023

Published: 10 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Generalized de Boor–Cox Formulas and Pyramids for
Multi-Degree Spline Basis Functions
Xu Ma and Wanqiang Shen *

School of Science, Jiangnan University, Wuxi 214122, China
* Correspondence: shenwanqiang@jiangnan.edu.cn

Abstract: The conventional B-splines possess the de Boor–Cox formula, which relates to a pyramid
algorithm. However, for multi-degree splines, a de Boor–Cox-type evaluation algorithm only exists
in some special cases. This paper considers any multi-degree spline with arbitrary degree and
continuity, and provides two generalized de Boor–Cox-type relations. One uses several lower degree
polynomials to build a combination to evaluate basis functions, whose form is similar to using the
de Boor–Cox formula several times. The other is a linear combination of two functions out of the
recursive definition, which keeps the combination coefficient polynomials of degree 1, so it is more
similar to the de Boor–Cox formula and can be illustrated by several pyramids with different heights.
In the process of calculating the recursions, a recursive representation using the Bernstein basis is
used and numerically analyzed.

Keywords: B-spline; multi-degree spline; de Boor–Cox formula; pyramid algorithm; continuity

MSC: 65D07; 41A15

1. Introduction

B-splines are well-established tools in computer-aided geometric design. Their ba-
sic functions build the unique normalized B-basis in their spanned space of piecewise
polynomials, which has optimal shape-preserving properties [1]. Multi-degree splines
(MD-splines for short), also called changeable-degree splines, allow different degrees for
different segments. In their spanned space of piecewise polynomials with varying degrees,
their basic functions also construct the unique normalized B-basis [2]. Therefore, they can
be viewed as a direct extension of B-splines.

For MD-splines, the use of splines with varying degrees were investigated by [3] as
a tool for approximation. Some variable-degree polynomial functions in [4,5] were con-
structed for shape-preserving interpolation and more theories were proposed in [6–8], in [9]
the concept of multi-degree splines was proposed and some MD-spline curves of degree 1,
2 and 3 were built. In [10], a two-degree-spline basis is provided for dividing the process of
degree elevation of B-spline into corner-cutting form. In [2,11], two types of MD-splines
with different continuities were defined, and [12] deals with an explicit expression for
MD-splines. The MD-spline degree-elevation property is provided in [13]. The definition
of MD-splines is improved in [14]; two extended partitions are made ingeniously to unify
the two types of MD-splines. Such extended partitions for B-splines were proposed in [15].
The support of each basis function is easily determined by the indexes of two extended
partitions, and, using this configuration, arbitrary continuity MD-splines can be created.
Recent references offer several numerical algorithms due to the inefficiency of the integral
definition for MD-splines in numerical calculation. They employ simpler bases to express
MD-splines and to compute the representation matrix. In [16], the continuity constraints
between spline pieces were collected in a matrix and then its null space was computed by
recurrence. In [17], it was proven that the output of this algorithm is exactly the basis of
MDB-splines and a Chebyshevian extension of the construction was presented in [18]. The

Mathematics 2023, 11, 367. https://doi.org/10.3390/math11020367 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11020367
https://doi.org/10.3390/math11020367
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11020367
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11020367?type=check_update&version=1

Mathematics 2023, 11, 367 2 of 20

algorithm in [19] repeats the reverse knot insertion (RKI) process to evaluate the transition
matrix. An improved version of the algorithm in [19] is outlined in [20]. it is a numerically
stable method, because it avoids the derivative operations and minimizes the number of
floating-point operations.

B-splines Fi,n are recursively computed by applying the de Boor–Cox formula in [21,22],
which is related to a pyramid algorithm in [23], namely,

Fi,n(t) =
t− ti

ti+n − ti
Fi,n−1(t) +

ti+n+1 − t
ti+n+1 − ti+1

Fi+1,n−1(t) (1)

In the formula, a B-spline of degree n is represented by two B-splines of degree
n− 1, where the combination coefficients are both polynomials of degree 1. According
to [24,25], the MD-splines build a de Boor–Cox-type formula if the continuity orders
between neighboring pieces of different degrees are no more than 1. For general cases, the
de Boor–Cox-type formula does not exist [14].

Our work is focused on more generalized de Boor–Cox-type relations for arbitrary-
degree MD-splines with any continuity orders and provides two generalized forms. The
first form uses the de Boor–Cox formula several times. A B-spline basis function of degree
n is represented as a combination of s + 1 B-splines of degree n − s with polynomial
coefficients σi,n−s(t), σi+1,n−s(t), . . . , σi+s,n−s(t) of degree s, i.e.

Fi,n(t) = σi,n−s(t)Fi,n−s(t) + σi+1,n−s(t)Fi+1,n−s(t) + . . . + σi+s,n−s(t)Fi+s,n−s(t) (2)

For MD-splines, each function Ni,n, i = D− n + 1, . . . ,K at level n can be represented
by functions at recursive level n− s, where these functions should be C0 continuous or
discontinuous at knots in their support intervals. On each interval, the sum of the degree of
a function involved in the recurrence is similar to (2) and that of its coefficient polynomial
is equal to the degree of Ni,n. We provide an algorithm to calculate these coefficient
polynomials. In the meantime, functions at recursive level n− 1 can also be represented by
these functions at recursive level n− s, allowing the first form to be translated into a new
form. In this new form, a function Ni,n at recursive level n is represented by a combination
of Ni,n−1, Ni+1,n−1 and functions at recursive level n− s, where the coefficient polynomials
of Ni,n−1, and Ni+1,n−1 are bothpolynomials of degree 1. In the second form, a function
Ni,n at recursive level n is represented by two functions with combination coefficient
polynomials of degree 1. The left coefficient polynomial is the result of subtracting the left
endpoint of Ni,n from t, and the right coefficient polynomial is the result of subtracting
t from the right endpoint of Ni,n. Two representation functions are not in the integral
recursion, but they can be constructed using knots derivative information of functions
at recursive level n − 1, n − 2, ..., 1. We present a building method based on the Taylor
expansion of polynomials which demonstrates the theoretical viability of this form. If
we replace functions that are not applicable to de Boor–Cox-type formulas with their
construction polynomials in the recursion of MD-spline basis, then any function can be
evaluated using this form formula. Multiple pyramids of varying heights can be used to
depict this recurrence. To obtain the two forms for MD-splines, we offer a recursive method
to evaluate the representation matrix between the MD-spline basis and Bernstein basis, and
design some numerical experiments for it. This method utilizes the integral property of
Bernstein polynomials and possesses sufficient numerical accuracy and efficiency.

The remainder of this paper is organized as follows: Section 2 reviews the necessary
definitions of MD-splines. Section 3 provides a recursive method by Bernstein representa-
tion and contains some numerical experiments. Section 4 reveals general recursive relations
of the MD-spline basis and constructs de Boor–Cox-type formula. Finally, this paper is
concluded with some conclusion.

Mathematics 2023, 11, 367 3 of 20

2. MD-Spline Basis Review

In the following, we will recall some concepts of MD-splines given in [9,14]. MD-spline
basis functions are piecewise polynomials defined on a partition of an interval, which is
determined by a breakpoint sequence T, a degree sequence G, and a sequence K containing
the orders of regularity.

Let T := {ti}
q+1
i=0 , a = t0 < t1 < . . . < tq < tq+1 = b be a strictly increasing partition of

a given interval I := [a, b]. If di > 0, i = 0, . . . , q is the degree of the MD-spline on [ti, ti+1),
then let G := {di}

q
i=0 be the degree sequence and D = max{di}, 0 6 i 6 q. Finally,

the entries of the order sequence K := {ki}
q
i=1, which describe the required continuity at

breakpoints ti, i = 1, 2, . . . , q, are defined as follows:

ki 6
{

di−1, i f di−1 = di,
min{di, di−1}, i f di−1 6= di.

(3)

There are two extended partitions of T to determine the support intervals. The left
extended partition is

S := {s1, s2, . . . , sK} := {t0, . . . , t0︸ ︷︷ ︸
d0+1 times

, t1, . . . , t1︸ ︷︷ ︸
d1−k1 times

, . . . , tq, ..., tq︸ ︷︷ ︸
dq−kq times

}, (4)

and the right one is

X := {x1, x2, . . . , xK} := { t1, . . . , t1︸ ︷︷ ︸
d0−k1 times

, . . . , tq, . . . , tq︸ ︷︷ ︸
dq−1−kq times

, tq+1, . . . , tq+1︸ ︷︷ ︸
dq+1 times

}, (5)

where K := d0 + ∑
q
i=1(di − ki) + 1 = dq + ∑

q
i=1(di−1 − ki) + 1.

Figure 1 shows an example for illustrating the left and right extended partitions. Here,
T := {ti}5

i=0, G := {3, 3, 4, 5, 5}, K := {2, 2, 3, 4}, and K = 10.

𝑻:

𝑿:

𝑺:

𝑡0 𝑡1 𝑡2 𝑡3 𝑡4

𝑑0 = 3 𝑑1 = 3 𝑑2 = 4 𝑑3 = 5

𝐶2 𝐶2 𝐶3

𝑠1 = ⋯ = 𝑠4 𝑠5 𝑠6 = 𝑠7

𝑥1 𝑥2

𝑡5

𝑑4 = 5

𝐶4

𝑠8 = 𝑠9 𝑠10

𝑥3 𝑥4 𝑥5 = ⋯ = 𝑥10

Figure 1. Original partition T, left and right extended partitions S and X, respectively.

The relation of indexes is noted by function p. In detail, p(si) is the index of the
corresponding breakpoint of si in T and p(xi) is the index of the corresponding breakpoint
xi in T. That is, tp(si)

= si, and tp(xi)
= xi. For example, in Figure 1, since s6 = s7 = t2,

p(s6) = p(s7) = 2. Since x3 = t3, p(x3) = 3.

Definition 1 (Multi-degree spline basis). For n = 0, 1, ..., D, functions in {Ni,n(t)}Ki=D−n+1

are generated recursively over T ,G and K. The final sequence {Ni,D(t)}Ki=1 is a MD-spline basis,
given by

Ni,n(t) =

0, dj < D− n,{

1 t ∈ [tj, tj+1)

0 otherwise
, dj = D− n,∫ t

−∞(δi,n−1Ni,n−1(y)− δi+1,n−1Ni+1,n−1(y))dy, dj > D− n.

(6)

Mathematics 2023, 11, 367 4 of 20

for each nontrivial interval [tj, tj+1) ⊆ [si, xi−D+n) = [tp(si)
, tp(xi−D+n)

), where

δi,n :=
(∫ +∞

−∞
Ni,n(y)dy

)−1

In addition, when Ni,n = 0, we set

∫ t

−∞
δi,nNi,n(y)dy =

{
0 t < si,
1 t ≥ si.

MD-spline basis {Ni,D(t)}Ki=1 possesses some properties such as a B-spline basis:

• Local support: Ni,D(t) = 0 for t /∈ [si, xi].
• Positivity: Ni,D(t) > 0 for t ∈ (si, xi).
• End point: Ni,D(t) vanishes exactly dp(si)

− max
{

j ≥ 0|si = si+j
}

times at si, and
dp(xi)−1 −max

{
j ≥ 0|xi−j = xi

}
at xi.

• Partition of unity: ∑Ki Ni,D(t) ≡ 1 for all t ∈ [a, b].

Some properties of functions Ni,n, i = D− n + 1, D− n + 2, . . . ,K for any 0 6 n 6 D
are as follows:

• Support interval: the support interval of Ni,n(t) is [si, xi−D+n).
• Degree: on interval [tj, tj+1) ⊆ [si, xi−D+n) with si < xi−D+n, the degree of Ni,n(t)

equals to dj + n− D when n ≥ D− dj.
• Continuity: at knot tj, tj ∈ (si, xi−D+n) with si < xi−D+n, Ni,n(t) is Ckj+n−D-continuous

when n ≥ D− k j.

In [24], Ck MD-splines are defined to describe some particular MD-spline bases, such
as C0, C1 MD-splines.

Definition 2 (Ck multi-degree spline basis). An MD-spline basis is said to be a Ck MD-spline
basis if its functions are, at most, Ck continuous at the joins between pieces of different degrees.

In the example of Figure 1, as d0 = d1, d3 = d4, we do not need to consider the
continuity at t1 and t4. Therefore, functions in this basis will be C2-continuous at the join
between [t0, t2) and [t2, t3), and be C3-continuous at the join between [t2, t3) and [t3, t5).
Therefore, the corresponding MD-spline basis will be a C3 MD-spline basis.

3. Recursive Method

As Bernstein polynomials of degree n form a basis of the space Pn of polynomials of
degree at most n, functions in {Ni,n(t)}Ki=D−n+1 can be represented by Bernstein polynomi-
als with different degrees. Thus, the recursive process for defining an MD-spline basis can
be performed from these Bernstein polynomials.

3.1. Bernstein Representation

Bernstein polynomials [26] of degree n on interval [tj, tj+1] are defined as

bj
i,n(t) :=

(
n
i

)(
t− tj

)i(tj+1 − t
)n−i

(
tj+1 − tj

)n , i = 0, 1, . . . , n. (7)

Let
Bj

n(t) :=
(

bj
0,n(t), bj

1.n(t), . . . , bj
n,n(t)

)T
. (8)

Mathematics 2023, 11, 367 5 of 20

Then, each function Ni,n, i = D− n + 1, D− n + 2, . . . ,K and n = 0, 1, . . . , D can be
linearly represented as

Ni,n(t) = a0,j
i,nbj

0,n(t) + a1,j
i,nbj

1,n(t) + . . . + an,j
i,nbj

n,n(t), (9)

where a0,j
i,n, a1,j

i,n, . . . , an,j
i,n are some constants that are not all zero, and this equation can also

be written as

Ni,n(t) = Aj
i,nBj

dj+n−D(t), t ∈ [tj, tj+1), j = p(si), p(si) + 1, . . . , p(xi+D−n)− 1, (10)

where Aj
i,n =

(
a0,j

i,n, a1,j
i,n, . . . , an,j

i,n

)
is called the Bernstein representation vector of function

Ni,n on [tj, tj+1).
On the support interval of Ni,n, consistent with the previous settings, the number of

elements in T is q + 2. For each n, Bn stands for the whole set of Bernstein polynomials:

Bn :=

B1

d1+n−D(t)
B2

d2+n−D(t)
...

Bq+1
dl−1+n−D(t)

. (11)

Let
~Ai,n :=

(
0, . . . , 0, Ap(si)

i,n , Ap(si)+1
i,n , . . . , Ap(xi−D+n)−1

i,n , 0, . . . , 0
)

. (12)

Then
Ni,n(t) = ~Ai,nBn, (13)

and the corresponding representation matrix is

N = MBn, (14)

where
N := (ND−n+1,n(t), ND−n+2,n(t), . . . , NK,n(t))

T ,

M :=

~AD−n+1,n

...
~AK,n

(K−D+n)×∑

q+1
j=1 (dj+n−D+1)

(15)

Compared with the representation matrix in [19], matrix M represents functions in
{Ni,n}Ki=D−n+1 at each recursive level n.

Definition 3 (Ck function). A function defined over T, G and K is called a Ck function if it is at
most Ck continuous at breakpoints within its support interval.

Ck functions are not equivalent to functions in a Ck MD-spline basis, a Ck MD-spline
basis only requires continuity at the join of different degrees. For example, a C0 MD-
spline basis may contain B-splines; however, B-splines are not C0 continuous at their
internal breakpoints. A C0 MD-spline basis has some particular properties, such as the
integrals of functions in it can be computed easily, which is used in [20]. C0 functions
are also particularly to be used in this section, as their Bernstein presentation vectors are
easily expressed.

Example 1. Consider a C0 MD-spline basis with T := {0, 1, 2, 3, 4, 5, 6, 7}, G := {3, 3, 3, 4, 4,
4, 4} and K := {2, 2, 0, 3, 3, 3}. The first function N1,4 and the last function N13,4 are Bernstein
polynomials. Function N6,4 is C0 continuous at t = 3, and it is plotted in red in Figure 2. Other

Mathematics 2023, 11, 367 6 of 20

functions are all B-spline functions, where Ni,4, i = 2, 3, 4, 5 are C2 functions and Ni,4, i = 7, ..., 12
are C3 functions. In addition, all functions Ni,4, i = 1, ..., 13 define a C0 MD-spline basis. It holds

N6,4(t) =
(
(0, 0, 0, 1), (1, 0, 0, 0, 0)

)

b2
0,3(t)

...
b2

3,3(t)
b3

0,4(t)
...

b3
4,4(t)

. (16)

N6,4 is a C0 function, and its Bernstein representation vector on each interval is composed of
an entry equal to 1 and the rest are equal to 0, while the Bernstein representation vectors of B-spline
functions include several nonzero entries.

0 1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2. An example of C0 multi-degree spline basis functions.

3.2. Recursive Process

The recursion of Bernstein representation vectors is determined by Equation (6) and
the integral property of Bernstein polynomial [26]. Each vector Aj

i,n is affected not only by

Aj
r,n−1, r = i, i + 1, but also by Ar

i,n, r = p(si), . . . , j− 1 and Ar
i,n, r = j + 1, . . . , p(xi−D+n)−

1; hence, the recursive relationship should be evaluated on distinct intervals.
On interval [tj, tj+1) ⊆ [tp(si)

, tp(xi+D−n)
), consider the following (dj + n− D + 1)×

(dj + n− D + 2) matrix

H :=

0 1 1 · · · 1
0 0 1 · · · 1
...

...
.

...
0 0 0 · · · 1

. (17)

The integral of Bernstein polynomials satisfy the equality
∫ t

tj
bj

0,dj+n−D(y)dy
...∫ t

tj
bj

dj+n−D,dj+n−D(y)dy

 =
tj+1 − tj

dj + n− D + 1
HBj

dj+n−D+1(t), (18)

Mathematics 2023, 11, 367 7 of 20

According to the integral formula, the integral of Ni,n is determined as follows:∫ t

tj

Ni,n(y)dy = Aj
i,n

tj+1 − tj

dj + n− D + 1
HBj

dj+n−D+1(t). (19)

Similarly, another part of the integral is

∫ tj+1

t
Ni,n(y)dy = Aj

i,n
tj+1 − tj

dj + n− D + 1

1 0 · · · 0 0
1 1 · · · 0 0
...

.
...

...
1 1 · · · 1 0

Bj
dj+n−D+1(t). (20)

The integral recursion can be substituted by the recursive process of Bernstein rep-
resentation vectors according to Equation (19). The matrix H is just presented in (18) for
simplicity of expression. A cumulative-sum operation can be used to describe the recursion
of a representation vector in calculation.

Without loss of generality, assuming that Aj
i,n = (a0, a1, . . . , adj+n−D) on interval

[tj, tj+1), j = p(si), . . . , p(xi+n−D)− 1, it holds that

Ni,n(t) = (a0, a1, . . . , adj+n−D)B
j
dj+n−D(t). (21)

We indicates the cumulative-sum operation by an operator Γ:

Γ(Aj
i,n) :=

tj+1 − tj

dj + n− D + 1
(0, a0, a0 + a1, . . . , a0 + a1 + . . . + adj+n−D). (22)

Thus, ∫ t

tj

Ni,n(y)dy = Γ(Aj
i,n)B

j
dj+n−D+1(t). (23)

Then, we use an operator Λ to extract the last element of a vector. For example,
Λ(Aj

i,n) = adj+n−D. Then,

∫ tj+1

tj

Ni,n(y)dy = Λ
(

Γ(Aj
i,n)
)

. (24)

Consider t ∈ [tj, tj+1), j = p(si) + 1, ..., p(xi+n−D) − 1. The integral starting from
tp(si)

is ∫ t

tp(si)

Ni,n(y)dy =
j−1

∑
r=p(si)

[(
Λ
(
Γ(Ar

i,n)
))]

+ Γ(Aj
i,n)B

j
dj+n−D+1(t),

=

 j−1

∑
r=p(si)

[(
Λ
(
Γ(Ar

i,n)
))]
⊕ Γ(Aj

i,n)

Bj
dj+n−D+1(t),

(25)

where ∑
j−1
r=p(si)

[(
Λ
(

Γ(Ar
i,n)
))]

is a constant, and Γ(Aj
i,n) is a vector. The symbol ⊕means

that ∑
j−1
r=p(si)

[(
Λ
(

Γ(Ar
i,n)
))]

is added to each element in Γ(Aj
i,n).

Using the two operators above, δi,n can be calculated as follows:

1
δi,n

=
∫ +∞

−∞
Ni,n(y)dy =

p(xi−D+n)−1

∑
r=p(si)

[
Λ
(
Γ(Ar

i,n)
)]

. (26)

Consistent with the conventional B-splines, functions in an MD-spline basis can be
independently calculated using a recursive method. According to the Bernstein repre-

Mathematics 2023, 11, 367 8 of 20

sentation, once the vector ~Ai,D is calculated, function Ni,D is determined. Consequently,
Bernstein representation vectors can replace functions in the recursive process.

The support interval of Ni,D, i = 1, . . . ,K is [si, xi); therefore, there are p(xi)− p(si)
intervals in it. Therefore, we establish an initial (D + 1)× (p(xi)− p(si)) matrix M; each
entry is 0 and indicates a vector Aj

k,0 = 0, k = i, . . . , i + D, j = p(si), . . . , p(xi)− 1.
Matrix M has D + 1 rows, which means that there are D + 1 corresponding functions

on [si, xi) when n = 0. However, the indexes of these D + 1 functions may exceed the
limit range [D + 1,K]. There are two solutions for this. One does not generate rows whose
indexes surpass the maximum allowed range. The other one disregards these rows because
all of their elements equal 0. In order to make the algorithm more understandable, we
employ the second solution . In the recursive process, we use these vectors Aj

k,n, n = 0, ..., D
to explain the recursion of matrix M in the algorithm.

There are some details in this procedure.

• The operation (line 12) causes vectors Aj
i,n with the same index j have the same length,

hence allowing these vectors can bulid the matrix M.

• Mk (line 15) indicates the k − th row of the matrix M, and (δk,n)
−1 = Ap(xk+n−D)−1

k,n .
Thus each row is normalized.

• There are only two cases of subtraction without considering the subtraction of zero
rows (line 19 and 21).

• The subtraction is performed in range (lines 20, 22 and 23).

Algorithm 1 only calculates one function in MD-spline basis. If vectors in the initial
matrix are changed to be Aj

k,0, k = 1, . . . ,K+D, j = p(s1), . . . , p(xK)− 1, all basis functions
are produced.

The following is an example for Algorithm 1.

Example 2. Consider a MD-spline basis with T := {0, 1, 4, 7, 10}, G := {2, 3, 4, 3}, and K :=
{1, 2, 3}. Two extended partition are S := {0, 0, 0, 1, 1, 4, 4} and X := {1, 4, 7, 10, 10, 10, 10}. We
are aming to calculate function N3,4. These partitions are shown in Figure 3.

𝑥4 = ⋯ = 𝑥7

𝑠1 = ⋯ = 𝑠3 𝑠4 = 𝑠5 𝑠6 = 𝑠7

𝑥1 𝑥2 𝑥3

𝑺:

𝑿:
0 4 7 101

𝑻:
𝑡0 𝑡1 𝑡2 𝑡3

𝑑0 = 2 𝑑1 = 3 𝑑2 = 4 𝑑3 = 3

𝐶1 𝐶2 𝐶3
𝑡4

Figure 3. The setting of Example 2, and the support interval of N3,4 is plotted in red .

The support interval of N3,4 is [s3, x3) = [0, 7), and p(s3) = 0, p(x3) = 3. Thus the order of
the initial matrix M is 5× 3, then

M =

A0

3,0 A1
3,0 A2

3,0
A0

4,0 A1
4,0 A2

4,0
A0

5,0 A1
5,0 A2

5,0
A0

6,0 A1
6,0 A2

6,0
A0

7,0 A1
7,0 A2

7,0

 =

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

. (27)

At the beginning of each loop, value 1 is assigned to the vector that satisfies the condition in
line 5 in Algorithm 1. Therefore, A2

7,0 = 1.

Mathematics 2023, 11, 367 9 of 20

Algorithm 1 Recursive process of Bernstein representation vectors.

Input: T, G, K, i
Output: ~Ai,D

1: Initial M =
(

Aj
k,0

)
, Aj

k,0 = 0, k = i, ..., i + D, j = p(si), ..., p(xi)− 1;
2: for n← 0 to D− 1 do
3: for k← i to i + D− n do
4: for j← p(sk) to p(xk+n−D)− 1 do
5: if (dj == D− n) then Aj

k,n ← 1
6: end if
7: end for
8: for j← p(sk) to p(xk+n−D)− 1 do
9: Aj

k,n ← ∑
j−1
k=p(si)

(
Λ
(

Γ(Ar
k,n)
))
⊕ Γ(Aj

k,n)

10: end for
11: for j← p(si) to p(xi)− 1 do
12: if (dj >= 0) and (Λ(Aj

k,n == 0)) then Aj
k,n ← Γ(Aj

k,n)

13: end if
14: end for
15: if Λ(Ap(xk+n−D)−1

k,n) 6= 0 then Mk ←
(

Λ(Ap(xk+n−D)−1
k,n)

)−1
Mk

16: end if
17: end for
18: for k← i to i + D− n− 1 do
19: if Λ(Ap(xk+n−D)−1

k,n) == 0 and Λ(Ap(xk+1+n−D)−1
k+1,n) 6= 0 then

20: Mk ← 1−Mk+1 (p(sk), p(xk+1+n−D)− 1)

21: else if Λ(Ap(xk+n−D)−1
k,n) 6= 0 and Λ(Ap(xk+1+n−D)−1

k+1,n) 6= 0 then
22: Mk ← Mk −Mk+1 (p(sk), p(xk+n−D)− 1)
23: Mk ← 1−Mk+1 (p(xk+n−D), p(xk+1+n−D)− 1)
24: end if
25: end for
26: Delete the last row of M;
27: end for

Because there is no C0 function when n = 0, 1. In order to be concise, we start the calculation
from n = 2. In this case, it is easy to get M :

M =

A0
3,2 A1

3,2 A2
3,2

A0
4,2 A1

4,2 A2
4,2

A0
5,2 A1

5,2 A2
5,2

 =

1 (0, 0) (0, 0, 0)
0 (1, 0) (0, 0, 0)
0 (0, 1) (1, 0, 0)

. (28)

In the third row of M, the results of cumulative sum and normalization operations are as
follows:

Γ(A1
5,2) = (0, 0,

3
2
); Λ(Γ(A1

5,2)) =
3
2

, (29)

and
Γ(A2

5,2) = (0, 1, 1, 1); Λ(Γ(A1
5,2))⊕ Γ(A2

5,2) = (
3
2

,
5
2

,
5
2

,
5
2
). (30)

Thus δ5,2 = 2
5 . Note that Γ(A0

5,2) = (0, 0). After normalization, this row changes into

M3 =
(
(0, 0) (0, 0, 3

5) (3
5 , 1, 1, 1)

)
. (31)

Similarly, the second row changes into

M2 =
(
(0, 0) (0, 1, 1) (0, 0, 0, 0)

)
. (32)

Mathematics 2023, 11, 367 10 of 20

According to the substraction in Algorithm 1, M2 ← M2 −M3 equals to (0, 1, 1)− (0, 0, 3
5)

on interval [t1, t2) and (1, 1, 1, 1)− (3
5 , 1, 1, 1) on interval [t2, t3). After substraction

M2 =
(
(0, 0) (0, 1, 2

5) (2
5 , 0, 0, 0)

)
. (33)

M1 ← M1 −M2 can be computed in the same manner. Then, remove the third row and M
change into the subsequent one:

M =

(
A0

3,3 A1
3,3 A2

3,3
A0

4,3 A1
4,3 A2

4,3

)
=

(
(0, 1) (1, 0, 0) (0, 0, 0, 0)
(0, 0) (0, 1, 2

5) (2
5 , 0, 0, 0)

)
. (34)

By repeating these operations, then the final vector will be

M =
(

A0
3,4 A1

3,4 A2
3,4

)
=
(
(0, 0, 1

3) (1
3 , 1, 7

17 , 3
17) (3

17 , 0, 0, 0, 0)
)
. (35)

Therefore,

N3,4(t) = ~A3,4B4 =
(

A0
3,4 A1

3,4 A2
3,4 0

)
B4 = M

B0
2(t)

B1
3(t)

B2
4(t)

. (36)

This example can aid comprehension of this section. Although only a portion of the calculation
is displayed, the entire recursion is similar. The representation matrix may be calculated directly,
and this method is quite intuitive and straightforward to comprehend.

3.3. Algorithm Analysis

The numerical stability of Algorithm 1 is influenced by the floating point operations.
There are three types of operations in the algorithm.

1. Cumulative sum operation: the operation in Algorithm 1 (line 9) is composed of
addition and multiplication. All elements in the vector are positive and increasing.
If the length of an interval is excessively long, the number of bits of elements may
vary significantly. This procedure frequently executes this operation, resulting in
numerical inaccuracies.

2. Normalized operation: this operation restricts all elements in ~Ai,n to the range [0, 1].
Since the denominator is the largest number in this vector and all members are
positive, this operation will not result in a significant amount of numerical inaccuracy.

3. Subtraction operation: Equation (19) prevents the scenario where two approximate
floating point-numbers are subtracted.

The complexity of Algorithm 1 depends on the settings of the sequences T, G, K, so,
like reference [20], we only count the number of operations.

At each recursive level in Algorithm 1, there are no more than K − D + n non-zero
rows of each M. Therefore, the total number of non-zero rows will not exceed KD in the
whole recursive process.

• Cumulative sum operation: the number of elements in G is q + 1; thus, the number of
this operation will not exceed KD(q + 1).

• Normalized operation: each non-zero row will be normalized, so the maximum
number of this operation is KD(q + 1).

• Subtraction operation: similarly, there are KD subtraction operations, at most.

Thus, the number of operations will not exceed KD(2q + 3), which is used to estimate
the numerical complexity of Algorithm 1.

Due to the recursive nature of Algorithm 1, the cyclical calculation of floating-point
numbers may lead to error accumulation. Based on the preceding research, the cumulative
sum operation is the primary source of mistake. This error can be reduced by a bidirectional
algorithm, and Equation (6) is reformed as follows:

Mathematics 2023, 11, 367 11 of 20

Ni,n(t) =

δi,n−1

∫ t
−∞ Ni,n−1(s)ds, t ∈ [si, si+1),

δi,n−1
∫ t
−∞ Ni,n−1(s)ds− δi+1,n−1

∫ t
−∞ Ni+1,n−1(s)ds, t ∈ [si+1, ξ),

δi+1,n−1
∫ +∞

t Ni+1,n−1(s)ds− δi,n−1
∫ +∞

t Ni,n−1(s)ds, t ∈ [ξ, xi+n−D−1),
δi+1,n−1

∫ +∞
t Ni+1,n−1(s)ds, t ∈ [xi+n−D−1, xi+n−D),

(37)

where ξ := si+1 + b(xi+n−D−1 − si+1)/2c. The symbol bcmeans rounding down operation.
Then, Algorithm 1 is modified, and the subsequent Algorithm 2 is more numerically

stable in calculation.
To represent the reverse integral, we define two reverse operators. Consistent with

the prior setting Aj
i,n = (a0, a1, . . . , adj+n−D), then Γ(Aj

i,n) = (a0 + . . . + adj+n−D, a1 + . . . +

adj+n−D, . . . , adj+n−D, 0) and Λ(Aj
i,n) = a0. Algorithm 2 is as follows:

Algorithm 2 Revised recursive method.

1: Same setting as Algorithm 1;
2: for n← 0 to D− 1 do
3: for k← i to i + D− n do
4: for j← p(sk) to p(xk+n−D)− 1 do
5: if (dj == D− n) then Aj

k,n ← 1
6: end if
7: end for
8: end for
9: ML ← M, MR ← M;

10: for j← p(sk) to p(xk+n−D)− 1 do
11: ML

k,j ← ∑
j−1
r=p(si)

(
Λ
(

Γ(Ar
k,n)
))

+ Γ(Aj
k,n);

12: MR
k,j ← ∑

p(xk−D+n)−1
r=j+1

(
Λ
(

Γ(Ar
k,n)
))

+ Γ(Aj
k,n);

13: end for
14: Extend zero vectors;

15: if Λ(ML
k,p(xk+n−D)−1) 6= 0 then ML

k ←
(

Λ(ML
k,p(xk+n−D)−1)

)−1
ML

k
16: end if
17: if Λ(MR

k,p(sk)
) 6= 0 then MR

k ←
(

Λ(MR
k,p(sk)

)
)−1

MR
k

18: end if
19: for k← i to i + D− n− 1 do
20: for j← p(sk) to p(sk+1) do
21: Mk,j ← ML

k,j;
22: end for
23: for j← p(sk+1) to p(sk+1) + b(p(xk+n−D)− 1− p(sk+1))/2c do
24: Mk,j ← ML

k,j −ML
k+1,j;

25: end for
26: for j← p(sk+1) + b(p(xk+n−D)− 1− p(sk+1))/2c+ 1 to p(xk+n−D)− 1 do
27: Mk,j ← MR

k+1,j −MR
k,j;

28: end for
29: for j← p(xk+n−D)− 1 to p(xk+n−D+1)− 1 do
30: Mk,j = MR

k+1,j
31: end for
32: end for
33: Delete the last row of M;
34: end for

3.4. Numerical Experiment

In [20], three typical methods for calculating an MD-spline basis are compared, which
are named RKI/Greville, RKI/Derivative and H-Operator. Due to the higher order deriva-

Mathematics 2023, 11, 367 12 of 20

tive operations, RKI/Derivative and H-Operator are not numerically stable, while RKI/
Greville avoids these operations and it is numerically stable.

Then, we will design some experiments in Table 1 to test Algorithms 1 and 2. Cal-
culation results are divided into ’Exact’ and ’Numerical’. The ’Exact’ results rely on the
symbolic computation in MATLAB, while the ’Numerical’ results are determined by the
standard precision in MATLAB (rounding unit e ≈ 10−16).

Table 1. Sequences T, G, K for Tests.

T G K

Test 1 {0, 1, 3, 7, 9, 10} {6, 5, 5, 4, 5} {5, 4, 3, 4}
Test 2

{
−106,−106 + 1, 0, 106 − 1, 106} {5, 3, 3, 5} {3, 2, 3}

Test 3
{

3j
}

, j = 0, ..., 12 {j}, j = 10, ..., 21 {j}, j = 8, ..., 18
Test 4 {2× j}, j = 0, ..., 40 {j}, j = 1, ..., 40 {j}, j = 0, ..., 38

Example 3. Values in Table 2 are calculated from Algorithm 1, where ’Exact’ in the second column
indicates that the Bernstein representation matrix M is calculated through symbolic computation.
Exact MD-spline basis and Bernstein basis are also calculated by symbolic computation. The absence
of relative error in the third column demonstrates that Algorithm 1 is correct.

Table 2. Algorithm 1 numerical results of Example 3 in Test 1.

t ’Exact’ N5(t) Relative Error ’Numerical’ N5(t) Relative Error

2 1.673419034377224× 10−1 0 1.673419034377223× 10−1 3.1616× 10−16

3 3.951056203260072× 10−1 0 3.951056203260071× 10−1 3.0341× 10−16

5 3.797960943382186× 10−1 0 3.797960943382184× 10−1 5.0188× 10−16

7 5.419134913010994× 10−2 0 5.419134913010981× 10−2 2.3148× 10−15

Example 4. This experiment demonstrates that Algorithm 1 requires revision. The addition of two
floating integers with significantly dissimilar digits will result in significant numerical errors. In
Table 3, the value produced by Algorithm 1 on the third row has a large relative error and does not
symmetric with the first value, whereas the problem is avoided by Algorithm 2.

Table 3. Comparison of Algorithm 1 and Algorithm 2 numerical results in Test 2.

t Alg 2 N5(t) Relative Error Alg 1 N5(t) Relative Error

−999,999 4.500002750000809 × 10−13 2.2439 × 10−16 4.500002750000810 × 10−13 4.4877 × 10−16

0 5.000000833333360 × 10−1 2.2204 × 10−16 5.000000833333362 × 10−1 2.2204 × 10−16

999,999 4.500002750000809 × 10−13 2.2439 × 10−16 4.499733918805759 × 10−13 5.9740 × 10−5

Example 5. Table 4 illustrates the values and relative errors of N17,21 for Test 3. The RKI/Greville
method is unquestionably stable. Algorithm 2 has adequate numerical precision in this instance,
where the highest degree exceeds 20. This algorithm is typically stable in experiments below
this degree.

Table 4. Comparison of Algorithm 2 and RKI/Greville method numerical results in Test 3.

t Alg 2 N17(t) Relative Error RKI/Greville N17(t) Relative Error

27 2.015443122101803 × 10−15 3.5939 × 10−15 2.015443122101811 × 10−15 1.9570 × 10−16

243 6.858212462569680 × 10−4 3.1905 × 10−15 6.858212462569703 × 10−4 1.5809 × 10−16

729 1.743353153410859 × 10−1 7.3071 × 10−16 1.743353153410862 × 10−1 6.3683 × 10−16

2187 3.858286138702032 × 10−1 3.6662 × 10−16 3.858286138702034 × 10−1 8.6325 × 10−16

6561 2.453976654577640 × 10−3 3.9579 × 10−16 2.453976654577639 × 10−3 1.7672 ×10−16

Mathematics 2023, 11, 367 13 of 20

Example 6. This experiment shows that the efficiency of different methods, as measured by MAT-
LAB execution time. Results in Table 4 are calculated using the same point values for four tests.
All tests are performed on an environment consisting of MATLAB 2020a and the AMD Ryzen
5 4600U.

Calculating the values of basis functions at the internal knots yields the running time. Note
that Algorithm 2 can calculate a single function in the MD-spline basis; its experiment is divided
into two separate instances. The information displayed in the second column of Table 4 represents
the duration of a single basis function. In order to ensure that values of this function are not zero at
most knots, we select the middle basis function. A second scenario involves calculating the values of
all basis functions at knots.

Based on the data in Table 5, it is evident that the efficacy of Algorithm 2 is assured. When the
degree of basis is low, as in Test 1 and Test 2, there is little difference between the computation times
of single functions and whole functions. However, as the degree increases, so does the efficiency gap.

In some extreme cases, such as Test 4, the degrees of the basis functions are extremely high,
making it inefficient to calculate the values of all functions. As the RKI/Greville method is calculated
on separate pieces, it needs longer running time.

Table 5. Running time in different tests.

Test Alg 2 (s) Alg 2 Global (s) RKI/Greville (s)

Test 1 0.091 0.106 0.117
Test 2 0.088 0.098 0.101
Test 3 0.105 0.254 0.301
Test 4 0.205 1.294 3.070

Compared to the RKI/Greville method, Algorithm 2 is less accurate numerically but
more efficient in its calculations. Using a B-spline basis instead of a Bernstein basis as repre-
sentation functions can improve the numerical precision due to the smaller representation
matrix reducing the number of floating-point operations.

Recursive Bernstein representation is not only meaningful for calculation, but it also
provides a tool for investigating the recursive relations of MD-spline.

4. Generalized de Boor–Cox-Type Recursive Relations

In this section, we will discuss two generalized de Boor–Cox-type relations of MD-splines.

4.1. The First Form of Generalized de Boor–Cox-Type Relation

A de Boor–Cox-type formula for C1 MD-spline bases exists because C0 functions
are formed by two or three Bernstein polynomial segments, and vectors corresponding
to C0 functions on each interval are composed of an entry equal to 1 and the rest equal
to several elements at 0. Therefore, C1 functions can always be represented by two C0

functions. However, this type of relation does not exist between Ck, k > 1, functions and
Ck−1 functions.

Theorem 1. There is no de Boor–Cox-type recursive relation for Ck MD-spline basis for k > 1.

Proof of Theorem 1. For a Ck, k > 1, function Ni,D, assume that the following equa-
tion holds:

Ni,D(t) = f1(t)Ni,D−1(t) + f2(t)Ni+1,D−1(t) (38)

where f1(t) and f2(t) are two polynomials of degree 1. Without loss of generality, on a
single interval [tj, tj+1), let Aj

i,D−1 = (a11, a12, . . . , a1s) and Aj
i+1,D−1 = (a21, a22, . . . , a2s).

Both vectors Aj
i,D−1 and Aj

i+1,D−1 contain more than one non-zero element. Using Aj
i,D(h)

to indicate the h-th element of Aj
i,D, it should be satisfied that

Mathematics 2023, 11, 367 14 of 20

Aj
i,D(h) =c +

t− tj

tj+1 − tj

h

∑
p=1

(δi,D−1a1p − δi+1,D−1a2p) +
tj+1 − t
tj+1 − tj

h−1

∑
p=1

(δi,D−1a1p − δi+1,D−1a2p)

=Ch +
t− tj

tj+1 − tj
(δi,D−1a1h − δi+1,D−1a2h)

= f1(t)a1h + f2(t)a2h,

(39)

where c and Ch are two constants. Then, functions f1(t) and f2(t) will be

f1(t) =
t− tj

tj+1 − tj
δi,D−1 + α; f2(t) = −

t− tj

tj+1 − tj
δi+1,D−1 + β; αa1h + βa2h = Ch, (40)

where α and β are two unknown real numbers. As h is arbitrary, we have

αa11 + βa21 = C1; . . . αa1h + βa2h = Ch; . . . αa1s + βa2s = Cs. (41)

Since there are more than one non-zero element in Aj
i,D−1 and Aj

i+1,D−1, system (41) is
overdetermined and has no solution in most cases. Thus, Equation (38) does not hold.

Any Ck, k > 1, MD-spline basis function can be represented as several C0 functions.

Theorem 2. For Ck, k > 1 MD-spline basis, assume that functions {Ni,s}Ki=D−s+1 are all C0

functions or Bernstein polynomials. Then, function Ni,n, n > s, can be represented as

Ni,n(t) = fi,s(t)Ni,s(t) + fi+1,s(t)Ni+1,s(t) + ... + fi+n−s,s(t)Ni+n−s,s(t). (42)

Proof. Proof of Theorem 2 Since each piece of C0 functions equals to Bernstein polynomial,
coefficient polynomials

{
f j,s
}i+n−s

j=i can be determined by Bernstein representation vectors.

Since {Bj
dj+n−D}

p(xi+D−n)−1
j=p(si)

can be expressed by {Bj
dj+s−D}

p(xi+D−n)−1
j=p(si)

as

Bj
dj+n−D = Lj

s,nBj
dj+s−D, (43)

where

Lj
s,n =

bj
0,n−s(t)

bj
1,n−s(t) bj

0,n−s(t)
...

...
. . .

bj
n−s,n−s(t) bj

n−s,n−s−1(t)
. . . bj

0,n−s(t)

bj
n−s,n−s(t)

. . .
...

bj
n−s−1,n−s(t)

bj
n−s,n−s(t)

, (44)

Ni,n can also be expressed by {Bj
dj+s−D}

p(xi+D−n)−1
j=p(si)

. Therefore, Equation (42) always

holds in the inner interval [tp(si)+1, tp(xi−D+n)−1), and we only need to focus on the first
interval [tp(si)

, tp(si)+1) and the last interval [tp(xi−D+n)−1, tp(xi−D+n)
).

On the first one [tp(si)
, tp(si)+1), assume that Ap(si)

i,s (j) = 1; then, elements from the first

to (j + s− 1)th in Ap(si)
i,n are 0, and Ap(si)

i,n (j + s) is nonzero according to the integral property

of Bernstein polynomials. Thus, elements from the first to the (j− 1)th in Ap(si)
i,n Lp(si)

s,n are 0,

which means that Ap(si)
i,n Lp(si)

s,n = ∑i+n−s
j=i f j,s(t)A

p(si)
j,s .

Similarly, on the last one [tp(xi−D+n)−1, tp(xi−D+n)
), this relationship can be determined,

then Ni,n is expressed as Equation (42).

Mathematics 2023, 11, 367 15 of 20

Based on the recursive property of Bernstein polynomials, Theorem 2 reveals a rela-
tionship between functions in the recursive process, which is the first form of generalized
de Boor–Cox-type relation. The coefficient polynomials { f j,s}i+n−s

j=i are piecewise, but not
unique. Moreover, their domains must fall inside the support intervals of the corresponding
functions.

The recursive method of Bernstein representation vectors provides a tool for calculat-
ing the coefficient polynomials. Since C0 functions and Bernstein polynomials have unique
Bernstein representation vectors, all { f j,s})i+n−s

j=i in Equation (42) will be computed from

Aj
i,nLj

s,n, j = p(si), ..., p(xi+n−D)− 1.

Note that ~Aj,s, j = i, . . . , i + n− s has a single non-zero element 1 and has the same
length as ~Ai,n (line 6) on each interval. Therefore, coefficient f j,s is the corresponding ele-
ment in ~Ai,n, which can be obtained by the element-wise division operation in Algorithm 3
(line 6).

Algorithm 3 Coefficient polynomials calculation.

Input: { ~Aj,s}i+n−s
j=i

Output: { f j,s}i+n−s
j=i

1: Compute ~Ai,n by Algorithm 2
2: for k← p(si) to p(xi+D)− 1 do
3: Ak

i,n ← Ak
i,nLk

s,n;
4: end for
5: for j← i to i + n− s do
6: ~Aj,s ← ~Aj,s./ ~Ai,n;
7: for k← p(sj) to p(xi+s−D)− 1 do

8: f k
j,s(t)←

(
∑dk+s−D+1

q=1 Ak
j,s(q)

)−1
;

9: end for
10: end for

Typically, functions Ni,s, Ni+1,s, . . . , Ni+n−s,s are situated at a lower recursive level.
Some C0 functions occur at subsequent recursive levels. For instance, Ni,s+1 is a C0 function
and the representation functions of Ni,n can be Ni,s+1, Ni+1,s, . . . , Ni+n−s,s, which are
situated at various recursive levels.

Example 7. Assume that T := {0, 1, 2, 3, 5, 8}, G := {4, 5, 4, 3, 5}, K := {3, 2, 3, 2}. Then,
{Ni,2}8

i=5 are all C0 functions or Bernstein polynomials. Function N5,5(t) can be represented
as follows:

N5,5(t) = f5,2(t)N5,2(t) + f6,2(t)N6,2(t) + f7,2(t)N7,2(t) + f8,2(t)N8,2(t), (45)

considering the following diagonally chunked matrix:

L =

L0
2,5

L1
2,5

L2
2,5

, (46)

where L0
2,5, L1

2,5 and L2
2,5 can be obtained by Equation (44). Then, coefficient polynomials are

determined by

A5,5L =
(
(0, f 0

5,2(t)), (f 1
5,2(t), f6,2(t), f7,2(t)), (f8,2(t), 0)

)
. (47)

Mathematics 2023, 11, 367 16 of 20

Next, a distinct set of functions is employed to represent N5,5. Note that N7,3 is a C0 function,
and functions f7,2, f8,2 in Equation (45) can be replaced by N7,3. Over three intervals, the coefficient
polynomials must be computed successively. On interval [2, 3), it holds that

A2
5,5L2

3,5 =
(

f 2
7,3(t), 0, 0

)
. (48)

On interval [1, 2), it holds that

A1
5,5L1

3,5 =
(

g1(t), g2(t), f6,3(t), f 1
7,3(t)

)
, (49)

for the same functions g1 and g2. Then,

(g1(t), g2(t), 0, 0)L2
2,3 =

(
f 1
5,2(t), f6,2(t), 0

)
. (50)

On interval [0, 1), it holds that

A0
5,5L0

2,5 =
(

0, f 0
5,2(t)

)
. (51)

Thus,

N5,5(t) = f5,2(t)N5,2(t) + f6,2(t)N6,2(t) + f6,3(t)N6,3(t) + f7,3(t)N7,3(t), (52)

where functions N5,2, N6,2, N6,3, ad N7,3 are not at the same level, and the coefficient polynomials
f5,2 and f6,2 are not equivalent to them in Equation (45).

Here, two distinct representations of this function are shown, and Figure 4 depicts the coefficient
polynomials. These relationships are prevalent throughout the recursive procedure.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
5,2

(t)

N
6,2

(t)

N
7,3

(t)

N
8,3

(t)

(a)

0 1 2

1

f
5,2

(t)

f
6,2

(t)

f
7,3

(t)

f
8,3

(t)

(b)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
5,2

(t)

N
6,2

(t)

N
6,3

(t)

N
7,3

(t)

(c)

0 1 2

1

f
5,2

(t)

f
6,2

(t)

f
6,3

(t)

f
7,3

(t)

(d)

Figure 4. (a) Representation functions N5,2, N6,2, N7,2, N8,2. (b) Corresponding coefficient polynomi-
als f5,2, f6,2, f7,2, f8,2. (c) Representation functions N5,2, N6,2, N6,3, N7,3. (d) Corresponding coefficient
polynomials f5,2, f6,2, f6,3, f7,3.

Mathematics 2023, 11, 367 17 of 20

Based on the above discussion, functions at the recursive levels n and n− 1 can all be
represented by several C0 functions or Bernstein polynomials. Consequently, Ni,n can be
represented as follows:

Ni,n(t) = fi,n−1(t)Ni,n−1(t) + fi+1,n−1(t)Ni+1,n−1(t) +
i+n−s

∑
j=i

f j,s(t)Nj,s(t), (53)

where functions
{

Nj,s
}i+n−s

j=i refer to C0 functions or Bernstein polynomials; fi,n−1, fi+1,n−1

are polynomials of degree 1. This equation is a general relationship for functions in the
MD-spline recursive process.

This subsection summarizes several broad relationships that exist in the recursion;
nonetheless, there is no law for generating coefficient polynomials. Consequently, the first
generalized de Boor–Cox-type formula lacks practical relevance.

4.2. The Second Form of Generalized de Boor–Cox-Type Relation

Since Equation (38) cannot be found in the recursion of MD-spline basis, we must
resort to functions outside of the recursion process in order to obtain this type of formula. If
we design two suitable functions that can substitute two functions in the linear combination
(42), we have a generalized de Boor–Cox-type formula.

For each Ni,n, i = D− n + 1, . . . ,K, n = 0, . . . , D, we have the following result.

Theorem 3. It holds that

Ni,n(t) = (t− tp(si)
)Li,n(t) + (tp(xi+n−D) − t)Ri,n(t), (54)

where Li,n andRi,n are both piecewise polynomials.

Proof of Theorem 3. On interval [tj, tj+1) ⊂ [si, xi+D−n), the Taylor expansion of function
Ni,n is given by all its derivatives. For convenience, let f (t) = Ni,n(t), t ∈ [tj, tj+1). Then

f (t) = f (tj) +

dj+n−D

∑
r=1

1
r!
(t− tj)

r f (r)(tj)

= f (tj+1) +

dj+n−D

∑
r=1

1
r!
(tj+1 − t)r f (r)(tj+1)

= f (tj) +

dj+n−D

∑
r=1

1
r!
(t− tp(si)

− tj + tp(si)
)r f (r)(tj)

= f (tj) +

dj+n−D

∑
r=1

1
r!

(
r

∑
k=0

(
r
k

)
(t− tp(si)

)k(tp(si)
− tj)

r−k

)
f (r)(tj)

=

dj+n−D

∑
r=0

(tp(si)
− tj)

r f (r)(tj)

+(t− tp(si)
)

dj+n−D

∑
r=1

1
r!

(
r−1

∑
k=0

(
r
k

)
(t− tp(si)

)k(tp(si)
− tj)

r−1−k

)
f (r)(tj)

=

dj+n−D

∑
r=0

(tj+1 − tp(xi+n−D))
r f (r)(tj+1)

+(tp(xi+n−D) − t)
dj+n−D

∑
r=1

1
r!

(
r−1

∑
k=0

(
r
k

)
(tp(xi+n−D) − t)k(tj+1 − tp(xi+n−D))

r−1−k

)
f (r)(tj+1).

(55)

Let

Mathematics 2023, 11, 367 18 of 20

Li,n(t) =
1
2

dj+n−D

∑
r=1

1
r!

(
r−1

∑
k=0

(
r
k

)
(t− tp(si)

)k(tp(si)
− tj)

r−1−k

)
f (r)(tj)

+
1

2(tp(xi+n−D) − tp(si)
)

dj+n−D

∑
r=0

(
(tp(si)

− tj)
r f (r)(tj) + (tj+1 − tp(xi+n−D))

r f (r)(tj+1)
)

,

(56)

and

Ri,n(t) =
1
2

dj+n−D

∑
r=1

1
r!

(
r−1

∑
k=0

(
r
k

)
(tp(xi+n−D) − t)k(tj+1 − tp(xi+n−D))

r−1−k

)
f (r)(tj+1)

+
1

2(tp(xi+n−D) − tp(si)
)

dj+n−D

∑
r=0

(
(tp(si)

− tj)
r f (r)(tj) + (tj+1 − tp(xi+n−D))

r f (r)(tj+1)
)

.

(57)

Then, Equation (54) holds.

Functions Li,n andRi,n, here, are constructed by N(r)
i,n (tj) and N(r)

i,n (tj+1), r = 0, . . . , dj +
n− D. Due to the integral definition of the MD-spline basis, the values of derivatives at
tj, tj+1 can be calculated by the functions in previous recursive levels. The derivative
equation is as follows:

N
′
i,n(t) = δi,n−1Ni,n−1(t)− δi+1,n−1Ni+1,n−1(t). (58)

In addition, the values of Ni,n(tj) and Ni,n(tj+1) can be calculated by the integral of
Ni,n−1 and Ni+1,n−1.

Consequently, this form of the formula is conceptually similar to the de Boor–Cox
formula. Despite the fact that new functions Li,n andRi,n must be generated, they are all
constructed using information from previous functions. Only the intricacy of construction
needs to be considered. Taylor expansions are only used for theoretical exposition and
cannot be implemented in practice. The coefficient polynomials need only be guaranteed to
be polynomials of degree 1; they need not be identical to them in Equation (54). It is even
feasible to employ piecewise coefficients to lessen the complexity of construction.

The generalized de Boor–Cox-type formula will employ a generalized pyramid struc-
ture, which will be contrasted to the pyramid for B-spline in the accompanying illustration.

Example 8. For B-spline basis {Fi,n(t)}Ki=1, all the basis functions possess similar pyramids; hence,
often only one pyramid is depicted. Several pyramids may be utilized to describe the de Boor–Cox
recursion for B-splines if the entire basis is used, as shown in Figure 5. The knot sequence is
T := {0, 1, 2, 3, 4} and the degree is 4. All pyramids have the same height beginning with the degree
0 functions, i.e., the functions at level 0 in the de Boor–Cox-type recursion.

𝐹8,0

𝐹7,1 𝐹8,1

𝐹5,2 𝐹6,2 𝐹7,2 𝐹8,2

𝐹4,3 𝐹5,3 𝐹6,3 𝐹7,3 𝐹8,3

𝐹3,4 𝐹4,4 𝐹5,4 𝐹6,4 𝐹7,4 𝐹8,4

𝐹4,1

𝐹3,2 𝐹4,2

𝐹2,3 𝐹3,3

𝐹1,4 𝐹2,4

𝐹5,1 𝐹6,1

𝐹5,0 𝐹6,0 𝐹7,0

Figure 5. Pyramids for B-spline basis.

Mathematics 2023, 11, 367 19 of 20

For a MD-spline basis with T := {0, 1, 2, 3, 4}, G := {3, 2, 4, 3}, and K := {1, 1, 2}, the
recursive process in Theorem 3 is shown in Figure 6. For a MD-spline basis, pyramids might have
varying heights.

𝑁8,0

𝑁7,1 𝑁8,1 𝑁9,1

𝑁5,2 𝑁6,2 𝑁7,2 𝑁8,2 𝑁9,2

𝑁4,3 𝑁5,3 𝑁6,3 𝑁7,3 𝑁8,3 𝑁9,3

ℒ6,4 ℛ6,4

𝑁3,4 𝑁4,4 𝑁5,4 𝑁6,4 𝑁7,4 𝑁8,4 𝑁9,4

ℒ7,4 ℛ7,4 ℒ8,4 ℛ8,4

𝑁4,1

𝑁3,2 𝑁4,2

𝑁2,3 𝑁3,3

𝑁1,4 𝑁2,4

Figure 6. Pyramids for MD-spline basis.

Compared with the B-spline basis, the recursive process for the MD-spline basis is determined
not only by the degrees but also by the continuous orders.

Although Theorem 3 provides an illustration of the theoretical plausibility of this
design, the reality of the building itself is quite complicated. The Bernstein representation
approach enables the construction of a structure, but because it is still sophisticated, it is
not shown here. If a suitable construction approximation method exists, this theory will
be practical.

5. Conclusions

In the paper, we present an evaluation approach for MD-splines. Unlike prior al-
gorithms for evaluating MD-spline bases, this one is non-global, and its intermediate
outcomes correspond to functions in the recursive process. Due to the absence of com-
plicated operations, it is efficient in most cases. In addition, its numerical precision in
normal degrees is comparable to that of the RKI/Greville approach. In addition to being
useful for numerical evaluation, it offers a method for calculating coefficient polynomials
in generalized de Boor–Cox-type relations.

Then, we provide two forms of the generalized de Boor–Cox-type formula for MD-
splines. Both forms attempt to approximate the de Boor–Cox formula. The first form
summarizes the majority of relationships that may appear in the recursion. The second
form is a constructed structure. It is theoretically feasible, but requires a computationally
cheap building technique.

It is important to note that the present value of the generalized de Boor–Cox-type
formula is theoretical, but the preceding numerical algorithm has practical applicability. The
second form of the generalized formula has potential because it simply has to address the
construction problem. Future work might be devoted to the optimization of the numerical
algorithm and the search for better construction techniques.

Author Contributions: Investigation, X.M. and W.S.; methodology, X.M. and W.S.; software, X.M.;
writing—original draft preparation, X.M. and W.S.; writing—review and editing, X.M. and W.S.;
funding acquisition, W.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No. 61772013).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Mathematics 2023, 11, 367 20 of 20

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Carnicer, J.; Peña, J.M. Totally positive bases for shape preserving curve design and optimality of B-splines. Comput. Aided. Geom.

Design 1994, 11, 633–654. [CrossRef]
2. Shen, W.; Wang, G. Changeable degree spline basis functions. J. Comput. Appl. Math. 2010, 234, 2516–2529. [CrossRef]
3. Nürnberger, G.; Schumaker, L.L.; Sommer, M.; Strauss, H. Generalized Chebyshevian splines. SIAM J. Math. Anal. 1984, 15,

790–804. [CrossRef]
4. Costantini, P.; Goodman, T.N.T.; Manni, C. Constructing C³ shape-preserving interpolating space curves. Adv. Comput. Math.

2001, 14, 103–127. [CrossRef]
5. Costantini, P.; Manni, C. Shape-preserving C³ Interpolation: The Curve Case. Adv. Comput. Math. 2003, 18, 41–63. [CrossRef]
6. Kaklis, P.D.; Pandelis, D.G. Convexity-preserving polynomial splines of non-uniform degree. IMA J. Numer. Anal. 1990, 10,

455–468. [CrossRef]
7. Costantini, P. Variable degree polynomial splines. In Curves and Surfaces with Applications in CAGD; Vanderbilt University Press:

Nashville, TN, USA, 1997; pp. 85–94.
8. Costantini, P. Curve and surface construction using variable degree polynomial splines. Comput. Aided. Geom. Design 2000, 17,

419–446. [CrossRef]
9. Sederberg, T.W.; Zheng, J.; Song, X. Knot intervals and multi-degree splines. Comput. Aided. Geom. Design 2003, 20, 455–468.

[CrossRef]
10. Wang, G.Z.; Deng, C.Y. On the degree elevation of B-spline curves and corner cutting. J Comput. Aided. Geom. Design 2007, 24,

90–98. [CrossRef]
11. Shen, W.; Wang, G. A basis of multi-degree splines. Comput. Aided. Geom. Design 2010, 27, 23–35. [CrossRef]
12. Shen, W.; Wang, G.; Yin, P. Explicit representations of changeable degree spline basis functions. J. Comput. Appl. Math. 2013, 238,

39–50. [CrossRef]
13. Shen, W.; Yin, P.; Tang, C. Degree elevation of changeable degree spline. J. Comput. Appl. Math. 2016, 300, 56–67. [CrossRef]
14. Beccari, C.V.; Casciola, G.; Morigi, S. On multi-degree splines. Comput. Aided. Geom. Design 2017, 58, 8–23. [CrossRef]
15. Buchwald, B.; Mühlbach, G. Construction of B-splines for generalized spline spaces generated from local ECT-systems. J. Comput.

Appl. Math. 2003, 159, 249–267. [CrossRef]
16. Speleers, H. Algorithm 999: Computation of multidegree B-splines. ACM. Trans. Math. Softw. 2019, 45, 1–15. [CrossRef]
17. Toshniwal, D.; Speleers, H.; Hiemstra, R.R.; Manni, C.; Hughes, T.J. Multi-degree B-splines: Algorithmic computation and

properties. Comput. Aided. Geom. Design 2020, 76, 101792. [CrossRef]
18. Hiemstra, R.R.; Hughes, T.J.; Manni, C.; Speleers, H.; Toshniwal, D. A Tchebycheffian extension of multi-degree B-splines:

Algorithmic computation and properties. SIAM. J. Numer. Anal. 2020, 2, 1138–1163. [CrossRef]
19. Beccari, C.V.; Casciola, G. Matrix representations for multi-degree B-splines. J. Comput. Appl. Math. 2021, 381, 113007. [CrossRef]
20. Beccari, C.V.; Casciola, G. Stable numerical evaluation of multi-degree B-splines. J. Comput. Appl. Math. 2022, 400, 113743.

[CrossRef]
21. De Boor, C. On calculating with B-splines. J. Abbr. 1972, 6, 50–62. [CrossRef]
22. Cox, M. The numerical evaluation of B-splines. J. Inst. Math. Appl. 1972, 10, 134–149. [CrossRef]
23. Goldman, R. Pyramid Algorithms: A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling. In

The Morgan Kaufmann Series in Computer Graphics; Morgan Kaufmann Publishers, Academic Press: San Diego, CA, USA, 2002;
pp. 347–443.

24. Beccari, C.V.; Casciola, G.A. Cox-de Boor-type recurrence relation for C¹ multi-degree splines. Comput. Aided. Geom. Design 2019,
75, 101784. [CrossRef]

25. Li, X.; Huang, Z.J.; Liu, Z. A geometric approach for multi-degree spline. J. Comput. Sci. Tech. 2012, 27, 841–850. [CrossRef]
26. Farouki, R.T. The Bernstein polynomial basis: A centennial retrospective. Comput. Aided. Geom. Design 2012, 29, 379–419.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/0167-8396(94)90056-6
http://dx.doi.org/10.1016/j.cam.2010.03.015
http://dx.doi.org/10.1137/0515061
http://dx.doi.org/10.1023/A:1016664630563
http://dx.doi.org/10.1023/A:1021270530342
http://dx.doi.org/10.1093/imanum/10.2.223
http://dx.doi.org/10.1016/S0167-8396(00)00010-8
http://dx.doi.org/10.1016/S0167-8396(03)00096-7
http://dx.doi.org/10.1016/j.cagd.2006.10.004
http://dx.doi.org/10.1016/j.cagd.2009.08.005
http://dx.doi.org/10.1016/j.cam.2012.08.017
http://dx.doi.org/10.1016/j.cam.2015.11.030
http://dx.doi.org/10.1016/j.cagd.2017.10.003
http://dx.doi.org/10.1016/S0377-0427(03)00533-8
http://dx.doi.org/10.1145/3321514
http://dx.doi.org/10.1016/j.cagd.2019.101792
http://dx.doi.org/10.1137/19M1263583
http://dx.doi.org/10.1016/j.cam.2020.113007
http://dx.doi.org/10.1016/j.cam.2021.113743
http://dx.doi.org/10.1016/0021-9045(72)90080-9
http://dx.doi.org/10.1093/imamat/10.2.134
http://dx.doi.org/10.1016/j.cagd.2019.101784
http://dx.doi.org/10.1007/s11390-012-1268-2
http://dx.doi.org/10.1016/j.cagd.2012.03.001

	Introduction
	MD-Spline Basis Review
	Recursive Method
	Bernstein Representation
	Recursive Process
	Algorithm Analysis
	Numerical Experiment

	Generalized de Boor–Cox-Type Recursive Relations
	The First Form of Generalized de Boor–Cox-Type Relation
	The Second Form of Generalized de Boor–Cox-Type Relation

	Conclusions
	References

