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1. Introduction

Several famous inequalities for real functions have been proposed in the literature.
One of them is the Redheffer inequality, which states that

sin(x)
x
≥ π2 − x2

π2 + x2 , for all x ∈ R. (1)

Inequality (1) was proposed by Redheffer [1] and proved by Williams [2]. This work
motivated many researchers, regarding its generalization, refinement, and applications.
A new (but relatively difficult) proof of (1) using the Lagrange mean value theorem in
combination with induction was given in [3]. In 2015, Sándor and Bhayo [4] offered two
new interesting proofs and established two converse inequalities. They also pointed out a
hyperbolic analog. Other notable works related to the Redheffer inequality include [5–10].
Motivated by the inequality (1), C.P. Chen, J.W. Zhao, and F. Qi [8], using mathematical
induction and infinite product representations of cos(x), sinh(x), cosh(x)

cos(x) = ∏
n≥1

[
1− 4x2

(2n− 1)2π2

]
, cosh(x) = ∏

n≥1

[
1 +

4x2

(2n− 1)2π2

]
, (2)

and

sinh(x)
x

= ∏
n≥1

(
1 +

x2

n2π2

)
, (3)

respectively, established the following Redheffer-type inequalities:

cos(x) ≥ π2 − 4x2

π2 + 4x2 and cosh(x) ≤ π2 + 4x2

π2 − 4x2 , for all |x| ≤ π

2
. (4)

Mathematics 2023, 11, 379. https://doi.org/10.3390/math11020379 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11020379
https://doi.org/10.3390/math11020379
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4540-1601
https://doi.org/10.3390/math11020379
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11020379?type=check_update&version=1


Mathematics 2023, 11, 379 2 of 17

A hyperbolic analog of inequality (1) has also been established [8], by proving that

sinh(x)
x

≤ π2 + x2

π2 − x2 , for all |x| < π. (5)

In [6], inequalities (1) and (4) were extended and sharpened, and a Redheffer-type
inequality for tan(x) was also established, as follows:

(i) Let 0 < x < π. Then,

(
π2 − x2

π2 + x2

)β

≤ sin(x)
x
≤
(

π2 − x2

π2 + x2

)α

(6)

hold if and only if α ≤ π2/12 and β ≥ 1.
(ii) Let 0 ≤ x ≤ π/2. Then,

(
π2 − 4x2

π2 + 4x2

)β

≤ cos(x) ≤
(

π2 − 4x2

π2 + 4x2

)α

(7)

hold if and only if α ≤ π2/16 and β ≥ 1.
(iii) Let 0 < x < π/2. Then,

(
π2 + 4x2

π2 − 4x2

)α

≤ tan(x)
x
≤
(

π2 + 4x2

π2 − 4x2

)β

(8)

hold if and only if α ≤ π2/24 and β ≥ 1.
(iv) Let 0 < x < r. Then,

(
r2 + x2

r2 − x2

)α

≤ sinh(x)
x

≤
(

r2 + x2

r2 − x2

)β

(9)

hold if and only if α ≤ 0 and β ≥ r2/12.
(v) Let 0 < x < r. Then,

(
r2 + x2

r2 − x2

)α

≤ cosh(x) ≤
(

r2 + x2

r2 − x2

)β

(10)

hold if and only if α ≤ 0 and β ≥ r2/4.
(vi) Let 0 < x < r. Then,

(
r2 − x2

r2 + x2

)β

≤ tanh(x)
x

≤
(

r2 − x2

r2 + x2

)α

(11)

hold if and only if α ≤ 0 and β ≥ r2/6.

The Bessel function Jν of order ν is the solution of the differential equation:

x2y′′(x) + xy′(x) + (x2 − ν2)y(x) = 0. (12)
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The function Iν(x) = −i Jν(ix) is known as the modified Bessel function. It is well
known that trigonometric functions are connected with Bessel and modified Bessel func-
tions, as follows

sin(x) =
√

πx
2

J1/2(x), cos(x) =
√

πx
2

J−1/2(x),

sinh(x) =
√

πx
2

I1/2(x), cosh(x) =
√

πx
2

I−1/2(x).

Based on the relationship between trigonometric and Bessel functions as stated above, and
as Bessel and modified Bessel functions have infinite product representations involving
their zeros, the Redheffer inequality (1) has been generalized for modified Bessel functions
in [7], and sharpened in [9]. There are several other special functions, such as Struve and
q-Bessel functions, which have infinite product representations and are also related to
trigonometric functions.

Motivated by the above facts, the aim of this study was to address the following
problem:

Problem 1. Construct the class of functions f that can be represented by an infinite product with
the factors involving the zeroes of f , such that f exhibits a Redheffer-type inequality.

To answer Problem 1, we consider a sequence {bn(ν)}ν∈R,n≥1, such that

∞

∑
n=1

1
b2

n(ν)
7→ l(ν)

for ν ∈ I ⊂ R and the infinite product

∞

∏
n=1

(
1− x2

b2
n(ν)

)
is also absolutely convergent to a function of x for x ∈ Ix ⊂ R.

We study several properties of functions that are members of the following two classes:

Fν : =

{
ην(x) =

∞

∏
n=1

(
1− x2

b2
n(ν)

)}
, (13)

Gν : =

{
χν(x) =

∞

∏
n=1

(
1 +

x2

b2
n(ν)

)}
. (14)

It is easy to check that, for a fixed ν, {b1(ν), b2(ν), . . . , bn(ν), . . .} is a set of zeroes of the
functions in the class Fν. Unless mentioned otherwise, throughout the article, we denote
by bn(ν) the nth positive zero of the functions in the class Fν. For λν ∈ Gν and ην ∈ Fν, it
immediately follows that λν(x) = ην(ix), where i =

√
−1.

Using a similar concept as in [7,9], we derived the Redheffer inequality for the func-
tions from both classes, Fν and Gν. We also investigate the increasing/decreasing, log
convexity, and convexity nature of the functions (or their products) from the above two
classes. The main results are discussed in Section 2, while Section 3 provides several
examples based on the main result in Section 2. In Section 4, we compare the obtained
result with known results; especially the results given in [7,9–11].

The following lemma is required in the following.
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Lemma 1 ([12]). Suppose f (x) = ∑∞
k=0 akxk and g(x) = ∑∞

k=0 bkxk, where ak ∈ R and bk > 0
for all k. Furthermore, suppose that both series converge on |x| < r. If the sequence {ak/bk}k≥0 is
increasing (or decreasing), then the function x 7→ f (x)/g(x) is also increasing (or decreasing) on
(0, r).

Lemma 2 (Lemma 2.2 in [13]). Suppose that −∞ < a < b < ∞ and p, q : [a, b) 7→ ∞ are
differentiable functions, such that q′(x) 6= 0 for x ∈ (a, b). If p′/q′ is increasing (or decreasing) on
(a, b), then so is (p(x)− p(a))/(q(x)− q(a)).

2. Main Results

Theorem 1. Suppose that λν ∈ Gν and ην ∈ Fν. Then, the following assertions are true:

1. The function x 7→ λν(x) is increasing on (0, ∞).
2. The function x 7→ λν(x) is strictly log-convex on Iν = (−b1(ν), b1(ν)) and strictly geomet-

ric convex on (0, ∞).
3. The function x 7→ λν(x) satisfies the sharp exponential Redheffer-type inequality(

b2
1(ν) + x2

b2
1(ν)− x2

)aν

≤ λν(x) ≤
(

b2
1(ν) + x2

b2
1(ν)− x2

)bν

(15)

on Iν. Here, aν = 0 and bν = b2
1(ν)l(ν)/2 are the best possible constants.

4. The function x 7→ λν(x)ην(x) is increasing on (−b1(ν), 0] and decreasing on
(
0, b1(ν)

]
5. The function x 7→ λν(x)/ην(x) is strictly log-convex on Iν.
6. The function x 7→ ην(x) satisfies the sharp Redheffer-type inequality.

(
b2

1(ν)− x2

b2
1(ν)

)aν

≤ ην(x) ≤
(

b2
1(ν)− x2

b2
1(ν)

)bν

(16)

on Iν. Here, bν = 1 and aν = b2
1(ν)l(ν) are the best possible constants.

Proof. As λν ∈ Gν, from (14), it follows that

λν(x) =
∞

∏
n=1

(
1 +

x2

b2
n(ν)

)
. (17)

Similarly, as ην ∈ Gν, from (13), it follows that

ην(x) =
∞

∏
n=1

(
1− x2

b2
n(ν)

)
. (18)

1. Logarithmic differentiation of (17) leads to

(log(λν(x)))′ =
λ′ν(x)
λν(x)

=
∞

∑
n=1

2x
b2

n(ν) + x2 > 0 (19)

for x ∈ (0, ∞). This implies that log(λν(x)) is increasing and, consequently, λν(x) is
also increasing.
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2. Let x ∈ Iν. Differentiation of both sides of (19) gives

(log(λν(x)))′′ =
∞

∑
n=1

(
2

b2
n(ν) + x2 −

4x2

(b2
n(ν) + x2)

2

)

=
∞

∑
n=1

2
(
b2

n(ν)− x2)
(b2

n(ν) + x2)
2 > 0,

for x ∈ Iν This is equivalent to the function x 7−→ λν(x) being log-convex on Iν.
From (19), we also have(

xλ′ν(x)
λν(x)

)′
=

∞

∑
n=1

(
2− b2

n(ν)

b2
n(ν) + x2

)′
=

∞

∑
n=1

2xb2
n(ν)

(b2
n(ν) + x2)2

.

This implies that x 7−→ xλ′ν(x)/λν(x) is increasing on x ∈ (0, ∞) and, as a conse-
quence, we have that x 7−→ λν(x) is geometrically convex on (0, ∞).

3. Consider the function

hν(x) :=
log(λν(x))

log(b2
1(ν) + x2)− log(b2

1(ν)− x2)
.

For x ∈ [0, ∞), define

p(x) = log(λν(x)), q(x) = log(b2
1(ν) + x2)− log(b2

1(ν)− x2).

From the calculation along with (19), it follows that

p′(x)
q′(x)

=

λ′ν(x)
λν(x)

2x
b2

1(ν)+x2 +
2x

b2
1(ν)−x2

=
λ′ν(x)

2xλν(x)
.
b4

1(ν)− x4

2b2
1(ν)

=
1

2b2
1(ν)

∞

∑
n=1

b4
1(ν)− x4

b2
n(ν) + x2 .

Then,

d
dx

(
p′(x)
q′(x)

)
=

1
2b2

1(ν)

∞

∑
n=1

−4x3(b2
n(ν) + x2)− 2x(b4

1(ν)− x4)

(b2
n(ν) + x2)2

= − x
b2

1(ν)

∞

∑
n=1

2x2b2
n(ν) + x4 + b2

1(ν)

(b2
n(ν) + x2)2 ≤ 0

on x ∈ [0, ∞). Thus, p′(x)/q′(x) is decreasing and, hence,

hν(x) =
p(x)
q(x)

=
p(x)− p(0)
q(x)− q(0)

is also decreasing on [0, b1(ν)]. Finally,

lim
x→b1(ν)

hν(x) < hν(x) < lim
x→0

hν(x),
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where

aν := lim
x→b1(ν)

hν(x) = lim
x→b1(ν)

p(x)
q(x)

= lim
x→b1(ν)

p′(x)
q′(x)

= 0,

bν := lim
x→0

hν(x) = lim
x→0

p(x)
q(x)

= lim
x→0

p′(x)
q′(x)

=
b2

1(ν)

2
l(ν)

are the best possible constants and

l(ν) =
∞

∑
n=1

1
b2

n(ν)
.

4. As λν ∈ Gν and ην ∈ Fν, from (13) and (14), it follows that

λν(x)ην(x) =
∞

∏
n=1

(
1− x4

b4
n(ν)

)
.

Logarithmic differentiation yields

(λν(x)ην(x))′

λν(x)ην(x)
= −

∞

∑
n=1

4x3

b4
n(ν)− x4 ,

which is negative for x ∈ (0, b1(ν)) and positive for x ∈ (−b1(ν), 0). Hence, the result
follows.

5. From part (2), it follows that x 7−→ λν(x) is strictly log-convex on Iν. Now, consider
the function x 7−→ (ην(x))−1. From (2), it follows that(

log
(
(ην(x))−1

))′
=

∞

∑
n=1

2x
b2

n(ν)− x2

and (
log
(
(ην(x))−1

))′′
= 2

∞

∑
n=1

b2
n(ν) + x2

(b2
n(ν)− x2)2 > 0.

This implies that x 7−→ (ην(x))−1 is strictly log-convex on Iν. Finally, being the
product of two strictly log-convex functions, x 7−→ λν(x)/ην(x) is strictly log-convex
on Iν.

6. To prove this result, we first need to set up a Rayleigh-type function for the Lommel
function. Define the function

α
(2m)
n (ν) :=

∞

∑
n=1

b−2m
n (ν), m = 1, 2, . . . . (20)

Logarithmic differentiation of χν(x) yields

xχ′ν(x)
χν(x)

= −2
∞

∑
n=1

x2

b2
n(ν)− x2 =

∞

∑
n=1

x2

b2
n(ν)

(
1− x2

b2
n(ν)

)−1

=
∞

∑
n=1

x2

b2
n(ν)

∞

∑
m=0

x2m

b2m
n (ν)

.

Interchanging the order of the summation, it follows that

xχ′ν(x)
χν(x)

= −2
∞

∑
m=0

∞

∑
n=1

x2m+2

b2m+2
n (ν)

= −2
∞

∑
m=1

α
(2m)
n (ν)x2m. (21)
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Consider the function

ϕµ(x) :=
log(χν(x))

log
(

1− x2

b2
1(ν)

) =
pµ(x)
qµ(x)

. (22)

The binomial series, together with (21), gives the ratio of p′µ and q′µ as

p′µ(x)
q′µ(x)

=

xχ′ν(x)
χν(x)

−2x2

b1(ν)2

(
1− x2

b1(ν)2

)−1 =
∑∞

m=1 α
(2m)
n (ν)x2m

∑∞
m=1 b−2m

1 (ν)x2m
. (23)

Denote dm = b2m
1 (ν)α

(2m)
n (ν). Then,

dm+1 − dm = b2m+2
1 (ν)α

(2m+2)
n n(ν)− b2m

1 (ν)α
(2m)
n n(ν)

=
∞

∑
n=1

b2m
1 (ν)

b2m
n (ν)

(
b2

1(ν)

b2
n(ν)

− 1

)
< 0.

This is equivalent to saying that the sequence {dm} is decreasing. Hence, by Lemma 1,
it follows that the ratio p′µ/q′µ is decreasing. In view of Lemma 2, we have that
τµ = pµ/qµ is decreasing.
From (22) and (23), it can be shown that

lim
x→0

τµ(x) = lim
x→0

p′µ(x)
q′µ(x)

= lim
x→0

p′′µ(x)
q′′µ(x)

= lim
x→0

p′′µ(x)
q′′µ(x)

= b2
1(ν)α

(2)
n (ν), (24)

and

lim
x→b1(ν)

τµ(x) = lim
x→b2

1(ν)

p′µ(x)
q′µ(x)

= lim
x→b2

1(ν)

∞

∑
n=1

b2
1(ν)− x2

b2
n(ν)− x2 = 1. (25)

It is easy to see that b2
1(ν)α

(2)
n (ν) = b2

1(ν)l(ν) = bν.

This completes the proof of all of the results.

In the next result, by approaching a similar proof as in Theorem 1, we prove a sharper
upper bound for λν, compared to that presented in Theorem 1 (Part 3).

Theorem 2. If r > 0 and |x| < r, then the following inequality(
r2 − x2

r2

)aν

≤ λν(x) ≤
(

r2 − x2

r2

)bν

(26)

holds, where aν = 0 and bν = −r2l(ν) are the best possible constants.

Proof. Due to symmetry, it is sufficient to show the result for [0, r). Define Ψ : [0, r) −→ R as

Ψ(x) := log(λν(x))− r2l(ν)log
(

r2

r2 − x2

)
.
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Then,

Ψ′(x) =
λ′ν(x)
λν(x)

− 2xr2

r2 − x2 l(ν) =
∞

∑
n=1

2x
b2

n(ν) + x2 −
∞

∑
n=1

2xr2

(r2 − x2)b2
n(ν)

=
∞

∑
n=1

2x(r2 − x2)b2
n(ν)− 2xr2(b2

n(ν) + x2)

b2
n(ν)(r2 − x2)(b2

n(ν) + x2)

= −2x3
∞

∑
n=1

b2
n(ν) + r2

b2
n(ν)(r2 − x2)(b2

n(ν) + x2)
≤ 0,

for x ∈ [0, r). This implies that Ψ is decreasing, and Ψ(x) ≤ Ψ(0) = 0. This is equivalent to

log(λν(x)) ≤ log
(

r2

r2 − x2

)r2l(ν)

=⇒ λν(x) ≤
(

r2 − x2

r2

)−r2l(ν)

.

This completes the proof. Now, to show the bν = −r2l(ν) is the best possible constant,
consider

δν :=
log(λν(x))

log
(

r2−x2

r2

) .

Then, using the Bernoulli–L’Hôpital rule, we have

lim
x↘0

δν(x) = lim
x↘0

log(λν(x))

log
(

r2

r2−x2

)
= lim

x↘0

(
λ′ν(x)
λν(x)

− r2 − x2

2x

)
= lim

x↘0

∞

∑
n=1

−(r2 − x2)

b2
n(ν) + x2 = −

∞

∑
n=1

r2

b2
n(ν)

= −r2l(ν) = bν.

Thus, bν is the best possible constant.

3. Application Examples

As stated before, the primary aim of this work is to find a Redheffer-type inequality
for functions that are combinations of well-known functions. By constructing examples,
we show that Theorem 1 not only covers known results but also covers a wide range of
functions. We list each case as an example.

3.1. Example Involving Trigonometric Functions

Our very first example involves the well-known function f (x) = sinc(x). In math-
ematics, physics, and engineering, there are two forms of the sinc(x) function; namely,
non-normalized and normalized sinc functions. In mathematics, the non-normalized sinc
function is defined, for x 6= 0, as:

sinc(x) :=
sin(x)

x
.

On the other hand, in digital and communication systems, the normalized form is defined as:

sinc(x) :=
sin(πx)

πx
, x 6= 0.

The scaling of the independent variable (the x-axis) by a factor of π is the only dis-
tinction between the two definitions. In both scenarios, it is assumed that the limit value 1
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corresponds to the function’s value at the removable singularity at zero. The sinc function
is an entire function, as it is analytic everywhere.

The normalized sinc has the following infinite product representation:

sin(πx)
πx

=
∞

∏
n=1

(
1− x2

n2

)
. (27)

It is well known that the infinite series ∑∞
n=1 n−2 is convergent and

∞

∑
n=1

1
n2 =

π2

6
.

We can conclude that sinc(x) ∈ Fν. From Theorem 1, it follows that

(1− x2)aν ≤ sinc(x) ≤ (1− x2)bν

with |x| < 1, bν = 1, and aν = π2/6.
Now, replacing x with ix in (27), we have

sinh(πx)
πx

=
∞

∏
n=1

(
1 +

x2

n2

)
. (28)

Clearly, sinh(πx)/πx ∈ Fν. Hence, by Theorem 1 (part 3), it follows that(
1 + x2

1− x2

)τν

≤ sinh(πx)
πx

≤
(

1 + x2

1− x2

)δν

for |x| < 1. Here, τν = 0 and δν = π2/6 are the best possible values of the constants.
On the other hand, from Theorem 2, it follows that

sinh(πx)
πx

≤
(

r
r2 − x2

)δν

for |x| < r, where δν = π2/6 is the best possible constant.
Next, we consider the infinite product

∞

∏
n=1

(
1− x2

n2π2 − ν2

)
, |ν| < π. (29)

Using the Mathematica software, we find that

∞

∏
n=1

(
1− x2

n2π2 − ν2

)
=

ν csc(ν) sin
(√

ν2 + x2
)

√
ν2 + x2

(30)

and

∞

∑
n=1

1
n2π2 − ν2 =

1− ν cot(ν)
2ν2 . (31)

Clearly, ν csc(ν) sin
(√

ν2 + x2
)

/
√

ν2 + x2 ∈ Fν, and we have the following result, accord-
ing to Theorem 1.
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Corollary 1. Let 0 6= ν ∈ (−π, π). Then, the following inequality

(
π2 − ν2 + x2

π2 − ν2 − x2

)aν

≤
ν csc(ν) sin

(√
ν2 + x2

)
√

ν2 + x2
≤
(

π2 − ν2 + x2

π2 − ν2 − x2

)bν

holds for |x| < π2− ν2. Here, aν = 0 and bν = (1− ν cot(ν))/4ν2(π2 − ν2) are the best possible
constants.

3.2. Examples Involving Hurwitz Zeta Functions

The Hurwitz zeta functions are zeta functions defined for the complex variable s, with
Re(s) > 0 and ν 6= −1,−2,−3, . . ., defined by

ζ(s, ν) :=
∞

∑
n=0

1
(n + ν)s . (32)

This series is absolutely convergent for given values of s and ν, and can be extended to
meromorphic functions defined for all s 6= 1. In particular, the Riemann zeta function is
given by ζ(s, 1). For our study in this section, we consider s = m ∈ N \ {1} and ν > −1.

Now, consider the infinite product

χm,ν(x) :=
∞

∏
n=1

(
1− x2

(n + ν)m

)
, m ≥ 2 and ν > −1, (33)

for which the product is convergent. In the closed form of the product, we consider
m = 2, 3, 4. Then, χm,ν(x) have the forms

χ2,ν(x) = Γ(ν+1)2

Γ(−x+ν+1)Γ(x+ν+1)

χ3,ν(x) = Γ(ν+1)3

Γ(−x2/3+ν+1)Γ( 1
2 ((1−i

√
3)x2/3+2(ν+1)))Γ( 1

2 ((1+i
√

3)x2/3+2(ν+1)))

χ4,ν(x) = Γ(ν+1)4

Γ(ν−
√
−x+1)Γ(ν+

√
−x+1)Γ(ν−

√
x+1)Γ(ν+

√
x+1)

.

Next, we state a result related to the inequalities involving χm,ν(x). Although the
result is a direct consequence of Theorem 1 (Part 6), taking bn(ν) = (n + ν)m/2 for m ≥ 2
and ν > −1, we state it as a theorem due to its independent interest. Clearly,

∞

∑
n=1

1
b2

n(ν)
=

∞

∑
n=1

1
(n + ν)m = ζ(m, ν)− 1

νm .

Theorem 3. If m ≥ 2, ν > −1 and |x| < (n + ν)m, then the following sharp exponential
inequality holds: (

(1 + ν)m − x2

(1 + ν)m

)am,ν

≤ χm,ν(x) ≤
(
(1 + ν)m − x2

(1 + ν)m

)bm,ν

, (34)

with the best possible constants as bm,ν = 1 and am,ν = (1 + ν)m(ζ(m, ν)− ν−m).

Taking ν = 1 in (34), it follows that(
1− x2

2m

)am,1

≤ χm,1(x) ≤
(

1− x2

2m

)bm,1

. (35)
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Now, by choosing m = 2, 3, 4, 5, 6 in (35), we have the following special cases of
Theorem 3:

(i)
(

1− x2

4

)a2,1

≤ χ2,1(x) ≤
(

1− x2

4

)b2,1

with a2,1 =
2π2

3
,

(ii)
(

1− x2

8

)a3,1

≤ χ3,1(x) ≤
(

1− x2

8

)b3,1

with a3,1 = 8ζ(3, 1) = 9.61646,

(iii)
(

1− x2

16

)a4,1

≤ χ4,1(x) ≤
(

1− x2

16

)b4,1

with a4,1 =
8π4

45
,

(iv)
(

1− x2

16

)a5,1

≤ χ5,1(x) ≤
(

1− x2

16

)b5,1

with a5,1 = 32 ζ(5, 1) = 33.1817,

(v)
(

1− x2

16

)a6,1

≤ χ6,1(x) ≤
(

1− x2

16

)b6,1

with a6,1 =
64π6

945

where, in each of the cases (m = 2, 3, 4, 5, 6), the best values of bm,1 = 1 and χm,1(x) are
listed below

χ2,1(x) =
sin(πx)

πx− πx3 ,

χ3,1(x) = − 1

(x2 − 1)Γ
(
1− x2/3

)
Γ
(

1
2

(
1− i
√

3
)

x2/3 + 1
)

Γ
(

1
2

(
1 + i
√

3
)

x2/3 + 1
) ,

χ4,1(x) = −
sin
(
π
√

x
)

sinh
(
π
√

x
)

π2(x3 − x)

χ5,1(x) = 1
(1−x2)Γ(1−x2/5)Γ( 5√−1x2/5+1)Γ(1−(−1)2/5x2/5)Γ((−1)3/5x2/5+1)Γ(1−(−1)4/5x2/5)

,

χ6,1(x) =
sin
(
π 3
√

x
)(

cos
(
π 3
√

x
)
− cosh

(√
3π 3
√

x
))

2π3x(x2 − 1)
.

3.3. Examples Involving Bessel Functions

In this part, we discuss the generalization of the Redheffer type bound in terms of
Bessel and modified Bessel functions. In this regard, we consider the very first result given
by Baricz [7], and later by Khalid [9], as well as Baricz and Wu [10].

From ([14], p. 498), it is known that the Bessel function Jν has the infinite product

Jν(x) = 2νΓ(ν + 1)x−ν Jν(x) = ∏
n≥1

(
1− x2

j2ν,n

)
(36)

for arbitrary x and ν 6= −1,−2,−3, . . .. It is also well known that ([14], P. 502)

∞

∑
n=1

1
j2n,ν

=
1

4(ν + 1)
.

This implies Jν ∈ Fν. Similarly, Iν(x)—the normalized form of the modified Bessel
function Iν—can be expressed as

Iν(x) = 2νΓ(ν + 1)x−ν Iν(x) = ∏
n≥1

(
1 +

x2

j2ν,n

)
, (37)

which indicates that Iν ∈ Gν. Now, from Theorem 1 (3) and Theorem 2, we have the
following results.

Theorem 4. Consider ν > −1 and Iν ∈ Gν.



Mathematics 2023, 11, 379 12 of 17

1. For |x| < jν,1, we have (
j2ν,1 + x2

j2ν,1 − x2

)aν

≤ Iν(x) ≤
(

j2ν,1 + x2

j2ν,1 − x2

)bν

, (38)

with the best possible constants as aν = 0 and bν = j2ν,1/8(ν + 1).
2. For any r > 0 and |x| < r, we have

(
r2 − x2

r2

)aν

≤ Iν(x) ≤
(

r2 − x2

r2

)bν

, (39)

with the best possible constants as aν = 0 and bν = −r2/4(ν + 1).

Now, from Theorem 1 (6), the following inequality holds for normalized Bessel func-
tions.

Theorem 5. Consider ν > −1 and Jν ∈ Fν. For |x| < jν,1, we have(
j2ν,1 − x2

j2ν,1

)aν

≤ Jν(x) ≤
(

j2ν,1 − x2

j2ν,1

)bν

, (40)

with the best possible constants as bν = 1 and aν = j2ν,1/4(ν + 1).

3.4. Examples Involving Struve Functions

One of the most well-known special functions is the solution to the non-homogeneous
Bessel differential equation

z2y′′(z) + zy′(z) + (z2 − ν2)y(z) = zµ+1,

called the Struve functions, Sν. If hν,n denotes the nth positive zero of Sν, then, for |ν| ≤ 1/2,
the function Sν can be expressed as (see [15])

Sν(z) =
zν+1

2ν
√

πΓ
(
ν + 3

2
) ∞

∏
n=1

(
1− z2

h2
ν,n

)
. (41)

From [16] (Theorem 1), it is useful to note that hν,n > hν,1 > 1 for |ν| < 1/2. From (41),
consider the normalized form

Sν(z) :=
√

π2νΓ
(

ν +
3
2

)
z−νSν(z) =

∞

∏
n=1

(
1− z2

h2
ν,n

)
. (42)

From [17], it follows that for |ν| ≤ 1/2,

∑
n≥1

1
h2

v,n
=

1
3(2v + 3)

.

Consider the modified form of the Struve function

Lν(z) = Sν(iz) =
∞

∏
n=1

(
1 +

z2

h2
ν,n

)
.

Clearly, Sν ∈ Fν and Lν ∈ Gν.
Now, from Theorem 1 (3) and Theorem 2, we have the following results.

Theorem 6. Consider |ν| < 1/2 and Lν ∈ Gν.
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1. For |x| < hν,1, we have(
h2

ν,1 + x2

h2
ν,1 − x2

)aν

≤ Lν(x) ≤
(

h2
ν,1 + x2

h2
ν,1 − x2

)bν

, (43)

with the best possible constants as aν = 0 and bν = h2
ν,1/6(2ν + 3).

2. For any r > 0 and |x| < r, we have

(
r2 − x2

r2

)aν

≤ Lν(x) ≤
(

r2 − x2

r2

)bν

, (44)

with the best possible constants as aν = 0 and bν = −r2/3(2ν + 3).

Now, from Theorem 1 (6), the following inequality holds for normalized Bessel func-
tions.

Theorem 7. Consider ν > −1 and Sν ∈ Fν. For |x| < hν,1, we have(
h2

ν,1 − x2

h2
ν,1

)aν

≤ Sν(x) ≤
(

h2
ν,1 − x2

h2
ν,1

)bν

, (45)

with the best possible constants as bν = 1 and aν = h2
ν,1/3(2ν + 3).

3.5. Examples Involving Dini Functions

The Dini function dν : Ω j C −→ C is defined by

dν(z) = (1− v)Jν(z) + zJ′ν(z) = Jν(z)− zJν+1(z).

The modified Bessel functions are related to the Bessel functions by Iν(z) = i−νJν(iz), which
gives the modified Dini function

ξν = Ω j C −→ C,

defined by

ξν(z) = i−νdν(iz) = (1− ν)Iν(z) + zI′ν(z) = Iν(z)− zIν+1(z).

For an integer ν, the domain Ω can be taken as the whole complex plane, while Ω is the
whole complex plane minus an infinite slit from the origin if ν is not an integer.

In view of the Weierstrassian factorization of dν(z)

dν(z) =
zν

2νΓ(ν + 1) ∏
n≥1

(
1− z2

α2
ν,n

)
, (46)

where ν > −1 and the formula ξ(z) = i−1dν(iz), we have the following Weierstrassian
factorization of ξν(z) for all ν > −1 and z ∈ Ω:

ξν(z) =
zν

2νΓ(ν + 1) ∏
n≥1

(
1 +

z2

α2
ν,n

)
, (47)

where the infinite product is uniformly convergent on each compact subset of the complex
plane, where αν,n is the nth positive zero of the Dini function dν. The principal branches of
dν(z) and ξν(z) correspond to the principal value of (z/2)ν, and are analytic in the z-plane
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cut along the negative real axis from 0 to infinity; that is, the half line (∞, 0]. Now for
ν > −1, define the function Λν : R −→ [1, ∞) as

Λν(x) = 2νΓ(ν + 1)x−νξν(x) = ∏
n≥1

(
1 +

x2

α2
ν,n

)
. (48)

Furthermore, for ν > −1, let us define the function Dν : R −→ R

Dν(x) = 2νΓ(ν + 1)x−νdν(x) = ∏
n≥1

(
1− x2

α2
ν,n

)
. (49)

From [18], it follows that
∞

∑
n=1

1
α2

ν,n
=

3
4(ν + 1)

.

Comprehensive details of the properties of Dini functions can be found in [11,18] and
the references therein.

From the definition of the classes Fν and Gν, it is clear that Λν ∈ Gν and Dν ∈ Gν.
Thus, we have the following results, by Theorems 1 and 2.

Theorem 8. Consider ν > −1 and Λν ∈ Gν.

1. For |x| < αν,1, we have(
α2

ν,1 + x2

α2
ν,1 − x2

)aν

≤ Λν(x) ≤
(

α2
ν,1 + x2

α2
ν,1 − x2

)bν

, (50)

with the best possible constants as aν = 0 and bν = 3α2
ν,1/8(ν + 1).

2. For any r > 0 and |x| < r, we have

(
r2 − x2

r2

)aν

≤ Λν(x) ≤
(

r2 − x2

r2

)bν

, (51)

with the best possible constants as aν = 0 and bν = −3r2/4(ν + 1).

Further, Theorem 1 (6) gives the following result.

Theorem 9. For ν > −1 and |x| < αν,1, we have(
α2

ν,1 − x2

α2
ν,1

)aν

≤ Dν(x) ≤
(

α2
ν,1 − x2

α2
ν,1

)bν

, (52)

with the best possible constants as bν = 1 and aν = 3α2
ν,1/4(ν + 1).

3.6. Examples Involving q-Bessel Functions

This section considers the Jackson and Hahn–Exton q-Bessel functions, respectively
denoted by J

(2)
ν (z; q) and J

(3)
ν (z; q). For z ∈ C, ν > −1 and q ∈ (0, 1), both functions are

defined by the series

J
(2)
ν (z; q) :=

(
qν+1; q

)
∞

(q; q)∞
∑
n≥0

(−1)n( z
2
)2n+ν

(q; q)n(qν+1; q)n
qn(n+ν) (53)

J
(3)
ν (z; q) :=

(
qν+1; q

)
∞

(q; q)∞
∑
n≥0

(−1)nz2n+ν

(q; q)n(qν+1; q)n
q

n(n+1)
2 . (54)
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Here,

(a; q)0 = 1, (a; q)n =
n

∏
k=1

(
1− aqk−1

)
, and (a; q)∞ = ∏

k≥1

(
1− aqk−1

)
are known as the q-Pochhammer symbol. For a fixed z and q → 1, both of the above
q-Bessel functions relate to the classical Bessel function Jν as J

(2)
ν ((1 − z)q; q) → Jν(z)

and J
(3)
ν ((1 − z)q; q) → Jν(2z). The q-extension of Bessel functions has been studied

by several authors, notably, references [19–24] and the various references therein. The
geometric properties of q-Bessel functions have been discussed in [25]. It is worth noting
that abundant results are available in the literature, regarding the q-extension of Bessel
functions; however, we limit ourselves to the requirements of this article. For this purpose,
we recall the Hadamard factorization for the normalized q-Bessel functions:

z→ J (2)
ν (z; q) = 2νcν(q)z−νJ

(2)
ν (z; q) and z→ J (3)

ν (z; q) = cν(q)z−νJ
(3)
ν (z; q),

where cν(q) = (q; q)∞/
(
qν+1; q

)
∞.

Lemma 3 ([25]). For ν > −1, the functions z → J (2)
ν (z; q) and z → J (3)

ν (z; q) are entire
functions of order zero, which have Hadamard factorization of the form

J (2)
ν (z; q) = ∏

n≥1

(
1− z2

j2ν,n(q)

)
, J (3)

ν (z; q) = ∏
n≥1

(
1− z2

l2
ν,n(q)

)
, (55)

where jν,n(q) and lν,n(q) are the nth positive zeros of the functions J (2)
ν (.; q) and J (3)

ν (.; q),
respectively.

We recall that, from [25], the q-extension of the first Rayleigh sum for Bessel functions
of the first kind is

∞

∑
n=1

1
j2ν,n

=
1

4(ν + 1)
, is

∞

∑
n=1

1
j2ν,n(q)

=
qν+1

4(q− 1)(qν+1 − 1)
. (56)

The series form of J (3)
ν (z; q) is

J (3)
ν (z; q) =

∞

∑
n=0

(−1)nz2nq
n(n+1)

2

(q, q)n(qν+1, q)n
. (57)

Comparing the coefficients of z2 in (55) and (57), it follows that

∞

∑
n=1

1
l2
ν,n(q)

=
q

(q− 1)(qν+1 − 1)
. (58)

The above facts imply that J (i)
ν (z; q) ∈ Fν for i = {1, 2}. For i = {1, 2} and ν > −1, denote

the nth zero of J (i)
ν (z; q) by bi,n(ν). From (56) and (58), it follows that

li(ν) :=
∞

∑
n=1

1
b2

i,n(ν)
=


qν+1

4(q−1)(qν+1−1) i = 1,

q
(q−1)(qν+1−1) i = 2.

Now, we have the following result, by Theorem 1 (6).
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Theorem 10. The function x 7→ J (i)
ν (z; q) ∈ Fν for i = {1, 2} satisfies the sharp Redheffer-type

inequality

(
b2

i,1(ν)− x2

b2
i,1(ν)

)aν

≤ J (i)
ν (z; q) ≤

(
b2

i,1(ν)− x2

b2
i,1(ν)

)bν

(59)

on Iν. Here, bν = 1 and aν = b2
i,1(ν)li(ν) are the best possible constants.

4. Conclusions

In this article, we defined two classes of functions on the real domain, using the infinite
products of factors involving the positive zeroes of the function. We assume that the infinite
product is uniformly convergent, and it is also assumed that the sum of the square of zeroes
is convergent. We illustrate several examples that ensure that these classes are non-empty.
Functions starting from the most fundamental trigonometric functions (i.e., sin, cos) to
special functions, such as Bessel and q-Bessel functions, Hurwitz functions, Dini functions,
and their hyperbolic forms, are included in the classes. In conclusion, it follows that the
results obtained in Section 2 are similar to the results available in the literature for each of the
individual functions listed above. For example, Redheffer-type inequalities for Bessel and
modified functions, as stated in Theorem 5 and Theorem 4, form part of the results given
previously in [7,9,10], while the inequality obtained in Theorem 8 has also been obtained in
([11], Theorem 7). From Theorem 1 (part 4), it follows that the function x 7→ Λν(x)Dν(x) is
increasing on (−αν,n, 0) and decreasing on (0, αν,n), which has also been obtained in ([11],
Theorem 8 (i)). To the best of our knowledge, Theorems 3 and 10 have not been published
in the existing literature. We finally conclude that the Redheffer-type inequalities obtained
in this study cover a wide range of functions, regarding Theorems 1 and 2. Using the
Rayleigh concepts provided in [26], more investigations into the zeroes of special functions
may lead to more examples related to the work in this study, and we intend to follow this
line of research for future investigations.
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