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Abstract: The modeling and forecasting of dynamically varying covariances has received a great deal
of attention in the literature. The two most widely used conditional covariances and correlations
models are BEKK and the DCC. In this paper, we advance a new method based on network analysis
and a new targeting approach for both the above models with the aim of better estimating covariance
matrices associated with financial time series. Our approach is based on specific groups of highly
correlated assets in a financial market and assuming that those relationships remain unaltered at least
in the long run. Based on the estimated parameters, we evaluate our targeting method on simulated
series by referring to two well-known loss functions introduced in the literature. Furthermore, we
find and analyze all the maximal cliques in correlation graphs to evaluate the effectiveness of our
method. Results from an empirical case study are encouraging, mainly when the number of assets is
not large.
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1. Introduction

Modeling financial volatility is a crucial issue in empirical finance. Heteroscedasticity is
a peculiar feature of a financial time series, as it is characterized by periods more volatile
than others due to unpredictable outer events. The existence of heteroscedasticity is a major
concern in a univariate approach aiming to estimate and forecast a given (financial) phe-
nomenon. Estimating financial volatility becomes a more difficult task if we consider N time
series (multivariate approach) and we are interested in understanding the co-movements of
financial returns. In this regard, different multivariate general auto-regressive conditional
heteroscedasticity (MGARCH) models have been presented in the literature. In finance, the
main aim of MGARCH models is to predict the future values of the variance and covariance
matrix of asset returns. Readers may refer to the very recent paper [1] and the references
therein for a comprehensive review of the existing literature on MGARCH approaches.
These methods play an important role in different fields of finance such as, for instance,
in portfolio optimization [2–4], option pricing [5,6], energy markets [7], and analysis of
contagion and volatility spillovers [8–10]. In the literature, MGARCH models are classified
into different categories (see, e.g., [11]): (1) direct generalizations of the univariate models;
(2) linear combinations of univariate models, such as, generalized orthogonal models and
latent factor models; (3) nonlinear combinations of univariate models; and (4) nonparamet-
ric and semi-parametric models that constitute an alternative to the parametric estimation
of the financial volatility and do not impose a particular structure on the data. In this paper,
we will focus on categories (1) and (3).

In general, estimating a time-varying covariance matrix is difficult due to the problem’s
dimension and the fact that a covariance matrix must be positive definite. The most
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renowned MGARCH model of category (1) is BEKK, which has the attractive property
that the conditional covariance matrices are positive definite by construction. However,
estimation of a BEKK model involves somewhat heavy computations due to the fact
that it contains a large number of parameters. To overcome this problem, one approach
was to decompose the conditional covariance matrix into conditional standard deviations
and a conditional correlation matrix (models of category (3)). In [12,13], the authors
introduced the dynamic conditional correlation model (DCC-GARCH), for which the
conditional correlation matrix is designed to vary over time. This approach has one
important advantage, that is, the number of parameters to be simultaneously estimated is
reduced, as a complex optimization problem is disaggregated into simpler ones.

Several authors have provided a number of different modifications of the MGARCH
models, some of which are mentioned in [1]. Other meaningful approaches explicitly
incorporate the effect of measurement errors and time-varying attenuation biases into
the covariance estimations and forecasts (see, e.g., [14]). Engle and Kelly [15] studied a
special case of the DCC-GARCH model, the dynamic equicorrelation model, in which all
correlations are identical. This can be a useful model in situations where the number of
parameters to estimate is large.

A specific modification of the MGARCH models is provided in [16]. The authors
directly modified the structure of the BEKK and DCC models by introducing a “target”
matrix and compared their modified models to the original ones. The authors considered
the long-run covariance matrix as a target matrix, which can be consistently estimated by
the corresponding sample estimator and considered to be different versions of the BEKK
and DCC models. They point out that by imposing positive definiteness and covariance sta-
tionarity for the different versions of BEKK is extremely complicated. For the DCC models,
targeting can be useful to reduce the number of parameters to estimate. However, in [17]
the authors proved that the estimation of DCC models with targeting may be inconsistent.
From a theoretical viewpoint, the paper [16] is worthy of interest because the authors
study the availability of the analytical forms for the sufficient conditions for consistency,
asymptotic normality of the appropriate estimators, and computational tractability for
large-dimension problems. However, in [16], no empirical tests were presented, and the
authors claimed that it is not possible to provide an appropriate evaluation of which of the
different MGARCH models is preferred.

In this paper, we advance a novel approach based on network analysis for evaluating
the estimates of the time-varying correlation matrices in financial markets. We refer to the
BEKK and DCC models and propose a variant of these two models by suitably modifying
the log-likelihood function to maximize. We call the two resulting models the modified
BEKK and modified DCC models, respectively. This modification consists of introducing a
term in the function incorporating a loss measure based on the difference between the time-
varying covariance matrices and the covariance matrix estimated with respect to the whole
in-sample period. In actuality, as observed in [18], a financial market is characterized by
some stylized facts. More precisely, there are often specific groups of assets that are highly
correlated in such a way that positive price changes of one asset in the group determine
positive price changes of all the other assets in the group, and these relationships remain
unaltered over time. Hence, the idea behind our modification is that (extremely) high/low
values of correlations observed between pairs of assets do not change too much during
time. In particular, any pair of highly positive or negative correlated assets in the market
remains highly (positive/negative) correlated during the given observed time period.

In a financial market, the correlation between assets can be represented via a correlation
graph where, given a time period, assets are identified by vertices of a complete graph G
and distances (weights) assigned to pairs of assets (edges) incorporate the dependency
structure of returns. Mantegna [19] was one of the first who constructed asset graphs
based on stock price correlations in order to detect the hierarchical organization inside
a stock market. In order to highlight only groups of assets whose correlation is above
or below a given threshold δ, one can extract a (sub)graph G(δ) of G that contains only
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a subset of the connections in G between pairs of assets. In this new graph G(δ), two
stocks are linked if and only if they exhibit high/low values of correlation. In other words,
the observed subgraph G(δ) reveals the strong relationships between groups of assets in a
financial market during a given time period T. Examples of such interconnected groups
are, for instance, firms belonging to a specific industrial sector. We introduce an additional
term in the log-likelihood function that takes into account the fact that the time-varying
covariance or correlation matrices must not alter the clusters formed by highly correlated
assets observed during T. Hence, with our method we estimate a modified MGARCH
model, simulate T realizations of returns of each of the N assets, compute the correlation
matrix with respect to the whole simulated in-sample period and, given the threshold δ,
we obtain the corresponding simulated graph GS(δ). Then, we compare the observed and
simulated graphs G(δ) and GS(δ), respectively. In particular, we compare all the maximal
cliques of the two graphs. Given a general graph G, a clique is a set of interconnected stocks
that forms a complete subgraph of G. Hence, maximal cliques in G(δ) and GS(δ) represent
highly (positive/negative) correlated assets, that is, a stock that belongs to a clique is
highly correlated with all other stocks in the clique. The comparisons allow us to verify if a
modified MGARCH model has been able to correctly reproduce the volatility and all the
strong relationships among assets of the given financial market and if a modified model is
able to outperform the corresponding original MGARCH model.

In light of the above discussion, the contribution of the present paper is threefold. First,
we propose a new alternative targeting method that does not alter the models’ structure. In
fact, we modify only the log-likelihood objective function by introducing a suitable loss
or distance measure between the long-run sample covariance or correlation matrix and
the corresponding conditional covariance or conditional correlation matrices, respectively.
Hence, we do not have to impose additional constraints for covariance stationarity or to
guarantee that the matrices are definite positive. Second, for the first time, we provide an
empirical analysis for evaluating modified and original models. We do this with the caveat
that it is not our goal to definitely decide which of the different models is the best; rather,
we seek to understand whether our modified models allow to better capture the strong
relationships between assets in a stock market. We hope that the modified models can be
more accurate than the original ones. Third, we advance a new method for evaluating
the effectiveness of the estimated models through some specific tools commonly used in
network analysis.

Our findings enable future analysis on volatility. In actuality, the importance of
identifying the volatility effect and correlation in a dynamic way is crucial for efficiently
managing the investment portfolios and executing optimal diversification of assets. This
will reduce the risk and controls the changes that may occur in financial markets due to the
economic situation in general. Our approach can build a precise mathematical model for
managing financial data, which can be also incorporated in artificial intelligence algorithms
to avoid the problems associated with the problems’ dimensions.

The paper is organized as follows: Section 2 reports notation and some basic definitions.
Sections 2.1 and 2.2 summarize the two MGARCH models considered in the paper along
with the new log-likelihood functions used in the optimization/estimation phase. Section 3
reports the structure of the empirical financial dataset we used in the experimental phase.
Finally, some conclusions and further research are depicted in Section 4.

2. Notation and Definitions

Consider a financial market formed by N assets. Let Pjt be the daily closing price of

asset j at time t, t = 0, . . . , T and rjt = log(
Pjt

Pjt−1
) be the corresponding log-return of asset j.

In the following, Pearson correlation coefficients are used to detect dependencies between
assets returns. A general MGARCH model is defined:{

rt = µt + εt

εt = H
1
2
t ηt,

(1)
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where rt is the N× 1 vector of log-returns at time t, εt is the N× 1 vector of mean-corrected
returns of N assets at time t, E[εt] = 0, and Cov[εt] = Ht. The vector µt represents the
expected value of rt. Observe that µt may be modeled as a constant vector or as a time
series model. In this paper, we assume µt constant.

Ht is the N × N matrix of conditional variances and covariances of the unpredictable
component εt at time t. Finally, ηt is the N × 1 vector of i.i.d errors such that E[ηt] = 0 and
E[ηtηt

′] = I.
In a general MGARCH model we have to estimate the conditional covariance matrix

Ht, which, in addition, has to be positive definite for all t. Depending on the possible
specifications for Ht, there are different MGARCH models each belonging to one of the
four categories mentioned in Section 1.

In order to estimate the conditional covariance matrix Ht, a common issue is to
resort to the maximization of an appropriate log-likelihood function L(θ), where θ denotes
the vector of all the parameters to estimate. Depending on the MGARCH model, the
function L(θ) assumes a different appearance. It is well-known that the quality of the
maximum likelihood (ML) estimation relies also on the assumed data distribution. In
general, when dealing with models with conditional heteroscedasticity, the estimates are
known to be asymptotically normal [20]. In our approach, we consider a multivariate
Gaussian distribution for the standardized error ηt , even if, in principle, our method can be
applied assuming different distributions.

Given a stock market, consider Ht the conditional variance and covariance matrix
of the returns of the N assets at time t, and let R = [ρij], with ρii = 1, i = 1, . . . , N, be
the global correlation matrix with respect to the sample period. The idea is that if asset i
is highly positively/negatively correlated with asset j, then the (high positive/negative)
correlation does not change during the observed period. Furthermore, we assume that the
relationship based on the correlation between two assets i and j does not change during
time whereas the value of the correlation coefficient ρij, can (obviously) vary.

Let δ > 0 be a threshold. We construct the correlation graph G(δ) = (V, E) where
V is the set of vertices each representing an asset, and E is the set of edges of G(δ), that
is, the set of connections between pairs of assets. We assume that there is an edge (i, j)
between assets i and j if and only if the (global) correlation coefficient |ρij| > δ. Let A(δ) be
the adjacency matrix of G(δ). Observe that the generic element aij(δ) can be 0 or 1 if we
assume an unweighted graph, otherwise aij(δ) = wij if we assume that the graph G(δ) is
weighted with weights wij assigned to each edge (i, j) and obtained as a function of the
correlation coefficients ρij, that is, wij = f (ρij). Given a general graph G = (V, E), the
following definitions hold [21]:

Definition 1. A subset C ⊆ V is called a clique of G if any two vertices in C are connected by an
edge. The order q of a clique is the cardinality of C.

Definition 2. A subset C ⊆ V is called a maximal clique of order q of G if C is not included in
any other clique C′ of order q + 1.

Other concepts not defined in the paper can be found in the book [21].
In a modified MGARCH model, the modified likelihood function to maximize is:

L(θ)−
T

∑
t=1

[Dist(A(δ), At(δ)], (2)

where Dist(·) is (any) distance or divergence measure between the adjacency matrix A(δ)
referred to the global correlation matrix R, and the adjacency matrix At(δ) related to the
conditional correlation matrix Rt. Because A(δ) is the correlation matrix computed with
respect to the sample period, it can be considered to be a target matrix.

In our framework, as a measure we can consider any distance or divergence measure
between two N × N positive definite matrices P and Q. In this paper, we consider the
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well-known Kullback–Leibler (KL) distance (or divergence) [22] between P and Q, namely
KL(P, Q). As a statistical measure, it is a measure of the distance between two probability
densities P and Q. In the case of Gaussian multivariate distributions, this distance is
completely defined by the correlation matrices of the whole system. Thus, it can be
interpreted as how a multivariate probability distribution represented by the matrix Q is
different from a reference multivariate probability distribution represented by the matrix P.
It is also well-known that it is not a metric, as this measure is not symmetric and does not
satisfy the triangle inequality. Given matrices P and Q, the KL(P, Q) measure is:

KL(P, Q) =
1
2
[

log(
|Q|
|P| ) + Tr(Q−1P)− N

]
, (3)

where the operator | · | computes the determinant of a matrix and Tr(·) is the trace of a square
matrix, which is the sum of its diagonal elements. In our approach, Dist(A(δ), At(δ)) =
KL(A(δ), At(δ)).

Note that assuming the identity function as the function of the graph’s weights, i.e.,
wij = ρij, i 6= j, the matrix A(δ) corresponds, in fact, to the unconditional correlation
matrix where, given δ, aij(δ) = ρij 6= 0, i 6= j, if and only if |ρij| > δ, aij(δ) = 0, i 6= j,
otherwise (i.e., |ρij| ≤ δ), and further imposing aij(δ) = 1, i = 1, . . . , N. Denote by Ẑ the
matrix A(δ) defined so far. Under the above hypothesis on the graph’s weights, At(δ) can
also be considered to be a conditional correlation matrix at time t. Hence, in this special
case, in order to preserve the strong relationships among specific groups of assets, in the
maximization of the modified likelihood function (2) we are, in fact, requiring that aij(δ)
and aij,t(δ) be as close as possible, that is, the corresponding correlation values |ρij| and
|ρij,t| be as close as possible. In the rest of the paper, we assume wij = ρij, i 6= j.

2.1. The BEKK Model

Ding and Engle [23] introduced the diagonal BEKK model, which is:

Ht = C · C′+
K

∑
k=1

p

∑
i=1

Aki · (εt−iε
′
t−i) · A′ki +

K

∑
k=1

q

∑
j=1

Bkj · Ht−j · B′kj, (4)

where Aki and Bkj are parameter matrices, C is a lower triangular matrix, p and q represent
the lagged error term and the number of conditional covariance lags, respectively. K
determines the generality of the process. We assume that p = q = 1 and K = 1, so that the
diagonal BEKK model can be written in a compact form as:

Ht = C · C′+ A · (εt−1ε′t−1) · A′+ B · Ht−1 · B′, (5)

with A and B diagonal matrices. Positive definiteness of conditional covariance matrices is
guaranteed by construction (see [23]). The procedure used in estimating the parameters of
the model is the maximization of a likelihood function constructed under the assumption
of an i.i.d. of the errors ηt. Under the further assumption of conditional normality, the set of
all parameters θ of the multivariate diagonal BEKK model can be estimated by maximizing
the following sample log-likelihood function:

L(θ) = −TN
2

log(2π)− 1
2

T

∑
t=1

(
log |Ht|+ ε′tH−1

t εt
)
, (6)

with T the number of returns observations. Note that in the BEKK model, Equation (5)
refers to the conditional covariance matrices. Thus, in the following modified log-likelihood
function we have to use covariance matrices in place of the correlation matrices. Hence,
under the assumption wij = ρij, i 6= j, given δ, we first compute matrix Ẑ and then the
corresponding unconditional covariance matrix Σ̂ with respect to the whole sample period
T, that is, Σ̂ = ΓẐΓ, with Γ the diagonal matrix of standard deviations with respect to the
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whole sample period. Finally, in the Kullback–Leibler divergence measure of Formula
(7) we compute the difference between matrices Σ̂ and Ht. The modified log-likelihood
function is:

L(θ) = − TN
2 log(2π)− 1

2

T
∑

t=1

(
log |Ht|+ ε′tH−1

t εt
)
− KL(Σ̂, Ht)

= − TN
2 log(2π)− 1

2

T
∑

t=1

(
log |Ht|+ ε′tH−1

t εt
)
− 1

2

T
∑

t=1

(
log( |Ht |

|Σ̂| ) + Tr(H−1
t Σ̂)− N

)
= − 1

2
[
N(T log(2π)) +

T
∑

t=1

(
2 log(|Ht|) + ε′tH−1

t εt − log(|Σ̂|) + Tr(H−1
t Σ̂)

)]
.

(7)

Observe that the minimization of the distance between the target unconditional co-
variance matrix Σ̂ and Ht forces the values σij,t to be as close as possible to the values σij,
that is, forces the values ρij,t and i 6= j to be as close as possible to the values ρij.

2.2. The DCC Model

The idea of this model, introduced and analyzed in [12], is that the conditional covari-
ance matrix Ht can be decomposed into the conditional standard deviations Dt of each
of the N series and a conditional correlation matrix of the returns Rt. The dynamic of the
model is described by Equation (1) and:

Ht = DtRtDt. (8)

The matrix Dt is a diagonal matrix and consists of the N univariate GARCH models.
Because it is a diagonal non-negative matrix with all diagonal elements positive, Dt is
positive definite. To ensure that Ht is positive definite, it is necessary that the matrix Rt is
positive definite with the additional constraint that all its elements must be equal to or less
than 1 by definition. The dynamic of correlation matrix Rt is derived from another matrix
Qt of the form:

Rt = Q̄−1
t QtQ̄−1

t , (9)

where Q̄t = diag(Qt) with diag(·) is the diagonal of a square matrix. The form of Qt
determines the dynamic of the model and its complexity (see, e.g., [13,24]). For example,
following [13] we have:

Qt = (1− θ1 − θ2)Q̂t + θ1(εt−1ε′t−1) + θ2Qt−1, (10)

with Q̂t = Cov[εtε
′
t] = E[εtε

′
t]. In order to ensure that Rt is positive definite, the parameters

θ1 and θ2 must satisfy:
θ1 ≥ 0, θ2 ≥ 0, θ1 + θ2 < 1.

The parameter estimation phase is rather difficult, and hence for the DCC model a two-
stage estimation procedure is provided. In the first stage, the parameters of the univariate
GARCH models are estimated for each asset series. In the second stage, a second set of
parameters are estimated given the parameters found in the previous phase. Referring
to the dynamics described in (10) and assuming multivariate Gaussian distributed errors,
after the first step only the parameters θ1 and θ2 are unknown so they are estimated in the
second stage. In this second phase, the log-likelihood function is:

L(θ) = −1
2

T

∑
t=1

(
log(|Rt|) + ε′tR

−1
t εt

)
. (11)

In our approach, we are interested in the second stage of the process where the log-
likelihood function takes into account the correlation matrix of the assets returns at time t.
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Hence, under the assumption wij = ρij, i 6= j, given δ, we consider the matrix Ẑ and the
matrix Rt. The corresponding modified log-likelihood function is:

L(θ) = − 1
2

T
∑

t=1

(
log(|Rt|) + ε′tR

−1
t εt

)
− KL(Ẑ, Rt)

= − 1
2
[ T

∑
t=1

(
2 log(|Rt|) + ε′tR

−1
t εt − log(|Ẑ|) + Tr(R−1

t Ẑ)− N
)]

.

(12)

As for the modified BEKK model, to highlight the strong relationships among groups
of assets in the market, the minimization of the distance between the (target) matrix Ẑ and
Rt forces the values ρij,t and i 6= j to be as close as possible to the values ρij.

To conclude this section, we observe that if we set δ = 0, and under the assumption
that wij = ρij, i 6= j, the correlation matrix Ẑ and the unconditional covariance matrix Σ̂
correspond exactly to the long-run correlation and covariance matrices used in the model
provided in [16]. Hence, on the one hand, our method can be precisely considered as an
alternative targeting method with respect to the one proposed in [16]. On the other hand,
assuming δ > 0, with our method we are, in fact, “forcing” our modified MGARCH models
to find clusters of highly correlated assets in the simulated series.

3. Data Analysis and Test

In order to demonstrate the effectiveness of our new estimation approach, which
aims at correctly identifying highly (positive or negative) correlated groups of assets given
a financial dataset, we first performed a preprocessing phase by a method of clustering
financial time series (see [25]). Time series clustering creates groups based on similarities be-
tween time series without using pre-existing categorization labels [26]. Various approaches
were proposed in time series clustering, and various authors attempted to synthesize the
literature on the field (see, e.g., [27–29]). According to [29], there is a wide range of applica-
tions for time series clustering that can be found in a variety of domains (e.g., economic or
medical time series analysis, visual processing, and anomalous activity detection).

Time series clustering is particularly relevant in finance. There is a particular interest
in discovering typical dynamics of financial markets and the impact of different shocks
on time series and portfolio allocation groups. In this respect, according to [30] clustering
of financial time series is essential to determine how much wealth should be allocated to
financial assets and opportunities. Therefore, financial time series need to be clustered to
select an appropriate portfolio and analyze an economic system. When studying highly
complicated phenomena such as financial time series, one has to deal with substantial
heterogeneity and peculiar characteristics and features (see [31,32]). Therefore, robustness
measures should address this challenge [33]. Moreover, studying their behavior over time
in a dynamic framework is also essential, as these systems are associated with uncertainty
and for this reason, other approaches representing this uncertainty were proposed in [34].

In this section, we provide a statistical framework for classifying time series and an
example of applying the proposed method to a group of time series. Thus, our whole
approach is based on two stages: In the first stage, we explicitly define the different groups
of time series using a clustering procedure, which is helpful for identification of the different
groups. In the second stage, we apply our new estimation method to correctly recognize
the groups obtained so far. In our example, we perform the first stage on the following set
of stocks: Facebook, Apple, Google, Boeing, Microsoft, Amazon, General Motors, Goldman
Sachs, JPMorgan Chase, Intel, Verizon Communications, Visa, Cisco, Coca-Cola Company,
and Salesforce. They were selected without any particular pattern from the stocks listed on
the NYSE, the New York Stock Exchange. The period considered is from 1 January 2020 to
1 January 2021, and the resulting 253 observations refer to the daily closing prices of each
financial time series.

Following [29], we have to clarify what is the claim in what two data are similar,
and in what way we can obtain a good similarity and dissimilarity measure between
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two different observations (in this case, two different financial time series). These are
the central questions of cluster analysis. In this regard, we have explicitly considered a
hierarchical clustering algorithm that uses a Pearson correlation-based distance and the
complete method (see [35]) as a helpful approach to distinguish the different groups that
we can identify. Concerning financial time series, Pearson’s correlation coefficient is widely
used in the related financial literature to quantify the degree of similarity or dissimilarity
between two time series [30]. If we denote yt and xt as two different time series, we can
consider their correlations [29]:

COR(xt, yt) = 1− ∑T
t=1(yt − xt)(yt − yt)√

∑t
t=1(xt − xt)

2
√

∑t
t=1(yt − yt)

2
, (13)

Then, we can compute the following distance, and we have:

dCor(xt, yt) = 1− COR(xt, yt) (14)

We apply the distance and cluster approach to develop the dendrogram and inter-
pret the different clusters (see Figure 1). Then, we follow an exploratory approach for
identification of the groups of different stocks that are included in each cluster. We use
the dendrogram to collect information about the variability of a cluster structure and the
overall group’s structure.

Figure 1. Clusters obtained in the first phase.

No prior knowledge is required for this approach, and it allows for the understanding
of patterns in financial time series data without the need for additional information [36].
This approach can be summarized as follows: use similarity measures to identify subgroups
(see [37]) and determine which generic grouping each individual belongs to. Through the
above clustering procedure, we can identify four general clusters (see Figure 1). First, we
can identify Microsoft’s most significant joint movement (MSFT) and Amazon (AMZN). At
the same time, Facebook (FB), Apple (AAPL), and finally, Salesforce (CRM) belong to the
same cluster. This cluster is clearly based on the technological innovations that can have an
overarching impact on different sectors and companies (see also [34]). Finally, at the same
time, Coca Cola (KO) and, more importantly, Boeing (BA) and JPMorgan Chase (JPM) are in
a different cluster. Furthermore, Intel (INTC) and Cisco (CSCO) can also be considered part
of the same cluster. We can further observe the critical role of economic similarities for these
two stocks in this case. In this respect, it is possible to suppose relevant economic shocks
that affect both financial time series. Finally, in the third cluster, we can observe a slightly
different behavior for Verizon Communications (VZ), but also daily solid joint movements
for Google (GOOG) and Visa (V) as well as for General Motors (GM) and Goldman Sachs
(GS). Overall, through observation and visual analysis of the dendrogram, the distinct
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clusters obtained will be used as a reference for the evaluation of the effectiveness of our
new estimation approach (second stage).

In the following, we present some scenarios characterized by a different number N of
time series considered with the aim of evaluating the differences between the simulated
series obtained by the BEKK and DCC models and their modified versions. All MGARCH
models have been implemented in Matlab R2018 version using the MFE Toolbox code
repository by Kevin Sheppard [38]. In the resulting correlation graphs, we detected all the
maximal cliques using the Bron–Kerbosch algorithm [39]. The experiments were conducted
on a PC equipped with an Intel Core i7-3632MQ processor with 2.20 Ghz.

Scenario 1
In this first scenario, we consider only the group of technological innovation assets

formed by MSFT, AMZN, CRM, FB, and AAPL (see Figure 1). We compute the 252
log-return values and the corresponding unconditional correlation matrix, which is (see
Table 1):

Table 1. The correlation matrix for N = 5 assets.

MSFT AMZN CRM FB AAPL

MSFT 1 0.7712 0.7690 0.6855 0.6914
AMZN 0.7712 1 0.8435 0.7028 0.6458
CRM 0.7690 0.8435 1 0.7413 0.7508

FB 0.6855 0.7028 0.7413 1 0.6121
AAPL 0.6914 0.6458 0.7508 0.6121 1

Let us now consider the (sub)graph G(δ) of the complete correlation graph G whose
vertex set contains only the subset of pairs of assets such that |ρij| > δ, with δ = 0.5
(see Figure 2). In the figure, the numbers associated with the vertices correspond to the
following labeling: 1, MSFT; 2, AMZN; 3, CRM; 4, FB; and 5, AAPL.

Figure 2. The graph G(δ) with δ = 0.5. Vertex number refers to the associated asset.

Note that the graph G(δ) corresponds to the complete graph G, because for all pairs
of assets i and j we have ρij > 0.5.

Considering the whole original dataset consisting of T = 252 return observations, we
first estimate the parameters of the BEKK and DCC models and then the parameters of each
of the modified versions of the two models using the log-likelihood functions (7) and (12),
respectively. Then, using these sets of parameters we simulate (new) T = 252 log-return
observations of the five assets. Our aim is to verify whether our modified models allow to
better capture the strong relationships between assets in the stock market. In other words,
we want to compare the graph G(δ) with the simulated graphs GS(δ) (see Figure 3).
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(a) (b)

(c) (d)

Figure 3. The simulated graphs GS(δ) with δ = 0.5. (a) The graph GS(δ) resulting from the BEKK
model; (b) the graph GS(δ) resulting from the modified BEKK model; (c) the graph GS(δ) resulting
from the DCC model; (d) the graph GS(δ) resulting from the modified DCC model. Vertex number
refers to the associated asset.

Comparing the five graphs in Figures 2 and 3, only the original BEKK model was not
able to correctly reproduce the original series. In this case, vertex 5, corresponding to asset
AAPL, is not connected to all the other vertices despite its correlation value with other assets
is greater that 0.5. Observe that for the DCC approach the modification brings no gain. This
can occur when the series’ dimension is small, and, in this specific case, the modification
has no effect. In addition to the graphs GS(δ), in Table 2 we report the Frobenius distance
between the fitted covariance matrices Ht with respect to the unconditional covariance
matrix Σ̂, and the Kullback–Leibler divergence between the matrix Σ̂ and the unconditional
covariance matrix of the new simulated series of log-returns, denoted by Σ̂S, with respect
to all the considered models. The Frobenius norm is:

F =

√√√√ T

∑
t=1

Tr[(Ht − Σ̂)′(Ht − Σ̂)], (15)
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and the Kullback–Leibler divergence is:

KL =
1
2
[

log(
|Σ̂S|
|Σ̂|

) + Tr(Σ̂−1
S Σ̂)− N

]
. (16)

Table 2. Values of the Frobenius and the Kullback–Leibler loss functions: case N = 5 and δ = 0.5.

BEKK Modified BEKK DCC Modified DCC

F 0.0669 0.0555 0.0881 0.0870

KL 0.0855 0.0229 0.0162 0.0154

Both functions F and KL measure loss, so that lower values are preferable. We note
that the values of the modified MGARCH models are better than the corresponding original
models. Here, we are not interested in comparing the values of the two loss functions
between all the models, as, again, it is not our goal to find a single winner.

Assume now that we are interested in detecting groups of assets with a higher value
of correlation. On the basis of the values in Table 1, we set δ = 0.71. The corresponding
graph G(δ) is (see Figure 4):

Figure 4. The graph G(δ) with δ = 0.71. Vertex number refers to the associated asset.

We observe that with this value of δ, only assets {1, 2, 3} form a clique. The goal is to
find simulated graphs GS(δ), with δ = 0.71, as similar as possible to the subgraph G(δ)
of Figure 4. The results are reported in Figure 5 along with the corresponding table (see
Table 3) reporting the values of the two loss functions considered.

The simulated graph of the modified BEKK model exactly replicates G(δ). The two
graphs associated with the DCC and modified DCC models correctly find the clique
C = {1, 2, 3}, but the DCC model determines a new clique C′ = {1, 2, 3, 4} that contains C,
whereas the modified DCC model introduces the additional edge (4, 2). Thus, these two
models “overestimate” the correlation between assets pointing out correlations that do not
really exist. The original BEKK model has the lowest ability to correctly identify groups
of highly correlated assets. On the other hand, the values of the loss functions reported in
Table 3 are in line with the values in Table 2.
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(a) (b)

(c) (d)

Figure 5. The simulated graphs GS(δ) with δ = 0.71. (a) The graph GS(δ) resulting from the BEKK
model; (b) the graph GS(δ) resulting from the modified BEKK model; (c) the graph GS(δ) resulting
from the DCC model; (d) the graph GS(δ) resulting from the modified DCC model. Vertex number
refers to the associated asset.

Table 3. Values of the Frobenius and the Kullback–Leibler loss functions: case N = 5 and δ = 0.71.

BEKK Modified BEKK DCC Modified DCC

F 0.0669 0.0575 0.0881 0.0840

KL 0.0976 0.0269 0.0306 0.0262

Scenario 2
In this second scenario, we consider N = 8 assets along with the corresponding

correlation matrix reported in Table 4. The set of stocks is formed by the five previously
considered assets and the group formed by KO, BA, and JPM (see Figure 1). In the
corresponding graphs, the numbers associated with the vertices now correspond to the
following labeling: 1, MSFT; 2, AMZN; 3, CRM; 4, FB; 5, AAPL; 6, KO; 7, BA; 8, JPM. We
choose this new group of three stocks because the two clusters are adequately separated
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from each other, so that we expect finding two well-separated groups of assets in the
following correlation graphs. The unconditional correlation matrix is:

Consider δ = 0.5, the graph G(δ) is (see Figure 6):

Figure 6. The graph G(δ) with δ = 0.5 for N = 8 assets. Vertex number refers to the associated asset.

In G(δ), we clearly detect the three maximal cliques C1 = {1, 2, 3, 4, 5}; C2 = {6, 7, 8};
and C3 = {2, 3, 7, 8}. In particular, cliques C1 and C2 refer to the two clusters of assets in
Figure 1. The simulated graphs GS(δ) are presented in Figure 7.

In Table 5, we report the values of the loss functions F and KL and the additional
information on the number of maximal cliques in each of the simulated graphs GS(δ).

The graphs GS(δ) related to the two modified MGARCH models are exactly the same
as the graph G(δ). It is worth noting that this does not mean that the correlation matrices
of the simulated returns series with the modified BEKK and DCC models are equal to
the correlation matrix of the original series, but that both the modified models are able
to detect the same (original) clusters of highly correlated assets. In actuality, assuming
highly (positive) correlated assets remain unaltered over time, by forecasting future values
of the series using the results provided by the modified BEKK and/or DCC models, one
might expect to simulate returns series that do not alter too much the correlation structure
among assets as well as the strong relationships among stocks. This can be useful in
a portfolio selection problem from a diversification viewpoint. It is well-known that
correlation represents the degree of relationship between the price movements of different
assets included in the portfolio for diversified portfolios. Thus, choosing pairs of assets
less correlated decreases the portfolio’s overall risk. Consider, for example, the graph
GS(δ) in Figure 7c referred to the original DCC model, which is very similar to the graph
G(δ) (in fact there is just one additional edge in GS(δ), that is, edge (2, 6)). It includes
the maximal clique C = {2, 6, 7, 8}, demonstrating that asset 2 now shows a correlation
value with asset 6 greater than 0.5 (precisely, equal to 0.536), whereas from Table 4 we have
ρ26 = 0.4810. Hence, the original DCC model inserts a strong correlation between these
two assets, which is not truthful, and, without reason, this might prevent from choosing
assets 2 and 6 in an optimal portfolio. Finally, note that these considerations are difficult to
obtain by examination of only the values of the loss functions, which demonstrates that the
modified models behave better than the original models.



Mathematics 2023, 11, 382 14 of 19

(a) (b)

(c) (d)

Figure 7. The simulated graphs GS(δ) with δ = 0.5 for N = 8 assets. (a) The graph GS(δ) resulting
from the BEKK model; (b) the graph GS(δ) resulting from the modified BEKK model; (c) the graph
GS(δ) resulting from the DCC model; (d) the graph GS(δ) resulting from the modified DCC model.
Vertex number refers to the associated asset.

Table 4. The correlation matrix for N = 8 assets.

MSFT AMZN CRM FB AAPL KO BA JPM

MSFT 1 0.7712 0.7690 0.6855 0.6914 0.4038 0.4834 0.4387
AMZN 0.7712 1 0.8435 0.7028 0.6458 0.4810 0.5412 0.5580
CRM 0.7690 0.8435 1 0.7413 0.7508 0.4798 0.5912 0.5838

FB 0.6855 0.7028 0.7413 1 0.6121 0.2451 0.2697 0.3162
AAPL 0.6914 0.6458 0.7508 0.6121 1 0.3995 0.4562 0.4472

KO 0.4038 0.4810 0.4798 0.2451 0.3995 1 0.7211 0.6461
BA 0.4834 0.5412 0.5912 0.2697 0.4562 0.7211 1 0.7304

JPM 0.4387 0.5580 0.5838 0.3162 0.4472 0.6461 0.7304 1
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Table 5. Values of the Frobenius and the Kullback–Leibler loss functions and the maximal cliques:
case N = 8 and δ = 0.5.

BEKK Modified BEKK DCC Modified DCC

F 0.0669 0.0575 0.0881 0.0840

KL 0.0976 0.0269 0.0306 0.0262

Maximal Cliques
{1,2,3,4},
{1,3,5}, {6,7},
{7,8}

{1,2,3,4,5},
{2,3,7,8}, {6,7,8}

{1,2,3,4,5},
{2,3,7,8},
{2,6,7,8}

{1,2,3,4,5},
{2,3,7,8}, {6,7,8}

Finally, observe that the graph GS(δ), related to the original BEKK model (see Figure 7a),
reports a very distorted relationship between the assets in the market. Hence, on the basis
of the two above scenarios, we can state that it seems that the BEKK model benefits more
effectively from the introduction of the modified log-likelihood function.

Scenario 3
In this third scenario, we consider all N = 15 assets described in Section 3. In the

graphs, the new labels associated with each asset are (see Figure 1): 1, MSFT; 2, AMZN;
3, CRM; 4, FB; 5, AAPL; 6, VZ; 7, GOOG; 8, V; 9, GM; 10, GS; 11, KO; 12, BA; 13, JPM; 14,
INTC; 15, CSCO. The corresponding correlation matrix is in Table 6:

Table 6. The correlation matrix for N = 15 assets.

MSFT AMZN CRM FB AAPL VZ GOOG V GM GS KO BA JPM INTC CSCO

MSFT 1 0.7712 0.7690 0.6855 0.6914 0.8067 0.4671 0.5619 0.6656 0.4566 0.4038 0.4834 0.4387 0.5493 0.5777
AMZN 0.7712 1 0.8435 0.7028 0.6458 0.7581 0.4539 0.6225 0.7123 0.5523 0.4810 0.5412 0.5580 0.6333 0.6596
CRM 0.7690 0.8435 1 0.7413 0.7508 0.8558 0.4849 0.6484 0.7830 0.6080 0.4798 0.5912 0.5838 0.7187 0.7171

FB 0.6855 0.7028 0.7413 1 0.6121 0.6837 0.2288 0.3825 0.4519 0.3955 0.2451 0.2697 0.3162 0.5065 0.4991
AAPL 0.6914 0.6458 0.7508 0.6121 1 0.6846 0.4191 0.5118 0.6353 0.4143 0.3995 0.4562 0.4472 0.5170 0.5358

VZ 0.8067 0.7581 0.8558 0.6837 0.6846 1 0.5379 0.6644 0.7903 0.5877 0.5163 0.6020 0.6172 0.6535 0.6838
GOOG 0.4671 0.4539 0.4849 0.2288 0.4191 0.5379 1 0.7488 0.7014 0.4135 0.6972 0.7590 0.5881 0.4913 0.5131

V 0.5619 0.6225 0.6484 0.3825 0.5118 0.6644 0.7488 1 0.7604 0.5899 0.6963 0.8907 0.7001 0.5981 0.6526
GM 0.6656 0.7123 0.7830 0.4519 0.6353 0.7903 0.7014 0.7604 1 0.6280 0.6541 0.7773 0.7363 0.6404 0.7295
GS 0.4566 0.5523 0.6080 0.3955 0.4143 0.5877 0.4135 0.5899 0.6280 1 0.4366 0.5975 0.7133 0.5698 0.6544
KO 0.4038 0.4810 0.4798 0.2451 0.3995 0.5163 0.6972 0.6963 0.6541 0.4366 1 0.7211 0.6461 0.4908 0.5061
BA 0.4834 0.5412 0.5912 0.2697 0.4562 0.6020 0.7590 0.8907 0.7773 0.5975 0.7211 1 0.7304 0.5663 0.6145

JPM 0.4387 0.5580 0.5838 0.3162 0.4472 0.6172 0.5881 0.7001 0.7363 0.7133 0.6461 0.7304 1 0.5542 0.5984
INTC 0.5493 0.6333 0.7187 0.5065 0.5170 0.6535 0.4913 0.5981 0.6404 0.5698 0.4908 0.5663 0.5542 1 0.6700
CSCO 0.5777 0.6596 0.7171 0.4991 0.5358 0.6838 0.5131 0.6526 0.7295 0.6544 0.5061 0.6145 0.5984 0.6700 1

The correlation graph for δ = 0.5 is depicted in Figure 8.

Figure 8. The graph G(δ) with δ = 0.5 for N = 15 assets. Vertex number refers to the associated asset.

The maximal cliques in G(δ) with δ = 0.5 are: C1 = {1, 2, 3, 4, 5, 6, 14}; C2 =
{1, 2, 3, 5, 6, 8, 9, 14, 15}; C3 = {2, 3, 6, 8, 9, 10, 12, 13, 14, 15}; and C4 = {6, 7, 8, 9, 11, 12, 13, 15}.
These cliques show the most interconnected groups of assets at a correlation level greater
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than 0.5. In the following, we report a table of the values of the loss functions F and KL
and the information on the maximal cliques in each of the simulated graphs GS(δ). More
precisely, in Table 7 we report in bold the cliques of the simulated graphs that coincide
to the ones of the original graph G(δ). The modified BEKK model seems to be the best
performing both with respect to the loss function values and the number of the maximal
cliques of G(δ). We also note that the first clique in the graph, which refers to the modified
BEKK model, has the same number of nodes of clique C1 except with vertex 15 in place
of vertex 14. We observe that the correlation values of the first six assets in Table 6 with
respect to vertices 14 and 15 are very close to each other. Thus, the difference in those two
cliques might be due to numerical reasons in the estimation and simulation phase of the
modified BEKK model. In any case, all models introduce correlation values, and a larger
number of quite different cliques, which do not appear in the graph G(δ).

Table 7. Values of the Frobenius and the Kullback–Leibler loss functions and the maximal cliques:
case N = 15 and δ = 0.5. In bold the cliques of the simulated graphs that coincide to the ones of the
original graph G(δ).

BEKK Modified BEKK DCC Modified DCC

F 0.1708 0.1682 0.1995 0.2028

KL 0.4035 0.3002 0.3309 0.3091

Maximal Cliques

{1,2,3,4,5,6},
{7,8,9,11,12,13},
{1,2,3,5,6,8,9,14,15},
{1,2,3,6,8,9,10,14,15},
{2,3,6,8,9,10,12,13,14,15},
{7,8,9,12,13,14,15}

{1,2,3,4,5,6,15},
{1,2,3,5,6,8,9,14,15},
{2,3,6,8,9,10,12,13,14,15},
{6,7,8,9,11,12,13,15},
{6,8,9,11,12,13,14,15}

{1,2,3,4,5,6}, {1,2,3,5,6,8,9},
{2,3,6,8,9,10,15},
{3,6,8,9,10,13,15},
{3,8,9,10,12,13,15},
{3,8,9,10,12,14,15},
{7,8,9,11,12,13},
{2,8,9,11,14,15},
{8,9,11,12,13,15},
{8,9,11,12,14,15}

{1,2,3,4,6},
{1,3,4,5,6}, {1,3,5,6,9},
{1,2,3,6,8,9,10,13,14,15},
{1,3,6,8,9,10,12,13,14,15},
{1,6,7,8,9,12,13},
{7,8,9,11,12,13}

To evaluate the effectiveness of our method in finding groups of strongly correlated
assets we consider a higher value for the threshold, that is, δ = 0.65. The corresponding
correlation graph G(δ) is in Figure 9:

Figure 9. The graph G(δ) with δ = 0.65 for N = 15 assets. Vertex number refers to the associated
asset.



Mathematics 2023, 11, 382 17 of 19

As expected, the graph G(δ), with δ = 0.65, is sparser than the graph G(δ), with
δ = 0.5. In the new graph, we identify a larger number of cliques, but of cardinality less
than the cardinality of the maximal cliques when δ = 0.5.

In Table 8, we report in bold the cliques of the simulated graphs that coincide to those
in G(δ) with δ = 0.65. It is evident that when N grows, the results are less clear-cut with
respect to the two previous examples. On the one hand, this can be due to the fact that
the log-likelihood functions to optimize are highly nonlinear functions, and it is difficult
to find provably optimal solutions. Local solutions may be problematic, and this creates
difficulties in the estimation of the models. Additionally, because in the optimization phase
matrices have to be inverted in each iteration, it makes the overall computation demanding
unless N is small. In any case, Tables 7 and 8 still highlight that the modified MGARCH
models performs slightly better than the original ones, in particular, when δ increases. For
example, for δ = 0.65 the simulated series obtained with the modified BEKK and DCC
models are still able to better capture the strong relationships among assets in the market
than the corresponding original models.

Table 8. Values of the Frobenius and Kullback–Leibler loss functions and the maximal cliques: case
N = 15 and δ = 0.65. In bold the cliques of the simulated graphs that coincide to the ones of the
original graph G(δ).

BEKK Modified BEKK DCC Modified DCC

F 0.1708 0.1659 0.1995 0.2038

KL 0.3721 0.2982 0.2627 0.2433

Maximal Cliques

{1,2,3,4,6}, {1,2,3,5,6},
{2,3,5,6,9}, {2,3,6,9,14},
{3,6,9,14,15}, {7,8,9,11,12},
{8,9,11,12,13}, {6,8,9},
{9,10,13}

{1,2,3,4,6}, {1,2,3,6,9},
{1,2,3,5,6}, {2,3,6,9,14,15},
{3,6,8,9,14,15},
{7,8,9,11,12},
{8,9,11,12,13}, {8,9,12,14},
{9,10,12,13}, {9,10,15}

{1,2,3,4,6}, {2,3,6,9},
{3,5}, {3,14}, {7,8,9,12},
{7,8,11,12}, {8,9,12,13},
{10,13}

{1,2,3,4,6}, {1,2,3,5,6},
{1,2,3,6,9}, {7,8,9,12},
{8,9,12,13}, {10,13},
{7,8,11,12}, {3,15}

From the above results, we can state that the application of our method to empirical
case studies is encouraging, particularly when the number of assets is not large and we are
able to find (global) optimal solutions in the maximization of the log-likelihood objective
functions. In fact, in these cases, we observed a significant improvement in the ability of the
modified MGARCH models to replicate the correlation structure of the assets in the market
compared with the original models. When the number of assets increases, the estimation of
the models involves somewhat heavy computations because they contain a large number of
parameters, and there is no guarantee of finding provably global optimal solutions but only
local optimal solutions. This undermines the ability of the estimated models to replicate
the correlation structure of the assets correctly. Despite this, even when the number of
assets is large, the modified MGARCH models seem to perform better than the original
ones. Overall, our experiments demonstrate that the BEKK model benefits most from the
modification of the log-likelihood function.

4. Conclusions and Further Research

In this paper, we advance a method for improving the estimation phase of financial
time series with the aim of improving the analysis and evaluation of portfolios of financial
assets whose performance strictly depends on the correlation among assets. Several dif-
ferent estimation models have been proposed in the literature; among others, the family
of models known as multivariate general auto regressive conditional heteroscedasticity
(MGARCH) models are the most widely used. These models consider that a financial time
series suffers from heteroscedasticity. This paper considers two such models, namely the
BEKK and DCC models, where we modified the log-likelihood objective function assuming
that there are specific groups of assets that are highly correlated in a financial market,
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and these relationships remain unaltered over time. Hence, in the log-likelihood function
we introduced a term referring to a loss measure computed on the difference between
the time-varying covariance/correlation matrices and the covariance/correlation matrix
estimated with respect to the whole in-sample period. Given the set of the estimated
parameters, we use them for simulating new time series to evaluate the effectiveness of
our modified estimation phase. We also propose a new approach for the evaluation of the
results based on network analysis and, more precisely, on detecting maximal cliques in
correlation graphs.

On the basis of the results reported in Section 3, we cannot state whether the modified
models always outperform the original ones, and much more experiments are needed.
Therefore, this leaves plenty of opportunity for further research. On the one hand, one can
experiment with other loss functions to introduce in the log-likelihood objective functions
to improve the estimates. In fact, we observe that our approach is extremely flexible.
Different loss functions can be considered without imposing additional constraints on
covariance or correlation matrices. On the other hand, much attention should be paid in
order to improve the optimization phase. This involves developing ad hoc strategies for
finding global optimal solutions or solutions close to the optimal ones. In this regard, the
development of metaheuristic procedures could be a further line of research to improve
the optimization phase. Finally, finding new network indexes that better highlight other
peculiar aspects of a financial market is worth investigating.
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