
Citation: Rykov, V.; Kochueva, O.

Preventive Maintenance of k-out-of-n

System with Dependent Failures.

Mathematics 2023, 11, 422.

https://doi.org/10.3390/

math11020422

Academic Editor: Zdeněk Kala
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Abstract: The paper investigates a model of a k-out-of-n system, the residual lifetime of which
changes after failures of any of its components. The problem of a Preventive Maintenance (PM)
organization as advice to the Decision Maker (DM) for such a system is considered. The purpose of
this paper is to propose a mathematical model of the k-out-of-n system to support DM about PM.
For most practical applications, it is usually possible to estimate the lifetime distribution parameters
of the system components with limited accuracy (only one or two moments), which is why special
attention is paid to the sensitivity analysis of the system reliability characteristics and decisions
about PM to the shape of system components lifetime distributions. In the numerical examples, we
consider the 3-out-of-6 model discussed in our previous works for two real systems. The novelty,
significance, and features of this study consist of the following, after the failure of one of the system
components, the load on all the others increases, which leads to a decrease in their residual lifetime.
We model this situation with order statistics and study the quality of PM strategies with respect to the
availability maximization criterion. At the same time, we are focusing on the study of the sensitivity
of decision-making to the type of lifetime distribution of system components.

Keywords: k-out-of-n system; preventive maintenance; dependent failures; sensitivity analysis;
lifetime distribution

MSC: 90B25; 90B50; 60K10; 90C31

1. Introduction, Motivation and Examples
1.1. Introduction

Maintaining the reliability of objects, processes, and systems (especially dangerous
in operation) at a high level is one of the primary tasks of their design, creation, and
operation. For the solution of such a complex technical problem, it is necessary to develop
adequate mathematical models and methods. Redundancy is a traditional way to improve
the reliability of systems, objects, and processes. k-out-of-n models are a good configuration
for describing redundant systems. A system consisting of n parallel components can be
described in two ways, dual to each other, depending on the definition of the parameter
k, as follows. The parameter k can represent the number of components in the system
that must work for the entire system to work, referred to as a k-out-of-n: G system. On
the other hand, parameter k may represent the number of components in the system that
must fail to cause the failure of the entire system, referred to as a k-out-of-n: F system [1].
For our purposes, it is more convenient to consider a subset of failed system components;
in this paper, we will use the second type of system description, omitting the symbol F
for simplicity.
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The study of the k-out-of-n system’s reliability is the subject of interest both from
theoretical and practical aspects. From a theoretical point of view, it provides ample
opportunities for the development of new mathematical methods. From a practical point of
view, as shown by numerous publications, models of k-out-of-n systems can be applied to
many real-world phenomena, including telecommunication, transmission, transportation,
manufacturing, and service applications. The wide range of practical applications has led
to a large number of papers devoted to the study of k-out-of-n systems. The literature on
such studies is extensive (see, for example [2,3] and others [4–9]). Some applications of this
model and the latest overview can be found in [10].

Engineering tasks pose ever-new formulations of problems for researchers. Thus,
ref. [11] presents a problem of complex system investigation, the failures of which depend
not only on the number of its failed components but also on their location in the system.
Moreover, in real systems, the failure of one of its components often leads to a redistribution
of the load on the survivors, which leads to a decrease in their residual lifetime. Some of
the problems of system reliability studies, the failures of which depend not only on the
number of failed components but also on their position in the system, have been considered
in this paper.

In the present paper, we consider the situation when the failure of one of the system
components leads to an increase in the load on the others, which leads to a decrease in their
residual lifetime. A number of works are devoted to the problem of studying the reliability
of the system under conditions of load distribution on the system after a failure of one
of its components (see, for example, [12–15]). In the paper [16], the reliability function of
a k-out-of-n system under the condition of a load-sharing mechanism has been studied.
In this paper, we prolong this study, aiming to study the Preventive Maintenance (PM)
optimization for this system with respect to its availability maximization.

Another way to maintain a high level of reliability of systems during operation is
to organize their preventive maintenance. A probabilistic study of a real-world k-out-
of-n system often helps to develop an optimal strategy for maintaining high system-
level reliability. The idea of increasing system reliability by organizing PM is a long-
standing one. A comprehensive review of PM methods can be found in the monograph of
Gertsbakh [17]. Some recent developments in optimal maintenance policies can be found
in [18–22]. Another approach to the problem of the PM optimization for linear consecutive
k-out-of-n systems with dependent failures in paper [23] has been proposed.

The purpose of this paper is to propose a mathematical model to study and compare
the effectiveness of different PM strategies for k-out-of-n systems based on monitoring
their states as advice to DM. In this direction, in [24,25], an approach was developed to
compare PM strategies according to the availability and the cost type criteria maximization
for models without taking into account the impact of failures of its components on the
residual life of survivors. In this paper, we take into account this factor.

Moreover, since the detailed initial information about the reliability of system com-
ponents are generally lacking, and their lifetimes are usually known with an accuracy of
only one or two their moments, it is of utmost importance to study the sensitivity of the
system reliability indicators to the shape of their lifetime distributions. Sensitivity analysis
is a topical issue attracting the attention of researchers, in particular, ref. [26] studies the
role of model uncertainties in sensitivity and probability analysis of reliability and ref. [27]
presents new sensitivity measures in a reliability-oriented global sensitivity analysis. Some
related research can be found in a series of our papers, references to which are shown
in chapter 9 of [28], as well as in [29]. Thus, special attention in this paper is paid to the
sensitivity analysis of the system reliability characteristics and decision-making based on
the choice of PM to the shape of its lifetime distributions.

This paper is closely related to [16,24,25], where, as well as in this one, we focus on
mathematical models and methods for PM organizing for k-out-of-n systems. Since the
topics and research tools in all these articles are quite close, some parts of the introduction
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and notations coincide with those that are used in the above-mentioned papers. However,
here other aspects of the model are developed and new results are presented.

The feature of this study is that after the failure of one of the system components,
the load on all the others increases, which leads to a decrease in their residual lifetime.
We model this situation with order statistics and develop the procedure for comparing
PM strategies with respect to the availability maximization criterion. This contributes to
the novelty and significance of this paper. At the same time, we place special emphasis
on investigating the sensitivity of decision-making to the type of lifetime distribution of
system components.

The paper is organized as follows. In the next subsection, two examples of real-world
systems for which the choice of PM strategy has to be justified are considered. In what
follows, one of these examples is addressed as a demonstration of our theoretical research
and proposed algorithms. Section 2 presents the problem statement and some notations.
In Section 3, system behavior is modeled by the regenerative process, and the condition
of strategy preference is stated. Further, in Section 4, we consider the distributions of the
times to PM beginning and the system failure. An algorithm for the best PM strategy choice
is also proposed in this section. Numerical experiments based on the example represented
in Section 1.2 will be discussed in Section 5. In the Conclusion, we summarize the obtained
results and outline further studies.

1.2. Examples

As examples of a k-out-of-n model application, we consider two real-world systems.
One of them is described in [24], where an automated system for the remote monitoring
of underwater sections of a gas pipeline was considered. One of the essential parts of the
system is an unmanned underwater vehicle (UUV) (see Figure 1a), which carries out a
visual inspection of underwater areas with the fixation of video materials. It is fitted with
various equipment for monitoring, collecting, and transmitting information about the state
of the object. Six engines located on different sides of the apparatus allow it to descend,
float, and move along the pipe. UUV fails when three engines fail. In addition, the failure
of each engine increases the load on the remaining ones, which leads to a decrease in their
remaining lifetime. Thus, this system can be represented as a 3-out-of-6 model.

In papers [11,30], a similar model was used for modeling a tethered high-altitude
unmanned telecommunication platform for transmitting information on the “last mile”
(see Figure 1b). This system can be used in different versions: for n = 6 or for n = 8, etc.
Different ways of exploitation and failure are also possible. In our numerical experiments,
we will refer to this example by modeling it with a 3-out-of-6 model.

Figure 1. Systems described with k-out-of-n models ((a) unmanned underwater vehicle, (b) copter).

Both examples will be used in numerical experiments to demonstrate the impact of
system component failures on the decision to choose a certain PM strategy and its sensitivity
to the initial information. Numerical analysis of the model is presented in Section 5.
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2. The Problem Set, Notations, and Assumptions
2.1. Notations and Assumptions

We consider a k-out-of-n system that consists of n components in parallel and fails if
at least k of them fail. It is assumed that the failure of any component leads to an increase
in the load on others and, consequently, to a decrease in their residual lifetimes. To increase
the reliability of the system, it is supposed that PM based on the observation of the state
of the system is possible. We denote by L = {1, 2, . . . , k} the set of possible PM strategies,
including running to the system failure for l = k. The l-th strategy (l < k) means that
the PM begins when l components fail. The strategy l = k means that the PM is not
used, and the best solution is to wait for the system to fail and start repairing it jointly
with maintenance.

In this paper, we will use the following notations and main assumptions:

• P{·}, E[·], Var[·]—symbols of probability, expectation, and variation;
• Ai : (i = 1, 2, . . . ) is the series of component’s lifetimes, which are assumed to be

independent identically distributed random variables ;
• A(t) = P{Ai ≤ t} is their common cumulative distribution function (cdf) with their

probability density function (pdf) a(t) = A′(t) and expectation

a = E[Ai] =
∫ ∞

0
(1− Ai(t))dt; (1)

• The times B(l)
i (i = 1, 2, . . . ), (l ∈ L) of PM and the system repair for l = k are

supposed to be independent identically distributed random variables;
• Bl(t) = P{B(l)

i ≤ t} are their cdf with mean values;

bl = E[B(l)
i ] =

∫ ∞

0
(1− Bl(t))dt; (2)

• It is assumed that the mean PM times bl (l < k) are less than the mean repair time
bk, bl ≤ bk, and may or may not depend on the type of maintenance;

• j is the system state, where j means the number of failed components;
• E = {j = {0, 1, . . . , k}} is the set of the system states;
• After failure of the l-th component (l < k), the load on all others increases, which

leads to a decrease in their residual lifetimes. It is modeled by compression of the
residual components lifetime by some weight coefficient wi (0 ≤ wi ≤ 1);

• In the initial time epoch, the system is absolutely reliable, i.e., all its components are in
the UP states and the initial system state is j = 0.

• After any system repair and its PM completion, the system became “as a new one”,
i.e., returns to the zero state.

2.2. The Problem Statement

The problem of comparing the PM strategies with respect to the availability of a system
with independent failures was considered in paper [24]. This paper continues this study
for a model where after the failure of any system component, the load on the other ones
increase, resulting in a decrease in the residual lifetime, aiming to maximize the availability
factor Kav.,l (other quality criteria are also applicable, such as the productivity of the system
and/or system service cost under different maintenance strategies (see [25]))

Kav.,l = lim
t→∞

1
t
{the system working time during time t under strategy l }, (3)

the formal definition of which is represented in (14). To achieve this goal, we define a
random process J = {J(t) : t ≥ 0} with the set of space E by the relation

J(t) = j, if at time t the system is in the state j ∈ E. (4)
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Using this process, we study the main reliability characteristics of a k-out-of-n system
under the conditions when the failure of one of its components leads to an increase in the
load on the others and, therefore, to a decrease in their residual lifetimes. These are:

• Yl , (l ∈ L)—system working time during its regeneration cycle (see formal definition
in Formula (13)).

• Rk(t)—system reliability function, and Mk—mean time until the system fails (after
the failure of k components).

Rk(t) = P{Yk > t}, Mk =

∞∫
0

Rk(t)dt. (5)

• Fl(t)—cdf of PM start times for different strategies (l ∈ L), and Ml—their expectations

Fl(t) = P{Yl ≤ t}, Ml =

∞∫
0

(1− Fl(t))dt. (6)

• The system availability Kav.,l , l ∈ L given by (3) for different PM strategies.
• An indicator of strategy preference criterion, which will be introduced later in the

next section.

Moreover, since the initial information about the system component’s lifetime is
usually very limited (it is most often possible to obtain only an estimate of the first and
second moments of the distribution), we concentrated on studying the sensitivity of any
decision about PM strategy choice to the shape of their distributions.

3. Process J and the Main Result
3.1. Process J

For the stated problem solution, consider process J, defined by expression (4) as more
detailed. First of all, we note that, by virtue of our assumptions, for any PM strategy
l ∈ L, including running to the system failure for l = k, process J is the regenerative one,
whose regenerative epochs S(l)

i are the maintenance or repair completion times. For any
regenerative process, the following ergodic theorem holds.

Theorem 1. For any admissible strategy l ∈ L of a controllable (in regeneration epochs) regen-
erative process J = {J(t), t ≥ 0} with a finite expected regeneration period E[T(l)

i ] < ∞ (where

T(l)
i = S(l)

i − S(l)
i−1) and any integrable function g, defined on the process set of states E, the

following limit property holds

lim
t→∞

1
t

t∫
0

g(J(u))du =
1

E0

[
T(l)

1

]E0


T(l)

1∫
0

g(J(u))du

, (7)

where E0 means the expectation given initial state equals zero i = 0.

Proof. For regeneration epochs S(l)
i of process J, its renewal process will be denoted by

N(l)(t) = ∑
i≥0

1
{S(l)

i ≤t}
(8)

and the left part of equality (7) is represented as
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lim
t→∞

1
t

t∫
0

g(J(u))du =

= lim
t→∞

N(l)(t)
t

1
N(l)(t) ∑

1≤i≤N(l)(t)


S(l)

i∫
S(l)

i−1

g(J(u))du

+
1
t

t∫
S(l)

N(l)(t)

g(J(u))du. (9)

Given that, following our assumptions, the last term in this equality tends to zero,
according to the limit theorem for the renewal process

lim
t→∞

N(l)(t)
t

=
1

E0

[
T(l)

1

] , (10)

and the law of large numbers for independent identically distributed random variables

Y(l)
i =

S(l)
i∫

S(l)
i−1

g(J(u))du (11)

used under the sign of sum as follows

lim
t→∞

1
N(l)(t) ∑

1≤i≤N(l)(t)


S(l)

i∫
S(l)

i−1

g(J(u))du

 = E0


T(l)

1∫
0

g(J(u))du

 (12)

that ends the proof.

3.2. The Strategy Comparison

The theorem shows that we need to study the behavior of a process only in a separate
regeneration period T(l)

i = S(l)
i − S(l)

i−1 (say the first one T(l)
1 = S(l)

1 ). Thus, considering

function g as an indicator function of the state l, g(j) = 1l(j), the integral Y(l)
i takes the

value (since they are independent identically distributed random variables, we omit the
lower index and place the upper index below)

Y(l)
i ≡ Y(l)

1 =

S(l)
1∫

0

1l(J(u))du = inf{t : J(t) = l, t ≤ S(l)
1 } ≡ Yl , (13)

which equals the time of the l-th type maintenance beginning (the time for the l-th system
component failure, the system lifetime for l = k) in a separate regeneration period. We de-
note its mean value by Ml = E[Yl ]. Then the system availability for different PM strategies
l ∈ L takes the form

Kav.,l =
Ml

E[Tl ]
. (14)

Hence, by virtue of the properties of regenerative processes, to calculate the availability
Kav.,l , we only need the mean value E[Tl ] of the regeneration period Tl and the mean value
Ml = E[Yl ] of the working time Yl in it. Since the regeneration period for any PM strategy
l ∈ L is Tl = Yl + Bl , and it is assumed that the mean PM and repair times bl = E[Bl ]
are known to a Decision Maker (DM), for the problem solution, it suffices to calculate the
expectations Ml = E[Yl ] . Thus, from Theorem 1, it follows
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Theorem 2. The l-th strategy is preferable to the j-th one (l < j) iff

bl
bj

<
Ml
Mj

. (15)

Proof. The comparison of the different PM strategies with respect to maximizing the
system availability given by (14) leads to a comparison of the expressions

Kav.,l =
Ml

Ml + bl
(16)

and because the l-th preventive maintenance strategy is preferable to the j-th one, if
Kav.,l > Kav.,j from the inequality

Ml
Ml + bl

>
Mj

Mj + bj
(17)

it follows that the l-th strategy is preferable to the j-th one (l < j) if and only if Mlbj > Mjbl ,
which in terms of dimensionless indexes, can be rewritten as (15), that ends the proof.

4. Distribution of PM Start and System Failure Times
4.1. Distribution of Order Statistics

It is evident that the l-th PM start time (including system failure for l = k) is the time
of the l-th component failure, in which the l-th order statistics will be denoted as Xi = A(i)
from n iid rvs Ai (i = 1, 2, . . . , n) with given cdf A(t). Their distributions are very well
studied (see, for example, [31]). In particular, it has been shown in this book that the joint
pdf fl(x1, . . . xl) of the l first-order statistics

X1 ≤ X2 ≤ · · · ≤ Xl (18)

from a sample of n iid rv A1, A2, . . . , An with cdf A(x) and pdf a(x) in the domain 0 ≤
x1 ≤ x2 ≤ · · · ≤ xl < ∞ equals

fl(x1, x2, . . . , xl) =
n!

(n− l)!
a(x1)a(x2) · · · a(xl)(1− A(xl))

n−l . (19)

Remark 1. From the other side, the individual l-th order statistics distribution does not depend on
the positions of all its previous and equals (see also [31])

fl(x) =
n!

(n− l)!(l − 1)!
A(x)l−1(1− Al))

n−la(x). (20)

Therefore, it can be calculated by integrating the joint pdf fl(x1, . . . xl) over all possible (l− 1)!
permutations of variables xi,

fl(x) =
1

(l − 1)!

∫
· · ·

∫
0≤xi≤x (i=1,l−1)

fl(x1, . . . xl−1, x)dx1 . . . dxl−1 =

=
n!

(n− l)!(l − 1)!

∫
· · ·

∫
0≤xi≤x (i=1,l−1)

a(x1)a(x2) · · · a(x)(1− A(x))n−l =

=
n!

(n− l)!(l − 1)!
A(x)l−1(1− Al))

n−la(x). (21)

However, if after the failure of one of the components, the load on all others changes,
their residual lifetimes also change. Thus, in the next subsection, we consider the transfor-
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mation of order statistics due to load changes. It will be used further to calculate the pdf of
the order statistics in the case of their transformations.

4.2. Transformation of Order Statistics

For the stated problem’s solution, it is necessary to transform order statistics and
calculate their distributions in accordance with the accepted rule for a component failure to
influence the load on the surviving components. In accordance with this rule, after failure
of the i-th component, the residual lifetimes of all survived components are reduced by
multiplying by some weight coefficient wi.

Keep in mind that Yl (l = 1, k) denotes the time to the l-th component failure (time to
the l-th PM strategy beginning) or the system failure time for l = k in conditions of load
changing after any of its components fail. We represent it in terms of its initial lifetime
(order statistics Xi). It should be noted that for the considered system with dependent
failure times, each subsequent l-th failure leads to compression of the intervals between
successive j-th (j > l) and l-th failure times by w1 · · ·wl times, Yj = Yl +w1 · · ·wl(Xj−Xl).
Thus, for the times Yl of the l-th state destination, the following generating recursive
representation in terms of initial order statistics holds,

Yl+1 = Yl + w1 · · ·wl(Xl+1 − Xl). (22)

Based on this recursive relation, we prove the following explicit representation of the
rvs Yl in terms of order statistics.

Lemma 1. The time Yl to the l-th PM start (system failure time for l = k) is a linear function of
order statistics:

Y1 = X1 and for l = 2, k

Yl = (1− w1)X1 + w1(1− w2)X2 + · · ·+ w1 · · ·wl−2(1− wl−1)Xl−1 +

+ w1 · · ·wl−1Xl . (23)

Proof. To prove the lemma, we use mathematical induction. The initial component failure
times coincide with the first-order statistics A(1) = X1. After the first failure at time X1, all
other expected failure times equal

Yj = X1 + w1(Xj − X1) = (1− w1)X1 + w1Xj (24)

and, therefore,

Y2 = X1 + w1(X2 − X1) = (1− w1)X1 + w1X2, (25)

which coincides with (23) for l = 2 and gives the possibility to begin the induction proce-
dure. Thus, we suppose that equality (23) holds for any l < k, and check it for l + 1. Using
recursive Formula (22), representing the value Yl+1 in terms of Yl , one can find

Yl+1 = Yl + w1 · · ·wl(Xl+1 − Xl) =

= (1− w1)X1 + w1 · · ·wl−2(1− wl−1)Xl−1 + w1 · · ·wl−1Xl +

+ w1 · · ·wl(Xl+1 − Xl) =

= (1− w1)X1 + w1 · · ·wl−2(1− wl−1)Xl−1 + w1 · · ·wl−1Xl +

+ w1 · · ·wlXl+1 − w1 · · ·wlXl =

= (1− w1)X1 + w1 · · ·wl−1(1− wl)Xl + w1 · · ·wlXl+1, (26)

that ends the proof.
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4.3. Distribution of the Random Variables Yl

Now we proceed to the calculation of the cdf FYl (t) of the time Yl to the l-th component
failure, taking into account the redistribution of the load on the components. Here we
perform this using expression (23) for the time to the l-th component failure in terms of
order statistics Xi and Formula (19) for the joint distribution of the first l-order statistics. To
simplify the representation of this cdf, let us introduce the following notations.

z0 = t, and for (i = 1, l − 1);

zi = zi(t; x1, . . . , xi) =

=
t− (1− w1)x1 − w1(1− w2)x2 − · · · − w1 · · ·wi−1xi−1

w1 · · ·wi
. (27)

With these notations, the following theorem holds.

Theorem 3. The distribution of the l-th component failure (time to the l-th PM beginning) for
t ≥ 0 is

FYl (t) = P{Yl ≤ t} =

=
n!

(n− k)!

z0∫
0

a(x1)dx1

z1∫
x1

a(x2)dx2· · ·
zl−1∫

xl−1

a(xl)(1− A(xl))
n−ldxl . (28)

Proof. Lemma 1 states that the time Yl of the l-th component failure is a linear function
of the first l-order statistics (as shown by Formula (23)). Consequently, given the pdf
fl(x1, . . . , xl) of the l-th order statistics, we can derive the cdf FYl (t) of rv Yl

FYl (t) = P{Yl ≤ t} =
= P{(1− w1)X1 + w1(1− w2)X2 + · · ·+
+ w1 · · ·wl−2(1− wl−1)Xl−1 + w1 · · ·wl−1Xl ≤ t} =

=
∫
· · ·

∫
D(t;x1,...,xl)

fl(x1, x2, . . . , xl)dx1 . . . dxl , (29)

where the integration domain D(t : x1, . . . , xl) is the intersection of two subsets of l-
dimensional space, D(t; x1, . . . , xl) = D(l)

+ ∩ D(l)
w (t), where D(l)

+ is the first quadrant of the

l-dimensional space: D(l)
+ = {0 ≤ x1 ≤ · · · ≤ xl} and the hyperspace D(l)

w (t) is

D(l)
w (t) = {(1− w1)x1 + w1(1− w2)x2 + · · ·+ w1 · · ·wl−2(1− wl−1)xl−1 +

+ w1 · · ·wl−1xl ≤ t}. (30)

The multidimensional integral (29) can be transformed into an iterated one. Given
0 ≤ x1 ≤ x2 ≤ · · · ≤ xl , the integration domain can be represented according to the
following procedure. From inequality (30) for variable xl , it follows that

xl ≤
t− w1x1 − w1(1− w2)x2 − · · · − w1 · · ·wi−1xl−1

w1 · · ·wl−1
= zl−1(t; x1 . . . xl−1). (31)

Further, also given xl−1 ≤ xl from inequality (31), it follows that

xl−1 ≤ xl ≤
t− w1x1 − w1(1− w2)x2 − · · · − w1 · · ·wl−1xl−1

w1 · · ·wl−1
. (32)

From inequality (32), using algebraic manipulations, one can find
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xl−1 ≤ t− w1x1 − w1(1− w2)x2 − · · · − w1 · · ·wl−2xl−2
w1 · · ·wl−2

=

= zl−2(t; x1 . . . xl−2). (33)

In a similar way, we obtain the following inequality for the variable x2

t ≥ (1− w1)x1 + w1(1− w2)x2 + w1w2x3 ≥
≥ (1− w1)x1 + w1(1− w2)x2 + w1w2x2 = (1− w1)x1 + w1x2, (34)

from which it follows that

x2 ≤
t− (1− c1)x1

c1
= z2(t : x1). (35)

Further, at last,
t ≥ (1− w1)x1 + w1x1 = x1. (36)

Consequently, 0 ≤ x1 ≤ t. Therefore, the integration domain D(t : x1, . . . , xl) in terms
of notations (27) can be transformed as

D(t : x1, . . . , xl) = {xi−1 ≤ xi ≤ zi(t; x1, . . . xi−1) (i = 1, l − 1)}. (37)

Thus, using Formula (19) for pdf fl(x1, . . . , xl) of the first l-order statistics and the
integration domain (37), integral (29) for t ≥ 0 can be written as

FYl (t) =
n!

(n− l)!

t∫
0

a(x1)dx1

z1∫
x1

a(x2)dx2 · · ·
zl−1∫

xl−1

a(xl)(1− A(xl))
n−ldxl ,

which coincides with (28) and ends the proof.

Based on Theorem 3, the main system reliability characteristics can be obtained,
such as:

(i) its reliability function R(t) = 1− FYk (t);
(ii) its mean lifetime E[Yk] =

∫ ∞
0 R(t)dt;

(iii) availability factor Kav.,l for different PM strategies.

4.4. An Example: Exponential Distribution of Components Lifetimes

In a special case, when the systems’ components lifetimes Ai (i = 1, n) follow an
exponential distribution with a parameter α (Exp(α)), the integral (28) can be calculated
analytically. For this case, we introduce a different approach to the system’s lifetime
distribution, which is derived from the memoryless property of an exponential distribution.
Let Ti be the time interval between the i− 1-th and i-th component’s failures, i = 1, l − 1
(T0 = 0). Then, by virtue of the memoryless property of the exponential distribution, the
time to the k-th failure Yk is the sum

Yl = T1 + T2 + · · ·+ Tl , (38)

of l independent exponentially distributed rvs Ti with mean values

E[T1] =
1

nα
, E[Ti] =

w1w2 · · ·wi−1

(n− i + 1)α
=

w̄i
(n− i + 1)α

, (i = 2, l). (39)

This means that the parameters of their distribution are:

λ1 = nα, λi =
(n− i + 1)α

w1w2 · · ·wi−1
=

(n− i + 1)α
w̄i

, (i = 2, l), (40)
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where, for purposes of simplicity, we introduce the notation:

w̄i =

{
1, i = 1,
w1 · · ·wi−1, i = 2, l.

(41)

The general case can be studied with the help of the moment-generating function
(mgf) of the system lifetime, which, in this case, has the following form:

φk(s) = E
[
e−sYk

]
= ∏

1≤i≤k
E
[
e−sTi

]
= ∏

1≤i≤k

λi
s + λi

. (42)

However, the cdf calculation from this expression is not a simple problem, and we
limit ourselves to the simplest example of a k-out-of-n model with k = 2 and first calculate
the cdf of Y2 directly. In this case, we assume w1 = w. Hence, following (19), the joint
distribution of rv X1, X2 is

f2(x1, x2) =
n!

(n− 2)!
a(x1)a(x2)(1− A(x2))

n−2 =
n!

(n− 2)!
α2e−αx1 e−(n−1)αx2 . (43)

Calculate cdf FY2(t) of the rv Y2 = (1− w)X1 + wX2,

FY2(t) = P{(1− w)X1 + wX2 < t} = P
{

X2 <
t− (1− w)X1

w

}
=

= n(n− 1)α2
t∫

0

e−αx1 dx1

t−(1−w)x1
w∫

x1

e−(n−1)αx2 dx2 =

= 1 +
n− 1

nw− (n− 1)
e−nαt − nw

nw− (n− 1)
e−

(n−1)α
w t, (44)

and, therefore, its pdf for t ≥ 0 is

fY2(t) =
n(n− 1)α

nw− (n− 1)

(
e−

(n−1)α
w t − e−nαt

)
. (45)

It should be noted that this result is valid for w 6= (n − 1)/n, in which case the
distribution is a mixture of exponential distributions. The point w = (n− 1)/n is a singular
point for which cdf of the rv Y2 follows an Erlang distribution,

FY2(t) = 1− e−nαt − nαte−nαt, t > 0, (46)

with pdf
fY2(t) = n2λ2te−nλt, t > 0. (47)

Remark 2. The singularity in the calculation of the cdf of the system lifetime arises because, for
some special values of coefficient wi (here for w = (n− 1)/n), the moment-generating function of
the system’s lifetime has multiple roots that lead to changing the shape of the distribution.

Using another approach, the mgf of the system’s lifetime can be written as follows:

φ2(s) =
n(n− 1)α2

s2 + (2n− 1)αs + n(n− 1)α2 . (48)

By decomposing this expression, one finds

φ2(s) =
(n− 1)nα

s + nα
− (n− 1)nα

s + (n− 1)α
, (49)



Mathematics 2023, 11, 422 12 of 17

the inverse function, then, is calculated as

f2(t) = n(n− 1)α
(

e−(n−1)αt − e−nαt
)

, (50)

which coincides with the result obtained in (45) for w = 1.
Apparently, analytic results are not to be expected in the general case. However,

one can hope for numerical calculations of examples with different distributions of the
random variable Ai. Thus, based on Theorem 2, we propose a recursive procedure for
calculating distributions Fl(t) of random variable Yl (l = 1, k) and their moments. Based
on this calculation, the PM strategies comparison as advice to DM will be done. Below an
Algorithm for the problem solution is proposed.

5. An Algorithm for the PM Strategies Comparison and Numerical Experiments
5.1. Algorithm

On the basis of the results of Section 4, the general procedure for the problem solution
can be implemented with the following algorithm (Algorithm 1).

Algorithm 1 General algorithm for calculation of the reliability function.

Beginning. Determine: Integers n, k, real b0, bl (l = 1, k)), wl (l = 1, k), distribution
A(t) of the system components’ lifetime, its pdf, expectation a and coefficient of variation v.

Step 1. Calculate parameters of cdf A(t) in terms of its expectation a and coefficient
of variation v.

Step 2. Taking into account the joint pdf of the first l order statistics X1 ≤ X2 ≤ · · · ≤ Xl

fl(x1, x2, . . . , xl) =
n!

(n− l)!
a(x1)a(x2) . . . a(xl)(1− A(xl))

n−l , (51)

calculate according to (28) the rv Yl cdf

FYl (t) =
n!

(n− l)!

z0∫
0

a(x1)dx1

z1∫
x1

a(x2)dx2 · · ·
zl−1∫

xl−1

a(xl)(1− A(xl))
n−ldxl , (52)

where the limits of integration are determined by the relation (27)

z0 = t, and for (i = 1, l − 1);
zi = zi(t; x1, . . . , xi) =

=
t− (1− w1)x1 − w1(1− w2)x2 − · · · − w1 · · ·wi−1xi−1

w1 · · ·wi
. (53)

Step 3. Calculate the function Rl(t) = 1− FYl (t) and the mean time to the PM strategy
beginning (mean time to the l-th component failure)

Ml = E[Yl ] =

∞∫
0

Rl(t)dt, (54)

and the availability factor

Kav.,l =
Ml

Ml + bl
. (55)

Step 4. Compare the PM strategies by the criterion (15)

bl
bj

<
Ml
Mj

(56)

and chose the best one.
Stop.
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Remark 3. The algorithm might also be useful for other purposes, such as analysis of the sensitivity
of the system reliability function and its characteristics to the shape of the lifetime distribution of the
system components.

5.2. Numerical Experiments

Based on the algorithm, we consider some numerical experiments. For the numerical
analysis, we use the four most popular distributions of non-negative random variables:
(i) exponential (Exp(λ)), (ii) Gamma (Γ(λ, Θ)), (iii) Gnedenko–Weibull (GW(λ, Θ)), and
(iv) lognormal (LN(µ, σ))). The corresponding rvs are denoted as E, Γ, GW, LN. All of
these distributions (except for the exponential), for some of their parameters, became the
so-called “heavy tailed ones”, which imposes certain restrictions on the computational
procedures associated with their use.

The Gamma distribution with parameters (λ > 0, Θ > 0) has the pdf and cdf of
the form

fΓ(x) =
1

Γ(Θ)λΘ xΘ−1e−
x
λ , FΓ(x) =

1
Γ(Θ)λΘ

x∫
0

tΘ−1e−
t
λ dt,

where Γ(Θ) is the Gamma function. Its expectation, variance, and coefficient of variation
have the form

E[Γ] = λΘ, Var[Γ] = λ2Θ, vΓ =
1√
Θ

.

Concerning the GW-distribution with parameters (λ > 0, Θ > 0), it has the pdf and
the cdf of the form

fGW(x) =
Θ
λ

( x
λ

)θ−1
e−(

x
λ )

Θ
, FGW(t) = 1− e−(

t
λ )

Θ
,

its coefficient of variation v depends only on parameter Θ

v2 + 1 =
Γ(1 + 2

Θ )

Γ2(1 + 1
Θ )

=
2
Θ Γ( 2

Θ )

1
Θ

2
Γ2( 1

Θ )
= 2Θ

Γ( 2
Θ )

Γ2(( 1
Θ ))

.

For 0 < Θ ≤ 1, for example Θ = 1
l it holds

v2 + 1 = (l + 1) · · · (2l − 1)→ ∞

Specifically, for Θ = 0.5, it gives v =
√

2, for Θ = 1
3 it gives v2 + 1 = 20. Thus, the GW

distribution for Θ < 1 has a heavy tail, which forces us to confine ourselves to studying the
behavior of the model, in this case, by the range of values of coefficient of variation v ≤

√
2.

For Θ ≥ 1, this distribution is a light-tailed one. In this case, putting Θ = 1
ε note that

the behavior of its coefficient of variation depends on the behavior of the function Γ(2ε)
εΓ2(ε)

around ε = 0.
For Θ = 1, both of the above distributions turn into an exponential.
For the LN(µ, σ2) distribution, its pdf and cdf are

fLN(x) =
1

xσ
√

π
exp

{
−1

2

(
ln x− µ

σ

)2
}

, FLN(x) =
1
2

[
1 +

(
ln x− µ

σ
√

2

)]
.

Its expectation, variation, and coefficient of variation are

E[LN] = eµ+ σ2
2 , Var[LN] =

(
eσ2 − 1

)
eµ+ σ2

2 , v[LN] =
√

eσ2 − 1.

In the numerical experiments below, the parameters of the distributions were taken
such that the mean operating time of the system components was equal to 1 (which,
accordingly, meant the unit of time measurement), and another parameter provided the
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coefficient of variation in the domain 0.3 ≤ v ≤ 1.3. Figure 2 presents a comparison of
“2-strategy” and ”3-strategy” for different system components’ lifetime distributions and
coefficients of variation. Solid lines present the calculations for w1 = w2 = 0.9, and dashed
lines demonstrate the results for w1 = w2 = 0.5. Blue lines show the results for the Gamma
distribution of the component’s lifetime, red is for the Gnedenko–Weibul distribution,
green is for the lognormal one, and black presents the exponential distribution. For the
exponential distribution, the analytical results coincide with the numerical calculations.

Figure 2. Comparison of “2-strategy” and ”3-strategy” for different coefficients of variation.

Let the ratio of PM time after two failures and after three failures be b2/b3 = 0.75 and
w1 = w2 = 0.9. For the exponential distribution of the system components’ lifetime, the
“3-strategy” of PM should be chosen. If the variation of system components’ lifetime is
less than 0.6, the “2-strategy” is preferable to the “3-strategy” for Gamma, GW, and LN
distributions. If the variation of the system components’ lifetime is greater than 0.8, the
“3-strategy” is preferable to the “2-strategy” for Gamma, GW, and LN distributions. In
the interval [0.6, 0.8], the choice of strategy depends on the lifetime distribution of system
components.

We may conclude that for small values of wi and variation, the difference between
Gamma and GW distributions is insignificant. For the LN distribution, the interval of
variation prefers the “2-strategy” over the “3-strategy”.

5.3. An Example: Exponential Distribution

In the case of an exponential distribution based on Formula (42) for the system 2-out-
of-6, the following can be written

φ2(s) =
λ1

s + λ1

λ2

s + λ2
,
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where λ1 = 6α, λ2 = 5α
w . Therefore,

φ′1(s) = −
λ1λ2

[(s + λ1)](s + λ2)]2
,

and
M2 = −φ′1(0) =

1
λ1

+
1

λ2
=

1
6α

+
w
5α

.

Analogously, for the 3-out-of-6 system it holds

φ3(s) =
λ1

s + λ1

λ2

s + λ2

λ3

s + λ3
,

where λ1, λ2 are the same as before, and λ3 = 4α
w2 . By calculation of the derivative of mgf

φ3(s) in points s = 0 and taking into account the values of parameters λi, one can find

M3 = −φ′3(0) =
1

6α
+

w
5α

+
w2

4α
.

For the given α = 1 and w = 0.5 and w = 0.9, these values coincide with the point in
Figure 2.

6. Conclusions

The paper is devoted to the investigation of different PM strategies for the controllable
k-out-of-n system based on its stated observation. It is supposed that after a failure of one
of the system components, the load on all the others increases, which leads to a decrease in
their residual lifetime. The novelty of the paper lies in the application of order statistics
for modeling the residual lifetime of system components and developing a procedure for
comparing PM strategies with respect to the availability maximization criterion, which is
presented in the form of an algorithm.

A series of numerical experiments were performed for real examples modeled as a
3-out-of-6 system with exponential, Gamma, Gnedenko–Weibull, and Lognormal distri-
butions and different coefficients of variation. The results revealed the sensitivity of the
choice of PM strategy to the shape of lifetime’s distribution of the system components
and the coefficient of variation. Nevertheless, it is possible to identify intervals for the
coefficient of variation, where the choice of the preferable strategy is independent of the
type of distribution.

The presented approach can be further expanded, involving more quality criteria,
such as the productivity of the system or system service cost under different maintenance
strategies, and a multi-criteria evaluation of the PM effectiveness is feasible as well. The
calculations have been performed for the example of the 3-out-of-6 system, but the proposed
procedure can be used for other systems. This article is theoretical in nature, and we invite
persons with specific information to cooperate and further research the proposed direction.
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