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Abstract: The rapid development of J2EE (Java 2 Platform Enterprise Edition) has brought unprece-
dented severe challenges to vulnerability mining. The current abstract syntax tree-based source
code vulnerability classification method does not eliminate irrelevant nodes when processing the
abstract syntax tree, resulting in a long training time and overfitting problems. Another problem is
that different code structures will be translated to the same sequence of tree nodes when processing
abstract syntax trees using depth-first traversal, so in this process, the depth-first algorithm will lead
to the loss of semantic structure information which will reduce the accuracy of the model. Aiming at
these two problems, we propose a deep forest and pruned syntax tree-based classification method
(PSTDF) for Java code vulnerability. First, the breadth-first traversal of the abstract syntax tree obtains
the sequence of statement trees, next, pruning statement trees removes irrelevant nodes, then we use
a depth-first based encoder to obtain the vector, and finally, we use deep forest as the classifier to get
classification results. Experiments on publicly accessible vulnerability datasets show that PSTDF can
reduce the loss of semantic structure information and effectively remove the impact of redundant
information.

Keywords: vulnerability classification; abstract syntax tree; code representation; deep forest

MSC: 68T10

1. Introduction

The rapid development of J2EE (Java 2 Platform Enterprise Edition) has brought
unprecedented severe challenges to Java source code vulnerability mining. According to
the data released by the vulnerability knowledge base website CVE details [1], information
security companies and security researchers submitted 24,172 vulnerabilities to the Com-
mon Vulnerabilities & Exposures (CVE) in 2022, an increase of 4001 from 20,171 in 2021.
In addition to the increase in the number, the forms of software vulnerabilities also show
complexity and diversity, and the threats to the normal and safe operation of computer
systems are increasing day by day.

Since the classifier cannot understand the source code in text form, it needs to convert
a source code file into a vector that contains the syntax and semantic structure information
of the code. This process is called code representation. The code representation method
based on the abstract syntax tree (AST) is better than the code representation method
based on code metrics [2] and sequences of tokens [3]. It comprehensively considers
the code semantics and structural information and thus is more comprehensive. In the
existing studies based on abstract syntax tree representation, most studies do not eliminate
irrelevant nodes such as annotations and package references, these irrelevant nodes will
lead to long training time and overfitting. Another problem is that most studies use the
depth-first algorithm to traverse the whole tree to collect node information when processing
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AST. This algorithm may convert two different ASTs into the same sequence of tree nodes,
resulting in some AST structural information loss and a decrease in accuracy.

The novelty and contribution of our research are as follows:

1. The breadth-first algorithm is used to solve the problem of semantic structure infor-
mation loss when processing abstract syntax trees. We are the first to propose an
algorithm that uses breadth-first to process abstract syntax trees to obtain expression
subtrees, which solves the problem of semantic structure information loss caused
by code structures being translated to the same sequence of tree nodes when using
depth-first to process abstract syntax trees.

2. We proposed a statement tree pruning algorithm to solve the problem of information
redundancy caused by irrelevant information (such as package references and com-
ments) in source code. The irrelevant nodes in the abstract syntax tree are not helpful
for classification but will lead to long training time and overfitting. To solve this
problem, we propose pruning the statement tree obtained from the transformation of
the abstract syntax tree to solve the problem of redundant information.

The structure of this paper is as follows: Section 1 introduces the research background,
novelty, and contribution of this paper; Section 2 introduces the recent works and progress;
Section 3 introduces the composition of the PSTDF (pruned statement tree-based deep
forest) in detail; Section 4 contains five experiments. In this part, we have carried out vali-
dation experiments and comparative experiments on different datasets and then analyzed
each experiment to verify that PSTDF can reduce the loss of semantic information and
remove the negative impact of irrelevant information. Section 5 discusses the advantages
and limitations of PSTDF; Section 6 summarizes the work of this paper and looks forward
to the work of the next step.

2. Related Work

The vulnerability feature extraction and classification method in Java source code is
the main research work of this paper. First of all, we need to extract the features of each
type of vulnerability in the source code file. After getting the features, we convert them into
vector form which can be accepted by the machine. At the same time, the converted vectors
can represent the essence of various vulnerability codes as much as possible. Finally, the
source codes are classified based on the extracted features. Therefore, our work mainly
includes two aspects: representation of vulnerability source code and classifier testing.

The existing abstract syntax tree-based code representation methods can be divided
into two types according to different feature extraction methods, one is path information
representation. Ref. [4] proposes to decompose the tree into paths, and the path information
obtained from the decomposition is used as the input of the transformer for code prediction;
Ref. [5] proposes the PATA model, which distinguishes multiple occurrences of the same
variable based on execution path information for stain analysis; Ref. [6] designs a model
for training deep learning classifiers to predict the correctness of patches by traversing the
AST path in depth-first.

The other is node information representation. For example, Ref. [7] proposes an
AST-based neural network (ASTNN) to divide the AST into statement trees and perform
depth-first traversal on the statement trees to obtain statement sequences and convert
them into 128-dimensional vectors, and then train a bidirectional RNN (recurrent neural
network) model for code clone detection and function classification; Ref. [8] divides the
AST into statement trees and performs depth-first traversal on the statement trees to obtain
sequences of a statement, then uses Word2Vec [9] to translate each statement in the sequence
into a vector, and finally uses the obtained vector as the input of the BiLSTM (bi-directional
long short-term memory) [10] model. Ref. [11] proposes a transformer-based source code
classification method on the basis of [7] to avoid gradient disappearance and long-distance
dependence. Ref. [12] uses the depth-first algorithm to process the AST to obtain the
sequence of the AST nodes, and then uses the continuous bag-of-words model to generate
word vectors, which are sent to a model built on GAN (generative adversarial network) [13]
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for training, and finally uses this model for software defect prediction. The authors of [14]
propose the TreeCaps model on the basis of Mou et al. [15], which uses the capsule network
with the tree-based convolutional neural network. TreeCaps achieves higher learning
accuracy than existing graph-based neural networks.

In terms of classifier selection, some users may not want their source code to be up-
loaded to the public server without supervision in actual vulnerability detection. To solve
this problem, Ref. [16] designs a sparse autoencoder (SAE) based federated learning frame-
work consisting of two independent classifiers to accurately compute classification results
while preserving privacy; Ref. [17] proposes a model based on federated learning to protect
privacy. This model introduces the concept of reputation as a measure to achieve effective
reputation management of public servers under the condition of undeniable and tamper-
proof. In addition, the authors of [18,19] propose using a semantic-complete graph (SMGA)
for classification. In this model, a graph-embedded semantic completion module (GSC) is
designed to complete mismatched semantics by generating hallucination graph nodes in
missing categories to overcome significant intra-class variance and domain mismatched
semantics in training batches, which led to the problem of suboptimal adaptation.

The above representation methods based on the AST have achieved good results
in the fields of vulnerability mining and defect prediction. However, there are still two
problems: most studies [4–8] use depth-first algorithms to deal with abstract syntax trees,
and different code structures will be translated to the same sequence of tree nodes when
processing abstract syntax trees using depth-first traversal, this leads to a loss of semantic
structure information which will reduce the accuracy of the model. Another problem is
that some studies [7,8,11] do not exclude redundant information brought by irrelevant
nodes when dealing with abstract syntax trees, which will lead to longer training time
and overfitting. Inspired by [7], we propose a vulnerability classification method based
on improved statement tree representation. This method first performs a breadth-first
traversal on the AST according to the concept of a statement tree to convert it into a series
of statement trees and combines these statement trees into a sequence according to the
traversal order. Then, to reduce information redundancy, we prune each statement tree
in the sequence to remove irrelevant nodes such as annotates and package references.
Next, depth-first traversal of every statement tree in the sequence is performed to obtain
a sequence of statements and encode each statement in sequence into a vector by using
Word2Vec. Finally, we use the deep forest for classification.

Our experiments prove that the method proposed by us can decrease the loss of
semantic structure information effectively and eliminate the negative impact of irrelevant
redundant information in AST.

3. Model Building

The pruned statement tree-based deep forest (PSTDF) proposed by us is mainly
divided into three stages. Stage one is data preprocessing; stage two is vulnerability feature
extraction; stage three is vulnerability code classification. As shown in Figure 1, the AST is
traversed by using the breadth-first algorithm to obtain the sequence of statement trees,
and then the node pruning is performed on each statement tree in the sequence. Next, each
statement tree is converted into the vector through the encoding layer and pooling layer.
Finally, we use the deep forest to classify the code.
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Figure 1. The architecture of the PSTDF.

3.1. Parse Source Code into AST

Since the classifier cannot understand the source code in the form of text, we need to
convert a code file into a vector containing the semantic structure of the code, and then
input it into the classifier for training. An abstract syntax tree (AST) is an intermediate
representation in the code compilation process. The AST node stores the grammatical
structure information of the code [20]. The AST can well reflect source code semantic
structure and syn-tax information. In the experiments in this paper, we use javalang to
complete the task of parsing source code into an AST. Javalang is a Python library that
can be installed directly using pip, and it can parse the entire Java source code file or
code fragment into the corresponding AST. Figure 2a,b show a piece of Java code and
converted AST.

1.public void CommandInjection(String command,int forbidden){

2.    Runtime rt = Runtime.getRuntime();

3.    if(forbidden==0){

4.        command = command.split(";")[0];     

5.    }

6.    rt.exec("ping "+command);

7.}

Method

Declaration

Modifier public

Tree1

...

body

LocalVariable

IfStatement

Exec

Type

...

int

block Split

Binary

Operation
...

...

(a)Java Code Fragment (b)AST and Statement Trees

Figure 2. Java code converted to statement trees.
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3.2. Obtain the Sequence of Statement Trees

After the AST is obtained, the AST needs to be traversed breadth-first to obtain the
sequence of statement trees for further processing.

Formally, given an AST’s statement node set S, each statement in the code corresponds
to an element s ∈ S. For nested statements such as those in Figure 2b, we define a set of
independent nodes: P = {block, body}. body ∈ P represents the method declaration in
the scope, and block is used to split the declaration and scope of nested statements (for
example, while statement, try− catch statement, and so on). Furthermore, we define a set
D(s). This set consists of all of the children of s ∈ S. For any d ∈ D(s), if d can reach s
through a node in P, then d is included in the statement represented by the node s, and we
call d a sub-statement node of s.

According to the above definition, a statement tree is a tree whose root is the statement
node s ∈ S and consists of sub-statement nodes of s (not including the statement nodes in
the set P). It has been demonstrated in Ref. [7] that the granularity of the statement tree can
achieve a good balance between the depth, size, and diversity of the semantic structure of
the AST.

As shown in Figure 3, according to the definition of the statement tree, the depth-first
algorithm can be used to traverse the AST to obtain a sequence of statement trees.

MethodDeclaration

LocalVariable

IfStatement

Exec

Split

...

...

...

...

...

Figure 3. Sequence of statement trees. This sequence was obtained from the AST in Figure 2b.
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However, the depth-first algorithm used in [7] and most studies based on AST when
dealing with AST will have the problem of tree structure information loss. We take the two
methods in Figure 4a as an example (for simplicity, only the root nodes in the statement
tree were drawn to illustrate the problem), the java method “danger” is a method with
command injection vulnerability (CWE78), the method “safe” is a method without CWE78.

1.public void danger(String command,int forbidden) {

2.    Runtime rt = Runtime.getRuntime(); 

3.    if(forbidden==0) {

4.        command = command.split(";")[0];

5. }

6. rt.exec("ping "+command);

7.}

Safe method AST2

1.public void safe(String command,int forbidden){

2.    Runtime rt = Runtime.getRuntime(); 

3.    if(forbidden==0) {

4.        command = command.split(";")[0];

5.        rt.exec("ping "+command);

6. }

7.}

Danger method AST1

(b)ASTs(a)Java Code Fragments

Method

Declaration

Local

Variable

Exec

Split
IfStatem

ent

Method

Declaration

Local

Variable

Exec

Split

IfStateme

nt

Figure 4. Comparison of breadth-first traversal and depth-first traversal. In this Figure, both Java
methods are converted to AST1 by depth-first traversal, and the safe method without vulnerability is
converted to AST2 by breadth-first traversal.

In the danger method, if we pass in the parameter “forbidden = 1”, the security
processing will be bypassed and any system command we want will be executed. The
safe method does not have this vulnerability, no matter what parameters are input, no
unexpected command will be executed. The ASTs parsed by the two methods are shown in
Figure 4b. When the depth-first algorithm is used to traverse the two ASTs, both trees will
be converted into the same sequence of statement trees in Figure 5a. These two methods
have only slight differences in code structure, while the depth-first traversal-based method
in the literature cannot capture such differences. We propose to use breadth-first traversal
to solve this problem. When breadth-first traverses two ASTs, the safe method will be
converted into the sequence of statement trees shown in Figure 5a, and the danger method
will be converted into the sequence shown in Figure 5b. It can be seen that different
semantic information of the two ASTs has been preserved and we avoid the loss of this part
of the semantic information.
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(a) Statement Tree Sequence 1 (b) Statement Tree Sequence 2

Method

Declaration

Local

Variable

IfStatement

Split

Exec

Method

Declaration

Local

Variable

IfStatement

Exec

Split

Figure 5. Two kinds of Statement Tree Sequence and differences. Sequence 1 is obtained from
AST1 in Figure 4b by breadth-first traversal, and Sequence 2 is obtained from AST2 in Figure 4b by
breadth-first traversal.

The depth-first traversal-based AST parsing algorithm proposed in [7] is shown in
Algorithm 1, and our improved algorithm is shown in Algorithm 2.

Algorithm 1 Original AST parsing algorithm.

Input: AST root node
Output: sequence of statement trees

1: Function dfs(root,sequence){
2: children = root.children; //get children of root
3: sequence.add(root);
4: for child:children do //recursive traversal
5: dfs(child,sequence);
6: end for
7: if root /∈ S ∪ P then //base case
8: return;
9: end if

10: }

As shown in Algorithm 2, given an AST T, breadth-first traversal is performed starting
from the root node, and first, it is judged whether the current node is a node in the statement
set S if it is a node in S, put it into the sequence of statement trees, if not, it is further judged
whether the current node belongs to the nested node set P = {block, body}. If a current
node is in the set P, we put it into the sequence of statement trees, if not, it continues to
traverse until the end of the loop, and the algorithm outputs the sequence of statement trees.
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Algorithm 2 Improved AST parsing algorithm.

Input: AST root node
Output: sequence of statement trees

1: res,queue = []; //init
2: queue.add(root); //add root into queue
3: while queue do //breadth-first traversal
4: node = queue.pop(); //head element out
5: if node ∈ S ∪ P then
6: res.add(node); //determine whether the current node is a statement node
7: end if
8: for child:node.children do
9: queue.add(child);

10: end for
11: end while
12: return res;

3.3. Irrelevant Node Pruning

The method proposed in [7] was originally designed for function-level code fragments.
In the original model, all statement trees and their nodes are encoded, resulting in some
irrelevant nodes such as package reference nodes and annotation nodes being encoded as
features, and these nodes are encoded as features that will increase model training time and
even lead to overfitting. To remove redundant information, the statement tree is pruned
before the encoding process, irrelevant nodes such as annotations and package references
will be removed, and only necessary semantic information is retained for encoding. We
define a set of the irrelevant node set U = {import, annotate}.

As shown in the node pruning layer in Figure 1, the sequence of statement trees
obtained by Algorithm 2 is traversed once, and firstly, it is judged whether the root node of
each statement tree belongs to U, if the root node belongs to U, the statement tree will be
discarded. If it does not belong to U, the child of the root node is traversed once, if there
is a child node belonging to the set U, this child will be discarded too. Finally, we get the
pruned sequence of statement trees [T1, T2, ..., TN−1, TN ]. The above process is shown in
Algorithm 3.

Algorithm 3 Node pruning algorithm.

Input: sequence of statement trees
Output: pruned sequence of statement trees

1: queue = []; //init output sequence
2: for root : res do
3: if root /∈ U then //discard useless statement tree
4: for child : root.children do
5: if child ∈ U then
6: root.remove(child); //discard useless tree node
7: end if
8: end for
9: queue.add(root);

10: end if
11: end for
12: return queue;

3.4. Encode Sequence of Statement Treess as Vector

When encoding, we use the sequence of statement trees [T1, T2, ..., TN−1, TN ] obtained
from Algorithm 3 as input. The encoder will encode each statement tree TN in the sequence.
Taking the statement tree in Figure 6 as an example, first, depth-first traversal on the
statement tree is performed, and we obtain the node label set as corpus and then train
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Word2Vec by using this corpus to obtain the node index list. Then, the second depth-first
traversal of the statement tree is performed to obtain the node set nodes, and each statement
tree node in nodes is converted to d-dimensional vector vn through the Word2Vec model
obtained during the first traversal.

MaxPooling

...

vnv2v1

...

hn-1h2h1

et

MethodDeclarationname type parameters return

Vn-1

v3

h3 hn

...

Figure 6. The structure of statement tree encoder. This encoder uses depth-first traversal to encode a
statement tree into a vector.

Concretely, given a statement tree node n ∈ nodes which has no leaf, first, we use
Equation (1) to perform word embedding on node n to obtain the vector representation
vn of n. In Equation (1), xn is one-hot representation of node n, W>e ∈ R|V|×d is a weight
matrix, d is the word embedding dimension, V is the vocabulary size, and > is matrix
transpose operation.

vn = W>e xn (1)

Then, we use Equation (2) to recursively update the vector vn so that it contains child
nodes and hierarchical structure information to obtain the vector list [h1, h2, ..., hn−1, hn]. In
Equation (2), W>n ∈ Rk×d is the k-dimension encoding weight matrix, > is matrix transpose
operation, d is the word embedding dimension, C is the number of child nodes of node n,
bn is a bias term, hi is updated vector of the child nodes of node n, and tanh is the activation
function.

h = tanh(W>n ∈ Rk×d + ∑
i∈[1,C]

hi + bn) (2)

Because the number of n ∈ nodes in each statement tree is variable, it is necessary to
perform a transposition operation on the updated vector list [h1, h2, ..., hn−1, hn]. As shown
in Equation (3), n is the number of statement tree nodes which has no leaf, and d is the
word vector dimension.

h(1,1) h(1,2) · · · h(1,d)
h(2,1) h(2,2) · · · h(2,d)

...
...

. . .
...

h(n,1) h(n,2) · · · h(n,d)

 transpose−→


h(1,1) h(2,1) · · · h(n,1)
h(1,2) h(2,2) · · · h(n,2)

...
...

. . .
...

h(1,d) h(2,d) · · · h(n,d)

 (3)
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Then, as shown in Equation (4), the maximum pooling operation is performed on the
transposed vector list line by line to obtain the vector representation et of the statement
tree T.

et = [max(hi,1), max(hi,2), . . . , max(hi,n)], i ∈ [1, d] (4)

We encode all statement trees in the sequence one by one to obtain the final vector
representation ei = [e1, e2, ..., et, ..., eN ], i ∈ [1, N] of an AST, where N is the length of the
sequence of statement trees.

Finally, as shown in Figure 1, ei is converted into a fixed-length vector through the
pooling layer constructed using Equations (3) and (4) and is used as an input of the classifier.

3.5. Vulnerability Classification

To further reduce the model’s time cost under the premise of ensuring accuracy, we
choose deep forest as the classifier. Deep forest is an integrated forest structure proposed
in [21], which can work well with small samples and has low computational overhead.

Since the number of samples in vulnerability datasets is usually not very large, we use
multi-grained scanning to increase the diversity of samples. As shown in Figure 1, the final
vector representation ei = [e1, e2, ..., et, ..., eN ] of an AST enters the multi-grained scanning
stage, and we use a window of length 1 to scan by step size 1 on the samples of the training
set. Next, we use the features in each window as the input of this stage (multi-grained
scanning) and output the probability vector of the features in each window. Finally, we
concatenate all the probability vectors as the input of the next stage (cascade forest).

The cascade forest has several layers, as shown in Figure 1, and each layer consists of
several random forests and completely random forests. The first layer takes the probability
vector output by the multi-grained scanning stage as input. Additionally, the output of the
previous cascade layer is used as the input of the next cascade layer. During the whole
training process, every time a layer of cascade forest is added, k-fold cross-validation is
used to test the generated cascade forest. If the accuracy rate is lower than the accuracy
rate of the previous layer, the number of cascade forest layers will not increase. Otherwise,
the cascade layer continues to increase.

After the cascade forest stops growing, the cascade forest averages all the probability
vectors output by the last layer and outputs the label category with the highest probability
as the predictive value of the final vulnerability classification.

4. Experiments
4.1. Experiment Settings and Dataset Description

To verify the feasibility and performance of the PSTDF, four sets of comparative
experiments are designed.

Experiment Settings: We use Python3.6 at parsing the source code into AST, statement
tree encoding, and deep forest classification. All experiments are run on a laptop equipped
with an AMD RYZEN 7 octa-core processor, 64 GB of memory, and a 64-bit Windows 10
operating system. Except for the model using the deep forest and the traditional machine
learning model running on the CPU, the rest of the neural network models are all running
on a GTX1650 graphics card with 4 GB of video memory.

Dataset Description: The vulnerability data used in this paper comes from the OWASP
(Open Web Application Security Project) benchmark vulnerability dataset v1.1 and the
SARD (Software Assurance Reference Dataset) JuiletJava dataset. The OWASP dataset
contains a total of 21,041 operational use cases including 11 types of vulnerabilities such
as command injection, weak encryption algorithm, SQL injection, and directory traversal.
Each category contains positive samples with vulnerabilities and negative samples without
vulnerabilities. The ratio of positive and negative samples in the OWASP dataset is about
1.28:1. The information about the OWASP dataset is shown in Table 1.
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Table 1. Basic information about the OWASP dataset.

CWE Number Vulnerability
Type

Positive
Samples

Negative
Samples Total

CWE78 cmdi 906 1802 2708
CWE327 crypto 720 720 1440
CWE328 hash 707 714 1421
CWE90 LDAP 215 521 736
CWE22 pathtraver 924 1706 2630

CWE614 securecookie 215 201 416
CWE89 sqli 1232 2297 3529

CWE501 trustbound 220 505 725
CWE330 weakrand 2028 1612 3640
CWE643 XPATH 130 217 347
CWE79 XSS 1909 1540 3449

In addition to the OWASP dataset, we also select 12 CWE-numbered vulnerabilities
from the SARD JuiletJava dataset to construct a subset containing 15,340 samples. Since
each Java file in the SARD dataset contains two kinds of functions: bad (with vulnerabilities)
and good (without vulnerabilities), the ratio of positive and negative samples in the subset
constructed based on the SARD dataset is 1:1. The detailed information (vulnerability
number, vulnerability type, quantity, etc.) of the SARD dataset is shown in Table 2.

Table 2. Basic information about the SARD dataset.

CWE
Number Vulnerability Type Positive

Samples
Negative
Samples Total

CWE78 cmdi 906 1802 2708
CWE327 crypto 720 720 1440
CWE328 hash 707 714 1421
CWE90 LDAP 215 521 736
CWE643 XPATH 264 264 528
CWE614 securecookie 17 17 34
CWE89 sqli 1320 1320 2640
CWE80 XSS 792 792 1584
CWE15 External Control of System 264 264 528
CWE113 HTTP Request Splitting 792 792 1584
CWE129 Improper Validation of Array 1584 1584 3168

4.2. Experiment 1

The first experiment verified the effectiveness of the improved statement tree repre-
sentation method proposed by us on the OWASP dataset and analyzed its time complexity.

Experiment parameters: In this experiment, the train set and test set were randomly
selected from the OWASP dataset at a ratio of 6:4. The code representation uses the sequence
of statement tree (ST) proposed in [7] and the sequence of pruned statement tree (PST)
proposed by us, respectively. The classifiers all use the GRU in [7]. We use the skip-gram
algorithm to train Word2Vec to convert the sequence of statement trees into the word vector
and the word embedding size is 128 dimensions. The hidden dimension of the GRU [22] is
100; the hidden dimension of the original statement tree encoder in the original ASTNN [7]
is 100 as well. The batch size is 64 and the epoch is 2. When we train the neural network,
we use the optimizer AdaMax [23] with a learning rate of 0.002.

The results are shown in Table 3.
We also calculated the confusion matrix of ST, which is shown in Figure 7, and the

confusion matrix of PST is shown in Figure 8.
Result analysis: Taking the AST in Figure 2b as an example, we calculate f (n) and

analyzedthe time complexity of Algorithms 1 and 2. For Algorithm 1, it is calculated to
get f (n) = n2 + 2, and the time complexity of Algorithm 1 is O(n2). For Algorithm 2, it is
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calculated to get f (n) = 2n + 4, and the time complexity of Algorithm 2 is O(n). Therefore,
we can find that the time complexity of Algorithm 2 is less than that of Algorithm 1. In
addition, PST can further reduce time consumption during training.

In terms of memory consumption, Algorithm 2 uses a queue-based non-recursive
algorithm, which is also better than Algorithm 1 using recursion in terms of memory
consumption. This experiment shows that compared with the original method proposed
in [7], PST could effectively reduce the loss of semantic structure information (improved
the accuracy and other indicators by about 2.4%) and the negative impact of irrelevant
redundant information in AST (reduced the time overhead by about 36%).

Table 3. Basic information about the SARD dataset.

Code Representation Classifier Accuracy (%) Recall (%) F1 (%) Time Cost (s)

ST GRU 93.35 93.54 93.33 675.89
PST GRU 97.59 97.61 97.48 428.31

Figure 7. Confusion matrix of ST. This confusion matrix is obtained by using the original statement
tree(ST) segmentation algorithm.
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Figure 8. Confusion matrix of PST. This confusion matrix is obtained by using the pruned statement
tree(PST) segmentation algorithm.

4.3. Experiment 2

The second experiment used the improved algorithm proposed by us to test the model
based on the different classifiers to verify that using deep forest as a classifier is good.

Experiment parameters:
For LSTM (long short-term memory) and BiLSTM, we set the dimensionality of the

hidden state as 100. The number of LSTM cells is 128, the epoch is 50, and the batch size is
64. For the CNN (convolutional neural network) [24], we use a neural network containing
a convolution layer and a pooling layer set epoch as 500, and the learning rate is 0.1. For
SVM (support vector machines), we built an SVM classifier using the liner kernel. For the
decision tree, we use the Gini impurity, the maximum depth of the tree is 5. For GRU, the
parameters of the GRU used in this experiment are consistent with experiment 1. For deep
forest, each forest in the cascade forest has 200 trees, sliding window size and step size are
both 1, and the maximum number of cascaded layers is 20.

This experiment is carried out on the OWASP dataset and the results are shown in
Table 4.

Table 4. Classifier comparison.

Classifier Accuracy (%) Recall (%) F1 (%) Time Cost (s)

LSTM 27.20 27.20 24.01 345.19
BiLSTM 32.26 32.26 26.0 322.96

CNN 33.31 33.31 25.14 505.17
SVM 7.28 7.28 5.22 213.34

Decision Tree 13.72 13.72 8.93 216.91
GRU 97.59 97.61 97.48 504.78

DeepForest 99.13 99.13 99.13 376.33
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Result analysis: The data in Table 4 shows that although traditional classifiers such
as SVM and CNN are fast, they cannot effectively learn the deep features in the code
representation. For vulnerability classification, GRU is better than LSTM. GRU has a simpler
structure and can solve the problem of long-distance information context dependence, so it
is better in accuracy and time consumption. However, deep forest has higher accuracy by
generating sub-samples in the multi-grained scanning stage, and it can also achieve a time
overhead similar to that of a model running on a GPU when running under a CPU.

4.4. Experiment 3

In the OWASP dataset, we conduct extensive experiments on different models. We
compare traditional machine learning models such as SVM-based and other models based
on deep neural networks such as MCDF (malicious code classification method based on
deep forest) [25], LSTM [26,27], BiLSTM [28], TextCNN [29], and TextGCN [30]. Parameters
in each method were shown as follows:

• In TextCNN, LSTM, and BiLSTM, the code is regarded as plain text and converted into
sequence of tokens representation as input. For TextCNN, we set the kernel size as 3
and set the number of filters as 100. For LSTM and BiLSTM, we set the dimensionality
of the hidden state as 100.

• In SVM, we use the SVM with traditional statical features-based methods such as
the TF-IDF (term frequency–inverse document frequency) algorithm, N-gram [31]
algorithm, and LDA (linear discriminant analysis) [32] algorithm. These methods
extract tokens from Java source code files. For the LDA algorithm, the number of
topics is set as 300; for the N-gram algorithm, the number of max features is set as
1000 and the number of grams is set as 2.

• In MCDF, the Java source code was treated as a character stream file, read 8-bit binary
numbers into decimal integers, and reshape these integers into fixed-line-width vectors
as the deep forest’s input vectors.

• We also tested the performance of graph neural networks such as TextGCN. In
TextGCN, documents and words in code files are regarded as graphs’ nodes; we use
the co-occurrence frequency information of words to construct the edge between word
nodes, and the document frequency and word frequency are used to construct the
edge between different kinds of nodes (word node and document node) to construct a
large graph. The graph is then modeled using GCNs (graph convolutional networks),
converting the code function classification problem into a node classification problem.

Result analysis: The results are shown in Table 5. From Table 5 it can be seen that
traditional models such as SVM did not perform well. Traditional methods such as SVM
mainly rely on shallow semantic features and the semantics of tokens to distinguish code
functions. However, in this experiment, the OWASP dataset has a similarly large number
of annotations and package reference nodes, so token-based methods are not effective in
classifying vulnerability source code. For other deep neural network models, BiLSTM and
TextCNN are better than the above token-based methods because this type of recurrent neu-
ral network can capture more local features in Java code files. In TextGCN, the graph-based
approach performs passably well but it uses node numerical ID to represent the nodes of
the graph, this numerical ID-based method misses lexical knowledge. Additionally, many
graph-based works such as TextGCN only focus on the explicit dependency information
on a high level of abstraction [33]. In all models, our model achieves faster speed and
the best accuracy. Because PSTDF performs feature capture on the statement tree that
is much smaller than the original AST according to the method proposed in the litera-
ture [7]. It achieves good results in both class-level files and code fragments. Additionally,
the improved algorithm used by PSTDF can save a lot of memory space to increase the
calculation speed.
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Table 5. Comparison on the OWASP dataset.

Method Accuracy (%) Recall (%) F1 (%)

SVM+TD-IDF 44.16 44.16 27.06
SVM+N-gram 49.93 49.93 33.26

SVM+LDA 43.91 43.91 26.80
LSTM 43.81 8.33 5.08

BiLSTM 89.26 89.26 89.90
MCDF 91.97 85.83 86.59

TextCNN 86.36 86.36 86.30
ASTNN 93.35 93.54 93.33

TextGCN 90.60 90.04 89.96
PSTDF 99.13 99.13 99.13

4.5. Experiment 4

The fourth experiment uses the SARD dataset to test the generalization ability of PSTDF.
Experiment parameters: In this experiment, all models’ parameters were consistent

with those in Experiment 3.
Result analysis: The results are shown in Table 6. From Table 6 it can be known that

PSTDF also has good generalization ability on different datasets.

Table 6. Generalization experiment.

Method Accuracy (%) Recall (%) F1 (%)

SVM+TD-IDF 49.40 49.40 33.62
SVM+N-gram 49.76 49.76 33.06

SVM+LDA 47.28 47.28 33.94
LSTM 50.02 7.69 5.13

BiLSTM 93.68 93.68 93.50
MCDF 97.63 89.74 92.64

TextCNN 94.76 94.76 93.58
ASTNN 95.95 95.21 95.71

TextGCN 89.39 89.05 89.05
PSTDF 99.32 99.32 99.33

4.6. Experiment 5

Our method is not only applicable to Java but also applicable to classification tasks in
other languages such as C/C++. Therefore, we designed Experiment 5. This experiment
uses an OJ dataset written in C/C++ to test. The samples in this dataset are collected
from the online judge system (OJ) published in [15]. The OJ dataset contains a total of
52,000 operational use cases including 104 types of C++ functions. We use this experiment
to prove that our method is also applicable to code vulnerability classification scenarios of
other programming languages.

Experiment parameters: For PSTDF, we change the parser that parses the source
code as AST from javalang to pycparser [34], with the remaining parameters unchanged.
For program dependency graph (PDG)-based graph embedding, in this experiment, we
also tested the performance of the method based PDG and gated graph neural network
(GGNN), this method use Frama-C5 [35] to get the programs’ PDGs and then send them to
the GGNN for graph embedding. The parameters of the other methods are consistent with
Experiment 3.

The experimental results are shown in Table 7.
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Table 7. C++ code classification experiment.

Method Accuracy (%) Recall (%) F1 (%)

SVM+TD-IDF 85.45 85.45 85.56
SVM+N-gram 84.66 84.66 84.99

SVM+LDA 0.79 0.008 0.001
TextGCN 79.16 78.31 78.21

PDG+GGNN 79.61 79.61 79.74
TBCNN 94.01 94.01 94.14
ASTNN 97.22 97.29 97.23
PSTDF 97.70 97.73 97.72

Result analysis: It can be seen that PSTDF is also applicable to vulnerability classifica-
tion scenarios of other programming languages by using the abstract syntax tree parser of
the corresponding programming language.

5. Discussion
5.1. Effects of PSTDF

Through the above experiments, we have determined three advantages of PSTDF: (a) It
can effectively reduce the loss of semantic structure information when processing abstract
syntax trees. (b) It can reduce the negative impact of irrelevant redundant information
in AST. (c) In addition, PSTDF also has good generalization ability, it can be applied to
vulnerability classification scenarios of other programming languages by changing the
corresponding AST parser for different languages.

5.2. Privacy Issues and Limitations

However, our model is temporarily unable to handle the classification of cross-file
vulnerabilities such as deserialization vulnerabilities. Another risk is privacy issues: collect-
ing and uploading private data to the centralized server without enough regulation [36].
In practical applications, some organizations or individuals may not want their source
code to be uploaded when conducting vulnerability detection, thus creating a risk of
privacy disclosure.

6. Conclusions and Future Works

In this paper, we proposed an effective deep forest based on pruned statement tree
(PSTDF) to learn the representation of source code. PSTDF performs breadth-first traversal
on the AST to obtain a sequence of pruned statement trees, and then encodes each pruned
statement tree in sequence to get a sequence of vectors. PSTDF solves the problem of loss
of semantic structure information in AST and the problem of how to eliminate irrelevant
information in AST to avoid overfitting. We use three datasets, OWASP, SARD, and OJ, to
evaluate the performance of PSTDF. The experimental results show that PSTDF is superior
to the existing methods, and PSTDF is not only applicable to code vulnerability classification
scenarios for Java but also can be applied to code vulnerability classification scenarios for
other programming languages by simply modifying the AST parser.

In the future, we will consider federated learning using the distributed normal form
cooperative training model to solve privacy issues [37]. Additionally, we will study how to
solve the classification problem of cross-file vulnerabilities.
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ST Statement Tree
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