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Abstract: In this paper, we propose a new statistic to test the monotonicity of uncertainty based on
derivative criteria and the histogram method. We test the null hypothesis that residual entropy is
constant against the fact that it decreases over time. Hence, by the fact that the exponential distribution
is the distribution with a constant uncertainty, we establish the test exponential distribution against
the decreasing uncertainty of residual life distribution. Consistency and asymptotic normality are
proved. The critical values of the statistics are given by means of the Monte Carlo simulation method
to decide on the test. Then, the power estimates of the new test are compared to those of the test
based on the criteria of monotonicity of residual entropy. Finally, we show, with real survival data,
that the distributions belong to a decreasing uncertainty residual life class. Moreover, by applying
a test of goodness of fit, we confirm that the data follow parametric distributions belonging to a
decreasing uncertainty of residual life class.

Keywords: reliability; information measures; uncertainty; residual entropy; lifetime distribution;
non-parametric test; decreasing uncertainty of residual lifetime
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1. Introduction

Several attempts have been made, in terms of effective procedures, at inherent un-
certainty reasoning in medical diagnosis, expert systems, Artificial Intelligence and other
engineering studies. “All of the time, agents are forced to make decisions based on incom-
plete information. Even when an agent senses the world to find out more information, it
rarely finds out the exact state of the world. A robot does not know exactly where an object
is. A doctor does not know exactly what is wrong with a patient. A teacher does not know
exactly what a student understands. When intelligent agents must make decisions, they
have to use whatever information they have” (Poole and Mackworth (2023) [1]). Probability
theory is perhaps an adequate way to give a mathematical measure of an uncertain (or ran-
dom) event from the point of view of the criteria enumerated by Waley (1996) [2], amongst
others (interpretation, imprecision, calculus, consistency, assessment and computation),
since it is naturally associated with mathematical statistics for inference (see also Poole
and Mackworth (2023) [1], Zio and Pedroni (2013) [3]). Several objections have been made
against probability models, whose role in dealing with uncertainty—particularly with
clinical diagnosis—was the core of overheated debate that arose from misunderstanding
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questions. This led to new theories with different purposes of application: probability
bounds, entropy, imprecise probability, fuzzy theory, possibility theory, belief functions,
evidence theory, and so on, all of which tried to give more comprehensive insight into the
notion of uncertainty.

In Colyvan (2008) [4], the author addressed this question through the famous Cox’s
theorem, which states that “Any measure of believe is isomorphic to a probability measure”.
His strategy was to first show that the claim that probability theory is the only coherent
means of dealing with uncertainty is implausible. He did this by “considering different
kinds of uncertainty and showing that probability theory seems ill-suited to the uncertainty
arising in situations where the logical principle of excluded middle fails”.

In this paper, we do not enter into this debate, but we refer to an idea that goes
back to the mathematical theory of communication by Shannon (1948) [5], which defines
uncertainty through the notion of entropy.

Recall that all probability distributions considered in classical uncertainty theories
(probabilistic or not) are qualified as “parametric” in the sense that they depend on some
parameters. For example, exponential distribution depends on only one parameter (the
mean); normal distribution depends on two parameters (the mean and the variance). In
any practical situation, we are satisfied with these parametric laws, which are simple and
intuitive: they give a first answer to any given question. As a second step, we can question
ourselves about how to improve the model from the “uncertainty” point of view. Indeed,
we can have doubts about the chosen probability distribution (law), although it is given by
the well-established statistical mathematic of decision or inference:

• First, experimentation with different statistical samples for a given variable can lead to
the identification (estimation, in the statistical language) of different probability laws,
without which that theory is false. This points, simply, to the fact that the identification
is not unique, which is well known in theory and in practice.

• In practice, engineers are not always interested in the probability (parametric) dis-
tribution (or law) itself but simply in some “physical” property, such as the “aging”
property of the component or the system. A more simple example is given by reli-
ability or survival analysis studies (see Shaked and Shantikumar (1994) [6] and Lai
and Xie (2006) [7]), in which practitioners are interested only in a stage of aging or
rejuvenation: for example, “Increasing (Decreasing) Failure Rate”, i.e., IFR (DFR).
Therefore, we consider the class of all probability distributions with such a property
IFR (DFR). Such a class is non-parametric rather than parametric, because it contains a
collection of probability distribution functions (PDFs) that have in common a given
aging property.

• Reliability studies have shown that it is possible to associate bounds (majoration/
minotation) with a given class of aging distribution. Similar bounds can be obtained
for any structured (coherent) system (Barlow and Proshan (1975) [8])—series, paral-
lel, etc.—on the basis of the information about the class of the elements (stability or
preservation properties).

• The properties of such classes are also of some interest for other stochastic mod-
els, such as queuing, insurance, networks, medicine or biological models (see Feng
et al. (2017) [9], Feng et al. (2020) [10], Marshall and Olkin (1979) [11], Shaked and
Shantikumar (1994) [6] and Senouci et al. (2012) [12] for more details).

Non-parametric probability distributions classes are always associated with the mono-
tonicity and comparability properties of some stochastic order. In this paper, we consider
the non-parametric class of DURL (IURL)—decreasing (increasing) uncertainty of residual
life—which is based on the monotonicity of an uncertain order. These classes of probability
distribution functions (PDFs), which were introduced by Ebrahimi (1996) [13], also provide
several mathematical properties, particularly preservation results. Further results and refer-
ences, particularly in connection to order statistics and record values, are provided in Asadi
and Ebrahimi (2000) [14], Ebrahimi and Soofi (1994) [15], Ebrahimi and Pellery (1995) [16]
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and Ebrahimi and Kirmani (1996) [17]. Ebrahimi (1997) [18] provides some statistical
hypothesis tests for DURL class based on the monotonicity of the residual entropy.

In this paper, we propose a new criterion based on a derivative criteria that tests such
an uncertainty property. The paper is organized as follows: In the following Section 2,
we present the notions of stochastic order and non-parametric aging probability distribu-
tions (NPDFs). The Less Uncertainty (LU) order and the DURL (IURL) non-parametric
classes based on monotonicity of uncertainty are presented in Section 3. In Section 4, we
propose the procedure of the test based on the histogram method and inspired by the
work of Ebrahimi (1997) [18] but which is based on a derivative criteria rather than the
monotonicity one. Section 5 is devoted to determining the mean and variance of the pro-
posed statistic. The consistency and the asymptotic normality are discussed, respectively,
in Sections 6 and 7. We determine in Section 8 the critical point values of the statistic by
means of Monte Carlo simulation. Afterwards, we compare the power estimates of this test
whith those of Ebrahimi (1997) [18] in Section 9. Finally, illustrative examples are provided
in Section 10 followed by a conclusion in Section 11.

2. Stochastic Orders and Non-Parametric Aging Distribution

The problem arises in reliability theory when we have to compare reliability (or
other stochastic) models; see Marshall and Olkin (1979) [11] and Shaked and Shantikumar
(1994) [6]. This can be completed by using the notion of some partial stochastic ordering (it
is a binary relation that is reflexive, transitive and anti-symmetric).

We consider a partial ordering defined on the set = (or its suitable subsets) of all
distribution functions of real-valued random variables. For example, if X and Y are two
random variables with their distribution function F and G satisfying F(x) ≤ (resp.≥)G(x)
for every x , then we say that X is stochastically larger (resp.smaller) than Y: we write
F ≥st (resp. ≤st)G or X ≤st (resp. ≥st)Y. It must be noted that even if X and Y have
been defined in the same probability space, we can have anti-symmetry holding for F
and G without it necessarily being the case that X and Y are the same random variables.
However, stochastic ordering between two distributions, if it holds, is more informative
than simply comparing their means or dispersions only. Thus, the proposed approach
leads to a qualitative rather than purely quantitative estimation of the system under study.
For example, such an approach can be used to design a better system. Since an agent can
find two situations incomparable, one situation may be better in some stochastic sense but
worse in another one.

In economic theory, this is known as the first-order stochastic dominance and is
denoted by F ≥FSD(resp. ≤FSD)G. There is a growth in literature related to stochastic
comparability (or dominance) and various stochastic orders have been introduced; most
of them can be found in monographs by Marshall and Olkin (1979) [11] or Shaked and
Shantikumar (1994) [6]. Note that we can use the terms “more variable”, “riskier” and
“more uncertain” synonymously, although the term “more variable” is related to specific
variability orders.

For example, we say that X is smaller than Y in the increasing convex (concave)
order (X ≤icx Y) if E( f (X)) ≤ E( f (Y)) for all increasing convex (concave) functions f :
R→ R where R is the space of real numbers. There is in the literature of reliability various
variability orders:

• The convex (concave) order ≤cx: the functions f (.) are convex (concave);
• The convex transform order: X ≤c Y if G−1F(x) is convex in x on the support of F,

where G−1 is the inverse of G;
• The star-shaped order ≤∗: X ≤∗ Y if G−1F(x)/x increases in x on the support of F.

Now, in reliability, we are interested in the lifetime of a component (or system of such
components). Let X be a non-negative random variable considered as the failure time
of such a component (or system) and denote by F(t) = P(X ≤ t), t ≥ 0, its probability
distribution function, which is assumed to be absolutely continuous with the probability
density function f (t).
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The function F̄(t) = 1 − F(t) = P(X > t) represents the survival (or reliability)
function, i.e., the probability of survival of the system over the period (0, t). We are
interested also in the residual lifetime Xt = X− t/X > t of a system which has survived
until time t.

We denote by Ft(x) = P(Xt < x/X > t) = P(t≤X<t+x)
P(X>t) , F̄t(x) = P(Xt > t) = F̄(t+x)

F̄(t)

the reliability of a system of age t and λF(t) = f (t)
F(t)

the failure (or hazard) rate of the
component at time t also called hazard or risk function. This is a local characteristic as the
density function and λ(t)dt represents the probability of no failure during the time interval
(t, t + dt) given no failure until time t.

Now, let us define some usual non-parametric PDFs. In the following, by increasing
(decreasing), we mean non-decreasing (non-increasing).

Definition 1. A non-negative random variable X is said to be IFR (Increasing Failure Rate) (resp.
DFR (Decreasing Failure Rate)) if the failure rate λF(t) is increasing (resp. decreasing) over
(0, t) [6,11].

This definition assumes that F(.) is absolutely continuous. Otherwise, the definition
remains valid when considering the relation between comparability (or monotonicity)
and reliability theory. A non-negative random variable X is IFR (DFR) if and only if
Xt ≥st (≤st)Xt′ for all t ≤ t′. So, the stochastic order ≤st characterizes the IFR (DFR)
(non-parametric) probability distribution.

The order ≤icx can characterize another usual aging notion in reliability, i.e., DMRL
(IMRL): Decreasing (Increasing) Mean Residual Life.

Definition 2. The random variable X has DMRL (IMRL) distribution if m(t) =
∫ ∞

t F̄(x)dx
F̄(t) is

decreasing (increasing) in t ∈ [0, t] [6,11].

Now, the random variable X is DMRL (IMRL) if, and only if, Xt ≥icx (≤icx)Xt′

whenever t ≤ t′.
The convex ≤c and the star-shaped ≤∗ orders can be used to characterize IFR and

IFRA in the following sense.

Definition 3. A non-negative random variable X is said to be IFRA (Increasing Failure Rate in
Average) if the average of its cumulative failure rate over (0, t) is increasing in t ≥ 0 [6,11].

Proposition 1. Let Exp denote any exponential distributed random variable (no matter what its
mean). Let X be a non-negative random variable. Then, X is IFR (resp. IFRA) if and only if
X ≤c(resp ≤∗)Exp [6,11].

There are some relations between these non-parametric distributions (classification).
If F is IFR, then it is also IFRA and DMRL, in the sense that for the class IFR ⊂ IFRA and
IFR ⊂ DMRL, the inclusion is strict. However, there are no relations between IFRA and
DMRL. The same relations hold for the dual classes DFR, DFRA and IMRL [6,11].

In the following section, we will consider a non-parametric probability distribution
that is not based on aging properties but rather on differential entropy in the sense of
Shannon.

3. Uncertainty Order and NPDFs DURL (IURL)

It is well known that we can define an uncertainty measure for the probability distri-
bution function F (with density f ) of the non-negative random variable X via differential
entropy in the sense of Shannon (Shannon (1948) [5]):
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H( f ) = −
∫ ∞

0
f (x)log( f (x))dx

= −E(log( f (X)))

commonly referred to Shannon information measure, where log(x) denotes the natural
logarithm. The entropy is interpreted as the expected uncertainty contained in the density
f (x) about the predictability of an outcome of the random variable X, that is the quantity of
information contained in the probability distribution of the random variable X. It measures
the concentration of probabilities: low entropy distributions are more concentrated and
hence more informative than higher ones. In this sense, the entropy can be used for
qualitative studies. In the fields of reliability, survival analysis or insurance, we have
additional information about the current age of the system S (or component) under study
and we must reassess the uncertainty of the remaining lifetime of S.

Ebrahimi and Pellery (1995) [16] propose a similar notion of dynamic measure of
entropy by considering the age of the component at time t, t > 0.

More precisely, the residual entropy gives the uncertainty contained in the conditional
density of the residual lifetime Xt = X− t/X > t on the predictability of the residual time
of the component, which is denoted by H( f ; t), where:

H( f ; t) = −
∫ ∞

t

f (x)
F(t)

log
f (x)
F(t)

dx (1)

After executing some algebraic manipulations and integration by parts, we can repre-
sent the residual entropy under the following form [9]:

H( f ; t) = 1− E[logλF(X)/X > t]

= logF(t)− 1
F(t)

∫ ∞

t
f (x)log f (x)dx

= 1− 1
F(t)

∫ ∞

t
f (x)logλF(x)dx (2)

which can be seen as a dynamic measure of uncertainty about S associated to its lifetime
distribution. In other words, H( f ; t) measures the expected uncertainty contained in con-
ditional density of the residual lifetime Xt of a system (or component) of age t, i.e., given
X > t. In this sense, H( f ; t) measures the concentration of conditional probability distribu-
tions. Note finally that the dynamic entropy of a new component (of age 0) H( f ; 0) = H( f )
is the ordinary Shannon’s entropy and that the function H( f ; t) uniquely determines the
reliability function F, or equivalently, the PDF F.

We can now define an uncertainty ordering. The non-negative random variable X
has less uncertainty than Y; we note X ≤LU Y , if H( f ; t) ≤ H(g; t), t ≥ 0 [17]. If X and Y
are the lifetimes of two systems S and S′ and if X ≤LU Y, then the expected uncertainty
contained in the conditional density of Xt, about the predictability of the residual lifetime of
the first system S, is less than the expected uncertainty contained in the conditional density
of Yt about the remaining lifetime of the second system S′ (see DiCrescenzo (2002) [19] for
another notion of order related to past entropy). Note that the usual stochastic orderings
used in the literature [6,11] can be interpreted in terms of aging properties, and in general,
there is no relation between these orderings and the above-defined uncertainty order. So,
intuitively speaking, the better system is the system which lives longer, and there is less
uncertainty about its residual lifetime. This motivates the introduction of several definitions
of preference based on aging and on uncertainty. This aspect is not considered here.
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Note that Ebrahimi and Soofi (1994) [15] view X as less uncertain than Y, written
X ≤ENT Y, if E[−log f (X)] ≤ E[−log f (Y)]. But the order ≤LU is stronger than the order
≤ENT .

On the basis of the measure of uncertainty H( f ; t), Ebrahim (1996) [13] defines two
non-parametric classes of life distributions.

Definition 4. A survival function F has decreasing (resp. increasing) uncertainty of residual life
DURL (resp. IURL) if H( f ; t) is decreasing (resp. increasing) in t [13].

If a component has a survival PDF belonging to the class DURL, then as the component
ages, the conditional probability density function becomes more informative. So, if a
component of age X has a DURL distribution (resp. IURL), its residual life can be predicted
with more (resp. less) precision [13].

Remark 1. The exponential distribution is the only continuous distribution which is both DURL
and IURL [13]. In fact, the exponential distribution has a constant uncertainty. Hence, the
derivative of the uncertainty is null.

Example 1. Let X be a random variable having Weibull distribution with survival function
F(t) = e−λtα

,t > 0. Then, X is DURL (IURL) for α > 1 (resp. 0 < α < 1) [13].

Remark 2. The relation between aging non-parametric PDFs [6,11] and uncertainty ones [13] is
that:

1. If F is IFR(DFR), then it is DURL(IURL). So that IFR ⊂ DURL and DFR ⊂ IURL.
2. If F is DMRL, then it is DURL. So that DMRL ⊂ DURL.
3. IF F is IURL, then it is IMRL. So that IURL ⊂ IMRL.

But there is no connection with IFRA (DFRA).

We can point out an interesting mathematical property of such DURL non-parametric
probability distribution (Ebrahimi (1996) [13]) :

Lemma 1. A survival function F̄ is DURL (IURL), if L( f ; t) = −H′( f ; t) ≥ 0(−H′( f ; t) ≤ 0).
That is, if we have negative (positive) local reduction of uncertainty, then F̄ is DURL (IURL) [13].

Lemma 2. A survival function F̄ is DURL if and only if H( f ; x)−H( f ; y) ≥ 0 for all y ≥ x [13].

As DURL (IURL) is a non-parametric class of probability distributions, then if we
want to test H0: F ∈ DURL, we cannot compute the statistical criteria under H0. So, it is
more convenient to test H0: F ∈ Exp, against H1: F ∈ DURL, where Exp is the class of all
exponential distributions. Ebrahimi (1997) [18] has initiated this test on the basis of the
monotonicity property of uncertainty (Lemma 2). We note that under exponentiality, the
residual entropy is constant (Ebrahimi (1996) [13]). So, in this paper, we propose a new
criterion based on Lemma 1, which tests this uncertainty property (see also Baratpour and
Habibi Rad (2012, 2016) [20,21]).

In the following, we explain the procedure of the test H0: exponentiality against H1:
DURL, using the histogram method to estimate the density and the probability function [18]
and derivative criteria.

We obtain the mean and variance of the proposed new statistic. The consistency and
the asymptotic normality are discussed. We determine the critical point values of the
statistic by means of Monte Carlo simulation. Then, we compare power estimates of this
test with those of Ebrahimi (1997) [18]. Finally, results of the illustrative examples are
discussed.
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4. A Test Statistic Based on the Histogram Method and Derivative Criteria

Recall that Exp denotes the class of all exponential distributions (no matter what its
parameter) and DURL denotes the class of all NPDFs which have the uncertain property of
Definition 4, i.e., decreasing residual entropy.

In order to discriminate between the hypothesis:

H0 : F ∈ Exp (3)

against

H1 : F ∈ DURL (and not exponential distribution) (4)

We use the derivative property of Lemma 1, contrary to the test of Ebrahimi (1997) [18],
which uses the monotonicity of the dynamic entropy (Lemma 2).

The derivative of the uncertainty measure H( f ; t) can be written as [13]:

H′( f ; t) = [H( f ; t)− 1 + logλF(t)]λF(t). (5)

Under the hypothesis H0, the exponential has a constant residual entropy; then, the
function H′( f ; t) = 0 and λF(t) 6= 0, ∀t > 0.

Let the function

g(t) = H( f ; t)− 1 + logλF(t). (6)

Then, g(t) = 0 under the hypothesis H0.
Consider now the expectation:

S = E[g(t)]. (7)

We have

S =
∫ ∞

0
g(t) f (t)dt =

=
∫ ∞

0
[H( f ; t)− 1 + logλF(t)] f (t)dt =

=
∫ ∞

0
f (t)log f (t)dt +

∫ ∞

0

f (t)
F̄(t)

( ∫ ∞

t
f (y)log f (y)dy

)
dt− 1 (8)

We use the empirical probability density function to estimate f (t) using a histogram
method [18] based on a partition of the order statistics. Let t1, t2, . . . , tn be n(n > 2)
observations from F. Let t(1), t(2) . . . , t(n) be the corresponding order statistics. We choose
k as an integer (0 < k < n) such that:

λi =

[
(n− 1)i

k

]
− ai−1 + 1, i = 1, . . . , k,

where a0 = 1 and [.] indicates the nearest integer function.
We consider a partition of [t(1), t(2) . . . , t(n)] into k subintervals:

Ii = [t(ai−1), t(ai)[, i = 1, 2, . . . , k

where

ai = 1 +
i

∑
j=1

λj, i = 1, 2, . . . , k.

then,
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ai =

[
(n− 1)i

k

]
+ 1, i = 1, 2, . . . , k.

The empirical density function is (see [22,23]):

fn(x) =

{ λi

(n−1)
(

t(ai)−t(ai−1)
) , if x ∈ Ii, 1 ≤ i ≤ k,

0, otherwise.
(9)

The empirical cumulative function is:

Fn(x) =

{ 0, if x < t(1),
ai−1−1

n−1 + λi
n−1

x−t(ai−1)
t(ai)−t(ai−1)

, if x ∈ Ii, 1 ≤ i ≤ k,
1, if x ≥ t(n).

(10)

Let di(k) = t(ai)− t(ai−1), i = 1, 2, . . . , k. Some algebras give:

∫ ∞

0
f (t)log f (t)dt =

k

∑
i=1

∫
Ii

λi
(n− 1)di(k)

log
(

λi
(n− 1)di(k)

)
dx

=
k

∑
i=1

λi
(n− 1)

log
(

λi
(n− 1)di(k)

)
(11)

and ∫ ∞

t
f (y)log f (y)dy =

λi∗
(n− 1)di∗(k)

log
(

λi∗
(n− 1)di∗(k)

)
y
∣∣t(ai∗)
t

+ ∑
i>i∗

λi
(n− 1)di(k)

log
(

λi
(n− 1)di(k)

)
y
∣∣t(ai)

t(ai−1)

=
λi∗

(n− 1)di∗(k)
log
(

λi∗
(n− 1)di∗(k)

)
[t(ai∗)− t]

+ ∑
i>i∗

λi
(n− 1)

log
(

λi
(n− 1)di(k)

)
(12)

where i∗ is the i-th index such that the interval [t(ai−1), t(ai)] contains t.
Now, if we replace (12) in the second term of expression (8), we obtain∫ ∞

0

f (t)
F(t)

( ∫ ∞

t
f (y)log f (y)dy

)
dt =

k

∑
i∗=1

∫
Ii∗

bi∗(n)
[

λi∗
(n− 1)di∗(k)

log
(

λi∗
(n− 1)di∗(k)

)
[t(ai∗) − t]

]

+
k−1

∑
i∗=1

∫
Ii∗

bi∗(n) ∑
i>i∗

λi
n− 1

log
(

λi
(n− 1)di(k)

)
dt (13)

where

bi∗(n) =
λi∗

(n− ai∗−1)di∗(k) + λi∗t(ai∗−1)− λi∗t
. (14)

so,

Sn(k) = −
k−1

∑
i=1

1
n− 1

Cn(i)log
(
(n− 1)di(k)

λi

)
− 1, (15)
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Cn(i) = 2λi +
(
λi − ai−1 + n + ∑

j>i
λj
)
log
(

n− ai−1

n− ai

)
+

λk
k− 1

. (16)

Note that under H0, we have g(t) = 0 and under H1, g(t) < 0 according to Lemma 1.
It is the same logic for the statistic Sn(k). So, Sn(k) is null under H0 and negative under H1.
Then, small values of Sn(k) favor H1 or equivalently, large values of Wn(k) = −Sn(k) favor
H1.

So, we reject H0 in favor of H1 at significance level α if Wn(k) ≥ Ck,n(α). Note that
Ck,n(α) is the critical point value determined by the (1− α)-quantile of the distribution of
Wn(k) under exponentiality.

5. Mean and Variance of the Statistic Wn(k)

We now derive the mean and variance of Sn(k) by using the linear property of mathe-
matical expectation and some results cited in [18]. Let:

Bn(i, k) = E
(
t(ai)− t(ai−1)

)
=

=
ai−1

∑
j=ai−1

(
Γ′(1)− log(n− j)

)
Πai−1

m=ai−1,m 6=j
n−m
j−m

(17)

and

Dn(i, k) = Var
(
t(ai)− t(ai−1)

)
=

=
ai−1

∑
j=ai−1

(
Γ”(1) + 2Γ′(1)− log(n− j)

+log2(n− j)
) ai−1

∏
m=ai−1

n−m
j−m

− B2
n(i, k), (18)

where Γ′(1) and Γ′′(1) are, respectively, the first and second derivatives of the Gamma
function:

Γ(α) =
∫ ∞

0
xα−1e−xdx (19)

evaluated at α = 1 [18].
Then, we have :

E
(
Wn(k)

)
=

k−1

∑
i=1

Cn(i)
n− 1

Bn(i, k) +
k−1

∑
i=1

Cn(i)
n− 1

log
(n− 1

λi

)
+ 1 (20)

and

Var
(
Wn(k)

)
=
( 1

n− 1
)2

k−1

∑
i=1

Cn(i)2Dn(i, k). (21)

Inspired by the proofs cited in [18], we have established proofs in Sections 6 and 7
relating to the asymptotic properties of the new test.

6. Consistency of the Test Wn(k)

In this section, we prove the convergence of the test statistic Wn(k) .

Theorem 1. The statistic Wn(k) converges to S as n→ ∞, k→ ∞, and k
n → 0.
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Proof. Let

Un =
k−1

∑
i=1

(
log
(

n− 1
λi

(
F
(
t(ai)

)
− F

(
t(ai−1)

)))) Cn(i)
n−1

(22)

and

Vn = −
k−1

∑
i=1

log
(

F
(
t(ai)

)
− F

(
t(ai−1)

)
t(ai)− t(ai−1)

) Cn(i)
n−1

. (23)

So, we have

Wn(k) = Un(k) + Vn(k)

where F(t(ai)) are order statistics from a uniformly distributed population. Next, we have

E(Un) =
k−1

∑
i=1

Cn(i)
n− 1

E
(

log
(

F
(
t(ai)

)
− F

(
t(ai−1)

)))

+
1

n− 1

k−1

∑
i=1

Cn(i)log
(n− 1

λi

)
=

k−1

∑
i=1

Cn(i)
n− 1

Ψ
([

(n− 1)i
k

]
+ 1
)
+

1
n− 1

k−1

∑
i=1

Cn(i)log
(n− 1

λi
)

−
k−1

∑
i=1

Cn(i)
n− 1

Ψ(n + 1)

=
k−1

∑
i=1

Cn(i)
n− 1

(
Ψ(ai)−Ψ(n + 1)

)
+

1
n− 1

k−1

∑
i=1

Cn(i)log
(n− 1

λi
) (24)

where Ψ is the digamma function defined for each natural integer n by

Ψ(n) = 1 +
1
2
+

1
3
+ · · ·+ 1

n− 1
− γ.

where γ ' 0.557 is the approximation of the Euler–Mascheroni constant.
It follows that E(Un)→ 0 as n→ ∞. So, Un(k)→ 0 in probability as n→ ∞.
Now, let G be the primitive of the fraction:

S(t)
−log( f (t))

= − f (t)− f (t)
F̄(t)

(
log( f (t))

) ∫ ∞

t
f (y)log( f (y))dy

+
f (t)

log( f (t))
(25)

We express the statistic Vn(k) as a Stieltjes sum of the function−log( f (x)) with respect
to the measure Gn, where Gn is the empirical estimation of G.

Then,

Vn(k) =

−∑k−1
i=1 log

(
F
(

t(ai)
)
−F
(

t(ai−1)
)

t(ai)−t(ai−1)

)(
Gn
(
t(ai)

)
− Gn

(
t(ai−1)

)) (26)

Recall that the function t(.) and the sequence ai are chosen such as ∀Ii, t(ai)− t(ai−1)→
0 when n → ∞. So, from (26), we deduce that if Gn(x) → Gx almost surely uniformly
over x [24], then Vn(k) → S almost surely as n → ∞. Under this restriction, the test is
consistent.
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7. Normality of the Statistic Wn(k)

In this section, we prove the normality of the statistic Wn(k) as n→ ∞.

Theorem 2. Under the null hypothesis H0, the normalized statistic k
2 [Wn(k)− 1] converges to a

standard normal distribution as n→ ∞, k→ ∞ and k
n → 0.

Proof. We can write Wn(k) as follows,

Wn(k) =
k−1

∑
i=1

Cn(i)
n− 1

log
( ai−1

∑
j=ai−1

(
t(j + 1)− t(j)

))

+
1

n− 1

k−1

∑
i=1

Cn(i)log
(n− 1

λi

)
+ 1. (27)

As proposed by David and Nagaraja (2003) [25] and using the fact that:

k
2(n− 1)

k−1

∑
i=1

Cn(i)log
(n− 1

λi

)
→ 0

when n→ ∞, k→ ∞ and k
n → 0, the statistic Wk(n) is asymptotically equivalent to:

1
n− 1

k−1

∑
i=1

Cn(i)log
(
Un−ai−1(n− ai−1 + 1)

)
(28)

where Um(i) is the order statistic of a uniform distribution of size m. Then, the statistic (28)
is statistically equivalent to:

In(k) =
1

n− 1

k−1

∑
i=1

Cn(i)Zi, (29)

where Zi, i = 1, 2, . . . , k− 1 are independent and identically distributed random variables.
Now, let the normalized random variable:

k
2

In(k) =
k−1

∑
i=1

kCn(i)
2(n− 1)

Zi (30)

and for n→ ∞, k→ ∞ and k
n → 0, we have kCn(i)

2(n−1) → 1.

By the central limit theorem, we conclude that k
2 In(k) is asymptotically normal, and

k
2 [Wn(k)− 1] is also asymptotically normal.

8. Critical Values of the Test Wn(k)

In this section, by means of Monte Carlo simulation, we determine critical values
Ck,n(α) of the statistic Wn(k). For different confidence levels of 1− α: 0.900, 0.950, 0.975
and 0.990 and different values of sample size n, simulations are provided. A total of
5000 samples of exponential distribution with mean 1 are generated. Note that we compute
for each sample the corresponding values of the empirical statistic distribution Wn(k) for
large spacings of the observations and−Wn(k) for little spacings. The established algorithm
gives the critical values for each α and n, which are summarized in Tables 1 and 2.
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Table 1. Critical values of Wn(k).

α 0.100 0.050 0.025 0.010

n = 3 4.8006 5.5334 6.3069 7.0340
n = 4 3.9738 4.5321 5.0834 5.5868
n = 5 6.8937 7.8342 8.6038 9.5242
n = 6 5.7476 6.4144 7.1087 7.6660
n = 7 6.2065 7.0206 7.6390 8.3710
n = 8 6.6750 7.6958 8.3703 8.9823
n = 9 7.2282 7.9532 8.4997 9.1910
n = 10 7.4526 8.2148 8.8700 9.5785
n = 11 6.8219 7.5294 8.1805 8.7718
n = 12 6.9761 7.7543 8.3426 8.9653
n = 13 7.1769 7.8341 8.5809 9.2141
n = 14 7.3460 8.0698 8.7684 9.5144
n = 15 6.9458 7.6614 8.2688 8.7816
n = 19 7.6312 8.3843 8.9691 9.5865
n = 20 7.8589 8.5677 9.1077 9.7696
n = 25 7.8795 8.5813 9.1813 8.8255
n = 30 7.7884 8.4882 9.0688 9.7825
n = 40 8.4485 9.1831 9.7124 10.3109
n = 43 8.4544 9.2073 9.7297 10.3426
n = 50 8.5087 9.2004 9.8074 10.3617
n = 60 8.4737 9.1195 9.6570 10.3008
n = 70 8.9838 9.5802 10.1954 10.7712
n = 80 9.0556 9.7066 10.2412 10.8923
n = 90 8.9335 9.5870 10.0512 10.6993

n = 100 8.9363 9.5745 10.1214 10.7857

Table 2. Critical values of −Wn(k).

α 0.100 0.050 0.025 0.010

n = 3 2.3564 3.9297 5.3591 7.7634
n = 4 1.3378 2.4378 3.3115 4.4102
n = 5 2.3816 4.2727 6.1451 8.5942
n = 6 0.8225 1.9677 3.2572 4.7316
n = 7 1.0633 2.3907 3.5309 5.2719
n = 8 1.6147 3.0626 4.6911 6.3835
n = 9 −0.4653 0.7871 1.8714 3.1158
n = 10 −0.0337 1.2530 2.6525 4.1937
n = 11 −0.4963 0.7362 1.8106 2.8472
n = 12 −0.4329 0.8787 1.9971 3.1916
n = 13 −0.3341 0.8287 1.9519 3.0975
n = 14 −0.1302 1.1104 2.1776 3.9166
n = 15 −0.4373 0.7019 1.8144 2.8823
n = 19 −1.6532 0.7107 0.3514 1.5840
n = 20 −1.6547 −0.5765 0.4295 1.5230
n = 25 −1.6166 −0.5338 0.4630 1.6354
n = 30 −1.4796 −0.4397 0.6585 1.8028
n = 40 −2.5892 −1.5634 −0.7244 0.4818
n = 43 −2.6190 −1.7370 −0.8146 0.3497
n = 50 −2.5228 −1.4527 −0.5132 0.6715
n = 60 −2.7075 −1.8218 −0.7903 0.4079
n = 70 −3.5011 −2.6071 −1.8078 −0.6376
n = 80 −3.4030 −2.5228 −1.7164 −0.5773
n = 90 −3.4025 −2.4769 −1.5283 −0.3414

n = 100 −3.4964 −2.5482 −1.6047 −0.4008
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9. Power Estimates

Under the alternative hypothesis, the distribution of the statistic Wn(k) is complicated.
However, we can obtain power estimates by using Monte Carlo simulation method. We
have provided a large number of experiments under Weibull (1, θ)

F̄(x) = exp(−xθ), θ > 0,

and Gamma(θ, 1)

G(x) =
1

Γ(θ)

∫ ∞

x
yθ−1e−ydy

alternatives.
This choice is motivated by the fact that when θ = 1, both Weibull and Gamma

distributions become an exponential distribution corresponding to the null hypothesis. In
this case, the power estimates are very weak. So, we can compare our results with those
of Ebrahimi (1997) [18]. In Tables 3 and 4, we give simulated powers for sample size n.
Simulated results are based on 10, 000 iterations. We notice that the proposed test based on
the derivative criteria performs relatively well when the parameter θ of the distributions
reaches 20.

Table 3. Power estimates for Weibull (θ, 1) of Wn(k).

n 20 10 5

θ = 20 0.9990 0.9862 0.8921
θ = 10 0.9288 0.7831 0.5686
θ = 5 0.5568 0.3750 0.2591
θ = 3 0.2506 0.1784 0.1321
θ = 1 0.0555 0.0522 0.0526

Table 4. Power estimates for Gamma (θ, 1) of −Wn(k).

n 20 10 5

θ = 20 0.9081 0.8410 0.7513
θ = 10 0.7917 0.6940 0.6000
θ = 5 0.5680 0.4743 0.3966
θ = 3 0.3625 0.2926 0.2397
θ = 1 0.0501 0.0511 0.0496

10. Illustrative Examples

Example 2. As a first illustration, we consider survival times (in days) for 50 patients’ head and
neck cancer cited in Lai and Xie (2006) [7] and Efron (1988) [26]. We have computed the empirical
value of the statistic Wn(k) which is equal to Wn(k) = 26.4194. When comparing the result with
the critical values given in Table 1, we deduce that the statistic exceeds all percentiles.

We can conclude that this sample is provided from a DURL distribution. So, the remaining
lifetimes of a patient from this population can be predicted with more precision.

From Figure 1, we notice that the more t(t > 0) increases, the more the curve decreases.
Thus, the empirical residual entropy from the dataset cited in [7,26] is DURL. It confirms
the established test based on the derivative criteria. However, we notice that there is a
part of the curve parallel to the abscissa axis. This is because during the time interval
[600, 1100], there are no data available regarding survival times, and therefore, the measure
of information does not change.
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Figure 1. Curve of residual entropy of survival times (in days) for patients’ head and neck cancer.

By applying the Chi-square goodness-of-fit test to the data cited in [7,26], we can test
whether these data belong to Weibull distribution against another one. The null hypothesis
is accepted at a 0.05 level of significance, where the estimated shape and scale parameters
given by Matlab are, respectively, as follows: 365.7673 and 1.0223. This decision is further
supported by the Weibull probability plot given by Matlab in Figure 2, where the data
points (in cross line, representing the empirical data) appear along the reference line (in
dashed line) representing the theoretical distribution.
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Figure 2. Weibull probability plot of Chi-2 goodness-of-fit test of survival times (in days) for patients’
head and neck cancer.

Example 3. As a second illustration, we consider times to failure of 18 electronics devices from Lai
and Xie (2006) [7] and Wang (2000) [27]. The compilation of the algorithm gives the estimation of
the statistic Wn(k) = 24.2029. This value exceeds all percentiles given in Table 1 when n = 18. We
conclude also that this real sample is provided from DURL distribution.

In Figure 3, we once again observe that the curve of the empirical residual entropy
specific to the dataset cited in [7] decreases as t(t > 0) increases. This confirms the result of
the test based on the derivative criteria.
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Figure 3. Curve of residual entropy of times to failure of 18 electronics devices.

The same conclusion leads by applying the Chi-square goodness-of-fit test to the data
cited in [7,27]. Once again, we accept that the distribution is a Weibull at the 0.05 level of
significance; see Figure 4, and the estimated shape and scale parameters given by Matlab
are, respectively, 179.656 and 1.1458.
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Figure 4. Weibull probability plot of Chi-2 goodness-of-fit-test of times to failure of 18 electronics
devices.

Notice that the results above show that the shape parameters exceed 1, so the Weibull
distributions are also DURL (Example 1). This is due to the fact that the DURL class does
not only contain non-parametric distributions, but it also includes parametric ones.

Another example in medicine has been provided by Benaoudia and Aissani (2022) [28],
on different real data by Bryson and Siddiqui, as cited in Lai and Xie (2006) [7]. It leads to
the same results.

11. Conclusions

In this paper, we have proposed a new statistical test for detecting the monotonicity
of uncertainty based on derivative criteria different from that of Ebrahimi (1997) [18]. The
choice of the exponential distribution in the null hypothesis is based on the fact that this
distribution gives a constant residual entropy. The derivative of this last one is null. Hence,
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we test whether the residual entropy is constant against the decreasing one. The consistency
and the asymptotic normality properties have been discussed. Power estimates have been
calculated and compared to those of the test of Ebrahimi (1997) [18]. Illustrations based on
real survival data have been provided, and the application of the Chi-square goodness-of-fit
test confirms the datasets distributions belong to parametric distributions that are DURL at
the same time. A second new test has been studied using the kernel estimation method,
which provides the same conclusions. This is the subject of a further paper.
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