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Abstract: Spatial autocorrelation, which describes the similarity between signals on adjacent vertices,
is central to spatial science, and Geary’s c is one of the most-prominent numerical measures of it.
Using concepts from spectral graph theory, this paper documents new theoretical results on the
measure. MATLAB/GNU Octave user-defined functions are also provided.
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1. Introduction

Using concepts from spectral graph theory, in this paper, we document new theoretical
results on Geary’s c, which is one of the most-prominent numerical measures of spatial
autocorrelation. (Moran’s I is another prominent numerical measure. For the measure,
see, e.g., [1,2].) Here, spatial autocorrelation describes the similarity between signals on
adjacent vertices and is central to spatial science ([3]). Therefore, the results about the
measure contribute to the development of spatial science.

More specifically, we provide a new representation of Geary’s c. It is an expansion of
it into a linear combination of variables with different degrees of spatial autocorrelation. By
using the distribution of the coefficients, we can characterize spatial data. It is somewhat
similar to Fourier series. Subsequently, we develop a way to compute the graph Laplacian
eigenvectors needed for the graph Fourier transform. MATLAB/GNU Octave user-defined
functions are also provided.

This paper can be considered complementary to [4]. As in this paper, using concepts
from spectral graph theory, [4] provided three types of representations for it: (a) graph
Laplacian representation, (b) graph Fourier transform representation, and (c) Pearson’s
correlation coefficient representation. Our new representation can be regarded as an
addition to them. Moreover, the way to compute the graph Laplacian eigenvectors is useful
not only for this paper, but also for [4].

We make two remarks on Geary’s c. First, Geary’s c was developed by [5] and modified
by [6–9]) into what it is today. It is a spatial generalization of the von Neumann ratio ([10]).
Second, unlike Pearson’s correlation coefficient, there exists the following:

Positive spatial autocorrelation if c < 1;
No spatial autocorrelation if c = 1;
Negative spatial autocorrelation if c > 1.

See, e.g., [11] (Equation (6)).
This paper is organized as follows. In Section 2, we provide some preliminaries for

the following two sections. In Section 3, we present a new representation of Geary’s c. In
Section 4, we develop a way to compute the graph Laplacian eigenvectors needed for the
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graph Fourier transform. Section 5 concludes. In Appendix A, we provide MATLAB/GNU
Octave user-defined functions.

Some Notations

Let y = [y1, . . . , yn]>, In be the identity matrix of order n and ι be the n-dimensional
column vector of ones, i.e., ι = [1, . . . , 1]>. For an n×m full column rank matrix A, denote
the column space of A and its orthogonal complement by S(A) and S⊥(A), respectively.
For square matrices A1, . . . , Ap, diag(A1, . . . , Ap) denotes the block diagonal matrix, whose
diagonals are A1, . . . , Ap.

2. Preliminaries

Let yi denote the realization of a variable on a spatial unit i for i = 1, . . . , n. Here, we
exclude the case where y1 = · · · = yn, i.e., y /∈ S(ι). Accordingly, ∑n

i=1(yi − ȳ)2 > 0, where
ȳ = 1

n ∑n
i=1 yi. In addition, let wij be the nonnegative spatial weight between the spatial

units i and j. Here, we suppose that wii = 0 and wji = wij for i, j = 1, . . . , n. Accordingly,
the spatial weights matrix W = [wij] is an n× n symmetric hollow matrix. In addition, let
Ω = ∑n

i=1 ∑n
j=1 wij, which is assumed positive.

Geary’s c for y, denoted by c(y), is defined by

c(y) =
n− 1
2Ω

∑n
i=1 ∑n

j=1 wij(yi − yj)
2

∑n
i=1(yi − ȳ)2 . (1)

Let D = diag(d1, . . . , dn), where di = ∑n
j=1 wij for i = 1, . . . , n. Then, the graph

Laplacian in spectral graph theory (see, e.g., [12–14]) is defined as

L = D−W . (2)

Accordingly, as shown in, e.g., [4,14], L is a nonnegative definite matrix such that Lι = 0.
Ref. [4] (Proposition 3.1) showed that c(y) can be represented using L as

c(y) =
n− 1

Ω
y>Ly

y>Qιy
, (3)

where Qι = In − ι(ι>ι)−1ι>, which is a symmetric idempotent matrix, i.e., Q>ι = Qι and
Q2

ι = Qι.
Given that L is a real symmetric matrix, it can be spectrally decomposed as

L = UΛU>, (4)

where Λ = diag(λ1, . . . , λn) and U = [u1, . . . , un] is an orthogonal matrix. Here, (λk, uk)
denotes an eigenpair of L for k = 1, . . . , n, and the eigenvalues, λ1, . . . , λn, are in ascending
order. Given that L is a nonnegative definite matrix and Lι = 0, we can suppose that
(λ1, u1) =

(
0, 1√

n ι
)

. Let m denote the number of connected components. Then, it is known
that 0 = λ1 = · · · = λm < λm+1 ≤ · · · ≤ λn. See, e.g., [14]. Let Λ2 = diag(λ2, . . . , λn) and
U2 = [u2, . . . , un]. We show how to obtain U2, as well as Λ2 from L in Section 4.

In spectral graph theory, the linear transformation given by U>y is referred to as the
graph Fourier transform of y ([15]). In addition, λk and uk for k = 1, . . . , n are referred
to as graph Laplacian eigenvalues and graph Laplacian eigenvectors, respectively. Let
[α1, . . . , αn]> = U>y.

Given that u1 ∈ S(ι), uk ∈ S⊥(ι) for k = 2, . . . , n, and Qι is an orthogonal projection
matrix onto S⊥(ι), it follows that QιU = [0, u2, . . . , un], which yields

y>QιU = [0, α2, . . . , αn]. (5)
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In addition, given that L is symmetric and Lι = 0, it follows that

L = QιLQι. (6)

Moreover, U is an orthogonal matrix. By combining these results, c(y) can be represented as

c(y) =
n− 1

Ω
y>QιUΛU>Qιy
y>QιUU>Qιy

=
n− 1

Ω
∑n

k=2 λkα2
k

∑n
j=2 α2

j
. (7)

Here, given that y /∈ S(ι), it follows that ∑n
j=2 α2

j = y>Qιy > 0. Finally, we note that (7) is
a part of [4] (Proposition 3.3).

3. A New Representation of Geary’s c

Given that uk /∈ S(ι) for k = 2, . . . , n, we can consider

c(uk) =
n− 1

Ω
u>k Luk

u>k Qιuk
, k = 2, . . . , n, (8)

which can be regarded as Geary’s c when y = uk. We note that, given u1 ∈ S(ι), Geary’s c
when y = u1 is excluded. (Actually, it cannot be defined. This is because u>1 Qιu1 = 0.)

For k = 2, . . . , n, it follows that u>k Luk = u>k UΛU>uk = e>k Λek = λk and u>k Qιuk =
‖uk‖2 = 1, where ek is the k-th column of In. Thus, c(uk) in (8) can be represented as

c(uk) =
n− 1

Ω
λk, k = 2, . . . , n. (9)

Then, from the inequalities, 0 ≤ λ2 ≤ · · · ≤ λn, it follows that

0 ≤ c(u2) ≤ · · · ≤ c(un). (10)

Moreover, given that ∑n
k=2 λk = ∑n

k=1 λk = tr(L) = Ω, it follows that

1
n− 1

n

∑
k=2

c(uk) =
1

n− 1

n

∑
k=2

n− 1
Ω

λk = 1. (11)

By combining (7) and (9), we obtain

c(y) =
n− 1

Ω
∑n

k=2 λkα2
k

∑n
j=2 α2

j
=

∑n
k=2

(
n−1

Ω λk

)
α2

k

∑n
j=2 α2

j
=

∑n
k=2 c(uk)α

2
k

∑n
j=2 α2

j

=
n

∑
k=2

(
α2

k

∑n
j=2 α2

k

)
c(uk) =

n

∑
k=2

ψkc(uk), (12)

where

ψk =
α2

k

∑n
j=2 α2

j
, k = 2, . . . , n. (13)

Note that ψk in (13) satisfy ψk ≥ 0 and ∑n
k=2 ψk = 1.

The next proposition summarizes the above-mentioned results.

Proposition 1. (a) c(y) in (1) can be represented as ∑n
k=2 ψkc(uk), where

ψk =
α2

k
∑n

j=2 α2
j

for k = 2, . . . , n. Here, ψk for k = 2, . . . , n are nonnegative and sum to unity.

(b) c(uk) for k = 2, . . . , n satisfy the inequalities given by (10), and their simple average equals unity.
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Remark 1. Concerning Proposition 1, we make three remarks:

(i) Proposition 1(a) implies that Geary’s c can be represented as a weighted average of c(u2), . . . , c(un).
Concerning the weight, ψk, the larger |αk| = |u>k y| = |(u>k uk)

−1u>k y| is, the larger ψk is. We
note that αk = arg minφk ‖y− φ1u1 − · · · − φnun‖2 = arg minφk ‖y− φkuk‖2.

(ii) Proposition 1(b) implies that the graph Laplacian eigenvectors, u2, . . . , un, can be sorted in the
spatial autocorrelation measured by Geary’s c. In other words, uk is more positively spatially
autocorrelated than or equal to uk+1 for k = 2, . . . , n− 1. Accordingly, y is positively (respec-
tively negatively) spatially autocorrelated if {ψk} is a monotonically decreasing (respectively
increasing) sequence. y can be characterized by the distribution of the coefficients, ψ2, . . . , ψn.
It is somewhat similar to the Fourier series.

(iii) If c(u2) = · · · = c(un) = µ, then c(y) = ∑n
k=2 ψkc(uk) = µ ∑n

k=2 ψk = µ regardless of y.

Let η = η1 + η2, where η1 ∈ S(ι) and η2 ∈ S(y)\{0}. Then, c(η) equals c(y). That is,
for all γ1 ∈ R and γ2 ∈ R\{0}, it follows that

c(γ1ι + γ2y) = c(y). (14)

Given that Qιy = y − ȳι, c(Qιy) = c(y) is an example of (14). From (14) and Proposi-
tion 1(a), we obtain c(γ1ι + γ2y) = ∑n

k=2 ψkc(uk).
The next corollary summarizes the above result.

Corollary 1. For all γ1 ∈ R and γ2 ∈ R\{0}, c(γ1ι + γ2y) equals ∑n
k=2 ψkc(uk).

In addition, from Proposition 1, it immediately follows that

c(y) =
n

∑
k=2

ψkc(uk) ≤
n

∑
k=2

ψkc(un) = c(un)
n

∑
k=2

ψk = c(un). (15)

Likewise, c(u2) ≤ c(y) follows.
The next corollary summarizes the above result.

Corollary 2. c(y) belongs to the closed interval given by [c(u2), c(un)].

Remark 2. Concerning Corollary 2, we make two remarks:

(i) If c(u2) = · · · = c(un), then the interval given by [c(u2), c(un)] reduces to a singleton. For
example, if W = ιι> − In, which is the binary adjacency matrix of the complete graph with n
vertices, then L = (n− 1)In− (ιι>− In) = nQι and, accordingly, c(u2) = · · · = c(un) =

n−1
n(n−1) × n = 1. Then, in this case, c(y) = ∑n

k=2 ψkc(uk) = ∑n
k=2 ψk = 1 regardless of y.

(ii) Ref. [11] showed that c(y) belongs to the closed interval given by
[

n−1
Ω λ2, n−1

Ω λn

]
. Given (9),

Corollary 2 is its equivalent.

4. A Way to Compute the Eigenvectors in (4)

In this section, we develop a way to compute U2 = [u2, . . . , un], which also provides
Λ2 = diag(λ2, . . . , λn). Here, we explain the reason why it is useful. When there is only
one connected component, i.e., m = 1, there is no problem. This is because L has single 0
eigenvalue and the corresponding normalized eigenvector is 1√

n ι. However, when there is
more than one connected component, i.e., m ≥ 2, L has multiple 0 eigenvalues, and then,
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1√
n ι is not necessarily one of the eigenvectors returned from a computer program. For

example, when

W =


0 1 0 0 0
1 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

, (16)

there are two connected components and, accordingly, m = 2 (Figure 1). In this case,
both (0, u∗1) and (0, u∗2), where u∗1 = 1√

3
[1, 1, 1, 0, 0]> and u∗2 = 1√

2
[0, 0, 0, 1, 1]>, and (0, u1)

and (0, u2), where u1 = 1√
5
[1, 1, 1, 1, 1]> and u2 =

[√
2

15 ,
√

2
15 ,
√

2
15 ,−

√
3

10 ,−
√

3
10

]>
, are

eigenpairs of the corresponding graph Laplacian. The results below can handle such
a situation.

1 2 3 4 5

Figure 1. Undirected graph whose binary adjacency matrix is W in (16).

Let {g2, . . . , gn} denote any orthonormal basis of S⊥(ι) and G = [g1, G2], where
g1 = 1√

n ι and G2 = [g2, . . . , gn]. Then, G is an n × n orthogonal matrix. Accordingly,
from (4) and (6), it follows that

G>QιLQιGV = VΛ, (17)

where V = G>U. Here, from g>1 u1 = 1, g>1 U2 = 0, and G>2 u1 = 0, it follows that

V = diag(1, V2), (18)

where V2 = G>2 U2, which is an (n − 1) × (n − 1) orthogonal matrix. This is because
V>V = U>GG>U = In and V>V = diag(1, V>2 V2). In addition, given that QιG = [0, G2],
it follows that

G>QιLQιG = diag(0, G>2 LG2). (19)

By combining (18) and (19), (17) becomes diag(0, G>2 LG2) · diag(1, V2) = diag(1, V2) ·
diag(λ1, Λ2). Therefore, it follows that

G>2 LG2V2 = V2Λ2. (20)

Here, recall that V2 is an orthogonal matrix. In addition, given that G is an orthogonal
matrix, premultiplying (18) by G = [g1, G2] yields U = [g1, G2] · diag(0, V2) = [g1, G2V2].
Therefore, it follows that

U2 = G2V2. (21)

The next proposition summarizes the above-mentioned results.

Proposition 2. Denote the k-th column of V2 by vk+1 for k = 1, . . . , n− 1, i.e., V2 = [v2, . . . , vn].
Then, (λk, vk) for k = 2, . . . , n are the eigenpairs of G>2 LG2. In addition, U2 is obtainable from V2
by (21).



Mathematics 2023, 11, 4228 6 of 7

Remark 3. Concerning Proposition 2, we make two remarks:

(i) The following n× (n− 1) matrix F2 is an example of G2:

F2 =



1 · · · · · · 1

−1
. . .

...

0 −2
. . .

...
...

. . . . . . 1
0 · · · 0 −(n− 1)


Γ−1, (22)

where Γ = diag(
√

1 · 2, . . . ,
√
(n− 1) · n). (The use of F2 is inspired by [16].) Here,

F = [ f1, F2], where f1 = 1√
n ι, is a Helmert orthogonal matrix ([17]). Instead of F2, we

may use H2 = ∆>(∆∆>)−
1
2 , where ∆ is the (n − 1) × n matrix such that ∆ζ = [ζ2 −

ζ1, . . . , ζn − ζn−1]
> for an n-dimensional vector ζ = [ζ1, . . . , ζn]>. This is because H2

satisfies that H>2 ι = (∆∆>)−
1
2 ∆ι = 0 and H>2 H2 = (∆∆>)−

1
2 ∆∆>(∆∆>)−

1
2 = In−1.

Here, ∆∆> is a positive definite matrix.
(ii) MATLAB/GNU Octave user-defined functions required for the calculation of Λ2, U2, and the

bounds of Geary’s c are provided in Appendix A.

5. Concluding Remarks

In this paper, we showed new theoretical results on Geary’s c, which included (i) a
new representation of Geary’s c and (ii) a way to compute the graph Laplacian eigenvectors.
The obtained results are summarized in Propositions 1 and 2 and Corollaries 1 and 2. The
required MATLAB/GNU Octave user-defined functions are also provided. Finally, as
stated, this paper can be considered complementary to [4].

Funding: The Japan Society for the Promotion of Science supported this work through KAKENHI
(grant number: 23K013770A).

Acknowledgments: The author thanks three anonymous referees for their valuable comments. The
usual caveat applies.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. MATLAB/GNU Octave User-Defined Functions

In this section, we provide three MATLAB/GNU Octave user-defined functions.
Among them, Lam2U2 is a function for calculating U2, as well as Λ2 from L. Gearycbounds
is a function for calculating the bounds of Geary’s c corresponding to L. Note that (A+A’)/2
in the functions is to ensure symmetry. Finally, these two functions depend on Fmat, which
is a function to make F.

1

2 function [Lam2 ,U2]= Lam2U2(W)
3 n=size(W,1);
4 L=diag(sum(W,2))-W;
5 F=Fmat(n); F2=F(:,2:n); A=F2 ’*L*F2;
6 [X,E]=eig((A+A’)/2);
7 [e,ind]=sort(diag(E),’ascend ’);
8 Lam2=diag(e); V2=X(:,ind);
9 U2=F2*V2;

10 end

1 function [c_lb ,c_ub]= Gearycbounds(W)
2 n=size(W,1);
3 Omega=sum(sum(W));
4 L=diag(sum(W,2))-W;
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5 F=Fmat(n); F2=F(:,2:n); A=F2 ’*L*F2;
6 eigv=sort(eig((A+A’)/2) ,’ascend ’);
7 c_lb =((n-1)/Omega)*eigv (1);
8 c_ub =((n-1)/Omega)*eigv(n-1);
9 end

1 function [F]=Fmat(n)
2 F=zeros(n,n);
3 F(:,1)=ones(n,1)/sqrt(n);
4 for k=2:n
5 F(:,k)=[ones(k-1,1);-(k-1);zeros(n-k,1)]/sqrt((k-1)*k);
6 end
7 end
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