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Abstract: The present investigation analyzes the transient multilayer electro-osmotic flow through
an annular microchannel with hydrophobic walls. The fluids are considered immiscible and vis-
coelastic, following the Maxwell rheological model. In the problem examined, the linearized Poisson–
Boltzmann and Cauchy momentum equations are used to determine the electric potential distribution
and the flow field, respectively. Here, different interfacial phenomena are studied through the
imposed boundary conditions, such as the hydrodynamic slip and specified zeta potentials at solid–
liquid interfaces, the velocity continuity, the electroviscous stresses balance, the potential difference,
and the continuity of electrical displacements at the interfaces between fluids. The semi-analytic
solution uses the Laplace transform theory. In the results, the velocity profiles and velocity tracking
show the oscillatory behavior of flow, which strongly depends on the dimensionless relaxation time.
Furthermore, the hydrodynamic slip on the channel walls contributes to the release of energy stored
in the fluids due to elastic effects at the start-up of the flow. Similarly, other dimensionless parameters
are also investigated. This research aims to predict the parallel flow behavior in microfluidic devices
under electro-osmotic effects.

Keywords: electro-osmotic; annular microchannel; hydrophobic walls; viscoelastic fluids; multilayer flow
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1. Introduction

Microfluidic devices and their applications are an active area of research, and pumping
liquids within a fluidic network is essential to these devices [1]. In this context, electro-
osmotic flow is the bulk liquid motion that results when an externally applied electric
field interacts with the net surplus of charged ions in the diffuse part of an electric double
layer [2]. This flow is commonly used as a pumping method in micro total analysis systems
and lab-on-a-chip devices. Compared with other micropumps, electro-osmotic pumps offer
several advantages, such as creating constant pulse-free flows and eliminating moving
parts [3]. Furthermore, different applications have benefited from the electro-osmotic
pumping method, such as high-flow-velocity applications [4], high-performance liquid
chromatographic separations [5], electronics cooling [6], biological [7] and chemical [8]
analysis systems, drug delivery [9], and cell culture [10].

Several investigations that involve different microchannel geometries have been re-
ported in the literature to explain the electro-osmotic phenomenon. Concerning parallel-
plates microchannels, the research by Yang et al. [11] showed the transient electro-osmotic
flow of Newtonian fluids under the influence of the electric double-layer thickness and the
geometric size of the microchannel. Zhao et al. [12] and Mahanta et al. [13] investigated the
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electro-osmotic flow characteristics of power-law and viscoelastic fluids through straight
planar microchannels. In the case of rectangular geometries, Marcos et al. [14] undertook a
theoretical study of the electro-osmotic flow under sinusoidally alternating and constant
electric fields, and Miller et al. [15] analytically solved the start-up of the electro-osmotic
flow, validating this experimentally via the velocity tracking located in the central region of
the rectangular channels.

Another widely discussed geometry in the electro-osmotic flow is the cylindrical
geometry, as represented by studies carried out by Keh and Tseng [16] and Kang et al. [17],
investigating whether the flow field depends on the electrokinetic radius or the low and
high zeta potentials. The electro-osmotic flow has also been studied in annular channels.
Tsao [18] investigated the electro-osmotic flow in the steady-state, considering thin and
thick electric double layers. Chang and Wang [19] studied the starting electro-osmotic
flow in which the transient time depends on the inner-to-outer ratio for the annulus. More
recently, Li et al. [20] reported the electro-osmotic flow of Jeffreys fluids in a microannulus,
showing that, in particular, the wall gap reduction will restrict the fluid’s elastic effect. Also,
the scientific community has extended its investigations with more complex geometries,
such as elliptical [21], triangular [22], semicircular [23], and trapezoidal [24].

The interest in microscale fluid management has increased due to the development
of new applications associated with chemical, biological, and medical areas that require
the adequate control of fluid samples. Consequently, studying the rheology of fluids in
electro-osmotic flows is fundamental in transporting biofluids, polymer solutions, or col-
loidal suspensions. In particular, fluids such as blood, DNA solutions [25], saliva, synovial
fluid [26], mucus [27], and polymer solutions of polyethylene oxide [28], cetylpyridinium
chloride, and sodium salicylate [29] are considered viscoelastic fluids studied by the scien-
tific community under the rubric of microfluidics. Some of these fluids can be modeled
as Maxwell fluids in the present investigation. In this context, Zhao et al. [12] analyzed
the velocity profiles, flow rate, and shear stress distribution in an electro-osmotic flow,
considering the viscosity’s shear-thinning and shear-thickening effects in power-law fluids.
In other investigations, Wang et al. [30] and Escandón et al. [31] examined the viscoelas-
tic effects of Maxwell fluids on the start-up of electro-osmotic flows, where, compared
to Newtonian fluids, this kind of fluid produces a velocity overshoot and oscillations.
In this context, other non-Newtonian fluids in electro-osmotic flows have been explored
to highlight their rheological effect on the flow field, such as Burgers [32], Eyring [33],
and Phan–Thien–Tanner fluids [34].

In the context of fluid manipulation in microfluidics and the hydrodynamic resistance
that these offer when flowing in small conduits, the strategy of exploiting hydrophobic
slippage arises [35,36]. Currently, the methods to prepare hydrophobic surfaces are the
template method [37], the layer-by-layer self-assembly method [38], the electrospinning
method [39], the chemical etching method [40], and the sol-gel method [41], among oth-
ers [42,43]. Therefore, the benefits of electro-osmotic flow and hydrodynamic slip due to
hydrophobic walls have been extensively reviewed. Ngoma and Erchiqui [44], Gaikwad
and Mondal [45], and Chang et al. [46], among others, investigated the influence of slippage
from hydrophobic microchannels on electrokinetic flows with Newtonian fluids. Addi-
tionally, other works have addressed the electro-osmotic flow with non-Newtonian fluids
and hydrodynamic slip at the channel walls, such as those developed by Shit et al. [47]
with power-law fluids, Awan et al. [48] with Oldroy-B fluids, Zhang et al. [33] with Eyring
fluids, and Ferrás et al. [49] and Vaista et al. [50] with Phan–Thien–Tanner fluids. Also,
references [51–53] present other approaches to address the slip problem for transporting
non-Newtonian fluids in flow models.

On the other hand, in microfluidics, it is not only necessary to transport single fluids,
but it is also necessary to pump several parallel layers of fluids without mixing to perform
different analyses of samples, such as solvent extraction [54], chemical interactions at
interfaces [55,56], nuclear chemistry [57], or to make polymer [58] and hydrogel [59] fibers.
Previous works exploit the benefit of laminar flow at low Reynolds numbers. In this
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context, the scientific community has studied electro-osmotic pumps by viscous drag of
non-conducting fluids through neighboring conducting fluids with two [60–62] and three
layers [63] of immiscible fluids in microchannels. In other cases, all transported fluids
are considered electrically conductive, providing additional electrostatic interactions at
liquid–liquid interfaces for two [64–66] or three immiscible fluid layers [67]. Furthermore,
the movement of several immiscible fluids under electro-osmotic effects has been extended
to studies of multilayer flows to elucidate applications of the flow focusing and chemical
processing of samples [68–70].

Therefore, the present investigation aims to increase the knowledge of transient mul-
tilayer electro-osmotic flows in an annular-type geometry. Also, it will highlight the
interactions of the rheological behavior of Maxwell viscoelastic fluids with the hydrody-
namic slip effects imposed on the hydrophobic walls of the microchannel, which have
not been previously reported. For the above, a semi-analytical solution method based on
the Laplace transform and a numerical method based on concentrated matrix exponential
(CME) distributions will be used for the inversion of the Laplace transform.

2. Problem Formulation
2.1. Physical Model

The study investigates the start-up electro-osmotic flow exhibited by immiscible and
incompressible fluids through an annular microchannel. In a multilayer pattern, fluids
are considered viscoelastic, following the Maxwell rheological model. Regarding the ge-
ometry, two concentric tubes constitute the annular microchannel and, with the help of
the microfluidic modules shown in Figure 1, allow the inclusion of several fluid layers in
the range of n = 1, 2, 3, ..., i, where n is the fluid layer number. The cylindrical coordinates
(r, z) shown by the enlarged view with a red square in Figure 1 represent the system’s
origin in the center of the microfluidic device. For this configuration, n = 1 and n = i
indicate the fluid layer in contact with the inner (at r = aR) and outer (at r = R) walls of the
microchannel, respectively, where 0 < a < 1 is a geometrical constant and R is the external
radius. Each liquid–liquid interface in the annular cavity is located at rn; the subscript range
is n = 1, 2, 3, ..., i− 1. Also, each fluid layer is composed of a mixture of a symmetrical
electrolyte with a solute that provides the viscoelastic characteristics. Moreover, the im-
miscible fluids are considered electrically conductive, which causes electrostatic effects
at the liquid–liquid interfaces via electric double layers with potential differences, ∆ψn.
Furthermore, the polarizable solid–liquid interfaces and zeta potentials ζI and ζO at the
walls generate electric double layers in these regions. The movement of the fluids depends
on the electro-osmotic forces produced by a uniform electric field Ez that originates because
a pair of electrodes induces an external electric potential at the ends of the conduits formed
by the microfluidic modules. However, a pressure gradient pz in the z-direction can also
influence the fluid layers. For this problem, it is considered that the channel walls are
hydrophobic, generating a hydrodynamic slip velocity with a slip length ls.

2.2. Governing and Constitutive Equations

The Poisson [61], continuity, and Cauchy momentum equations [65,71] govern this
electro-osmotic flow for incompressible fluids with constant properties, given by

∇2ψn = −ρe,n

εn
, (1)

∇ · vn = 0 (2)

and
ρn

Dvn

Dt
= −∇p−∇ · τn + ρe,nE, (3)

where ψ is the electric potential within the EDL, ρe is the volumetric free charge density, ε is
the dielectric permittivity, v is the velocity vector, ρ is the fluid density, t is the time, p is the
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pressure, τ is the stress tensor, and E is the electric field vector. The constitutive equations
are the Boltzmann distribution for the free electric charge in the diffuse ionic layer adjacent
to the charged surface [61]

ρe,n = −2Znen0,n sinh
(

Zneψn

kBTn

)
(4)

and the linear rheological model for Maxwell fluids as [65,71,72]

τn + λn
∂τn

∂t
= −η0,nγ̇n. (5)

In the two previous equations, it is found that, for each fluid layer n, Z is the valence
of the electrolyte, e is the electron charge, n0 is the ionic number concentration in the bulk
solution, kB is the Boltzmann constant, T is the fluid temperature, λ is the relaxation time,
η0 is the zero-shear-rate viscosity, and γ̇ = (∇v) + (∇v)T is the rate-of-strain tensor.
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Figure 1. Scheme of multilayer electro-osmotic flow in the annular microchannel formed by microflu-
idic modules.

For the mathematical modeling, transient, fully developed, and stratified laminar
flow with very small Reynolds numbers is considered (Ren � 1); here, Ren = ρnRuc/η0,n,
with uc being the characteristic velocity. Also, it is established that the zeta potential is
uniform throughout the study region of the channel walls. Taking into account the above,
this work assumes that all liquid–liquid interfaces will be parallel to the microchannel
walls. Additionally, the microchannel length given by L is larger than the external radius R
(R � L) and the electric double layers do not overlap. Therefore, with the assumptions
above, the governing and constitutive equations in cylindrical coordinates are simplified
for a unidirectional flow [61,65,70] as follows: Considering the dimensionless variables
given below

t̄ =
ηreft

ρrefR2 , r̄ =
r
R

, ψ̄n(r̄) =
ψn(r)
ζref

, ūn(r̄, t̄) =
un(r, t)

uc
, τ̄rz,n(r̄, t̄) =

Rτrz,n(r, t)
ηrefuc

, (6)
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the following steps are given. First, for the electric potential from Equations (1), (4) and (6),
the Poisson–Boltzmann equation is given as

d2ψ̄n(r̄)
dr̄2 +

1
r̄

dψ̄n(r̄)
dr̄

= κ̄2
nψ̄n(r̄). (7)

In Equation (7), the Debye–Hückel approximation for low potentials in the range of
Zneψn/kBTn ≤ 1 is considered, resulting in sinh(Zneψn/kBTn) ≈ Zneψn/kBTn. Second,
from Equations (3) and (6), the Cauchy momentum equation is rewritten for unidirectional
flow as follows:

ρ̄n
∂ūn(r̄, t̄)

∂t̄
= −Γ− 1

r̄
τ̄rz,n(r̄, t̄)− ∂τ̄rz,n(r̄, t̄)

∂r̄
+ ε̄nκ̄2

nψ̄n(r̄). (8)

And third, from Equations (5) and (6), the Maxwell rheological model is

τ̄rz(r̄, t̄) + λ̄n
∂τ̄rz,n(r̄, t̄)

∂t̄
= −η̄n

∂ūn(r̄, t̄)
∂r̄

. (9)

In Equations (7)–(9) the following dimensionless parameters appear:

κ̄n =
R

κ−1
n

, ρ̄n =
ρn

ρref
, Γ =

pzR2

ucηref
, ε̄n =

εn

εref
, η̄n =

η0,n

ηref
, λ̄n =

ηrefλn

ρrefR2 , (10)

where, κ̄n are defined as the ratios between the microchannel height to the Debye lengths
κ−1

n =
(
εnkBTn/2Z2

ne2n0,n
)1/2, ρ̄n are the densities ratios, η̄n are the viscosity ratios, Γ is the

ratio of the external pressure forces to the electro-osmotic forces, and λ̄n are the dimension-
less relaxation times. Furthermore, the characteristic velocity uc = −εrefζrefEz/ηref is the
Helmholtz–Smoluchowski velocity based in the reference properties.

However, for the momentum equation to remain only as a function of velocity,
Equation (9) has to be derived with respect to the radial coordinate r̄, yielding

∂τ̄rz,n(r̄, t̄)
∂r̄

= −λ̄n
∂2τ̄rz,n(r̄, t̄)

∂t̄∂r̄
− η̄n

∂2ūn(r̄, t̄)
∂r̄2 . (11)

Now, replacing Equation (11) into Equation (8) results in

ρ̄n
∂ūn(r̄, t̄)

∂t̄
= −Γ + λ̄n

∂2τ̄rz,n(r̄, t̄)
∂t̄∂r̄

+ η̄n
∂2ūn(r̄, t̄)

∂r̄2 − 1
r̄

τ̄rz,n(r̄, t̄) + ε̄nκ̄2
nψ̄n(r̄). (12)

In addition to this, Equation (8) has to be derived in the time, resulting in

∂2τ̄rz,n(r̄, t̄)
∂t̄∂r̄

= −ρ̄n
∂2ūn(r̄, t̄)

∂t̄2 − 1
r̄

∂τ̄rz,n(r̄, t̄)
∂t̄

. (13)

With the above, by replacing Equation (13) into Equation (12), the following relation-
ship is obtained

ρ̄nλ̄n
∂2ūn(r̄, t̄)

∂t̄2 + ρ̄n
∂ūn(r̄, t̄)

∂t̄
= −Γ− 1

r̄
τ̄rz,n(r̄, t̄)− λ̄n

r̄
∂τ̄rz,n(r̄, t̄)

∂t̄
+ η̄n

∂2ūn(r̄, t̄)
∂r̄2 + ε̄nκ̄2

nψ̄n(r̄). (14)

Finally, dividing Equation (9) by the radial coordinate r̄, and substituting the result in
Equation (14), it is possible to remove the stress shear τ̄rz,n, obtaining the following result:

ρ̄nλ̄n
∂2ūn(r̄, t̄)

∂t̄2 + ρ̄n
∂ūn(r̄, t̄)

∂t̄
= −Γ +

η̄n

r̄
∂ūn(r̄, t̄)

∂r̄
+ η̄n

∂2ūn(r̄, t̄)
∂r̄2 + ε̄nκ̄2

nψ̄n(r̄). (15)

2.3. Boundary and Initial Conditions

Equations (7) and (15) to determine the electric potential and the velocity profiles
require boundary conditions in t̄ > 0 to be solved. At the solid–liquid interface placed
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at r̄ = a, the boundary conditions correspond to a specified zeta potential related to the
EDL and the hydrodynamic slip given by the Navier slip condition [73–75], which must be
applied to the first fluid layer n = 1, as

ψ̄1(r̄ = a) = ζ̄I, ū1(r̄ = a, t̄) = − l̄s,1

η̄1
τ̄rz,1(r̄ = a, t̄). (16)

Then, at the liquid–liquid interfaces placed at r̄ = r̄n=1,2,3,...,i−1, the corresponding
boundary conditions to the electric potential related to EDLs are a potential difference
and the continuity of electrical displacements in the absence of ions in the inner layer,
respectively, as [65,76,77]

ψ̄n+1(r̄)− ψ̄n(r̄) = ∆ψ̄n (17)

and

ε̄n+1
dψ̄n+1(r̄)

dr̄
= ε̄n

dψ̄n(r̄)
dr̄

, (18)

together with the boundary conditions for velocity, being the velocity continuity as follows:

ūn+1(r̄, t̄) = ūn(r̄, t̄) (19)

and the electroviscous stress balance defined by [65]

τ̄rz,n+1(r̄, t̄) + ε̄n+1
dψ̄n+1(r̄)

dr̄
= τ̄rz,n(r̄, t̄) + ε̄n

dψ̄n(r̄)
dr̄

. (20)

Lastly, at the solid–liquid interface placed at r̄ = 1, the boundary conditions corre-
spond to a specified zeta potential related to the EDL and the Navier slip condition [73–75],
which must be applied to the last fluid layer n = i, as

ψ̄i(r̄ = 1) = ζ̄O, ūi(r̄ = 1, t̄) =
l̄s,i

η̄i
τ̄rz,i(r̄ = 1, t̄). (21)

Complementarily, Equation (15) for all fluid layers requires initial conditions in the
domain a ≤ r̄ ≤ 1 to be solved, with the velocity, shear stress, and acceleration being zero
everywhere, that is, in the rest state, as follows:

ūn(r̄, t̄ = 0) = 0, τ̄rz,n(r̄, t̄ = 0) = 0,
∂ūn

∂t̄

∣∣∣∣
r̄,t̄=0

= 0. (22)

In this section, the following dimensionless parameters arise

r̄n =
n
i
(1− a) + a, ∆ψ̄n =

∆ψn

ζref
, l̄s;1,i =

ls;1,i

R
, (23)

where r̄n are the liquid–liquid interface positions distributed equidistantly; however, for any
other position r̄n is designated arbitrarily according to the desired number of layers. ∆ψ̄n
are the potential differences. r̄n and ∆ψ̄n are in the range from n = 1 to n = i− 1. On the
other hand, l̄s;1,i are the ratios between the hydrodynamic slip lengths with the radius of
the microchannel outer wall.

3. Solution Methodology
3.1. Electric Potential

Equation (7) recovers the modified Bessel differential equation whose solution is
given by

ψ̄n(r̄) = C2n−1 I0(κ̄n r̄) + C2nK0(κ̄n r̄), (24)

where C2n−1 and C2n are integration constants, while I0 and K0 are the modified Bessel
functions of the first and second kind of zero-order, respectively. Equation (24) establishes
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the dimensionless electric potential, and its mathematical expression applies to any fluid
layer. In particular, two constants C arise in this equation for each fluid layer. Therefore,
the boundary conditions for each liquid–liquid and solid–liquid interface must be applied
to determine the values of C2n−1 and C2n, which are given in Equations (16)–(18) and (21).
Then, first the boundary condition in Equation (16) is applied into (24) for the fluid n = 1
at the interface placed at r̄ = a, yielding

C1 I0(κ̄1a) + C2K0(κ̄1a) = ζ̄I. (25)

Second, the boundary conditions in Equations (17) and (18) are applied to Equation (24)
for any liquid–liquid interface placed at r̄ = r̄n, yielding

C2(n+1)−1 I0(κ̄n+1r̄n) + C2(n+1)K0(κ̄n+1r̄n)− C2n−1 I0(κ̄n r̄n)− C2nK0(κ̄n r̄n) = ∆ψ̄n (26)

and, respectively,

ε̄n+1κ̄n+1

[
C2(n+1)−1 I1(κ̄n+1r̄n)− C2(n+1)K1(κ̄n+1r̄n)

]
= ε̄nκ̄n[C2n−1 I1(κ̄n r̄n)− C2nK1(κ̄n r̄n)]. (27)

And third, the boundary condition in Equation (21) is applied into (24) for the fluid
n = i at the interface placed at r̄ = 1, yielding

C2i−1 I0(κ̄i) + C2iK0(κ̄i) = ζ̄O. (28)

The system of equations given by (25)–(28) can be rewritten in matrix form Ax = b,
as presented in detail in Appendix A. Therefore, the inverse matrix method is used to find
the constants C given by the vector x.

3.2. Transient-State Velocity Profiles

The Laplace transform is applied to the velocity profile and shear stress to determine
the velocity field as follows

Un(r̄, s) = L{ūn(r̄, t̄)} =
∫ ∞

0
ūn(r̄, t̄)e−st̄dt̄ (29)

and
τ̃rz,n(r̄, s) = L{τ̄rz,n(r̄, t̄)} =

∫ ∞

0
τ̄rz,n(r̄, t̄)e−st̄dt̄. (30)

Therefore, by applying the above definitions to the constitutive and Cauchy momen-
tum equations, that is, to Equations (9) and (15), the following relationships are obtained

λ̄nρ̄n

[
s2Un(r̄, s)− sūn(r̄, t̄ = 0)− ∂ūn

∂t̄

∣∣∣∣
r̄,t̄=0

]
+ ρ̄n[sUn(r̄, s)− ūn(r̄, t̄ = 0)] =

η̄n
d2Un(r̄, s)

dr̄2 +
η̄n

r̄
dUn(r̄, s)

dr̄
+

ε̄nκ̄2
n

s
ψ̄n(r̄)−

Γ
s

(31)

and

τ̃rz,n(r̄, s) + λ̄n[sτ̃rz,n(r̄, s)− τ̄rz,n(r̄, t̄ = 0)] = −η̄n
dUn(r̄, s)

dr̄
. (32)

Once the initial conditions of Equation (22) are applied, Equations (31) and (32) are
reduced as follows

d2Un(r̄, s)
dr̄2 +

1
r̄

dUn(r̄, s)
dr̄

− α2
nUn(r̄, s) = βnψ̄n(r̄) +

Γ
sη̄n

(33)

and

τ̃rz,n(r̄, s) = −γn
dUn(r̄, s)

dr̄
, (34)
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where α2
n = (ρ̄ns/η̄n)(λ̄ns + 1), βn = −ε̄nκ̄2

n/η̄ns, and γn = η̄n/(1 + λ̄ns). The Laplace
transforms from Equations (29) and (30) are applied into Equations (16), (19)–(21) to
establish the boundary conditions that allow solving Equation (33). In this direction,
Equation (34) contributes to the previous solution process, and, as a result, for the interface
placed at r̄ = a, the following expression is obtained

U1(r̄ = a, s) =
l̄s,1γ1

η̄1

dU1(r̄ = a, s)
dr̄

. (35)

Also, for each liquid–liquid interface placed at r̄ = r̄n=1,2,3,...,i−1, the boundary condi-
tions result in

Un+1(r̄ = r̄n, s) = Un(r̄ = r̄n, s) (36)

and

−γn+1
dUn+1(r̄ = r̄n, s)

dr̄
+

ε̄n+1

s
dψ̄n+1(r̄ = r̄n)

dr̄
= −γn

dUn(r̄ = r̄n, s)
dr̄

+
ε̄n

s
dψ̄n(r̄ = r̄n)

dr̄
, (37)

and, finally, for the outer wall of the annular microchannel placed at r̄ = 1, the following
expression is obtained:

Ui(r̄ = 1, s) = − l̄s,iγi

η̄i

dUi(r̄ = 1, s)
dr̄

. (38)

Consequently, Equation (33) and Equations (35)–(38) constitute the mathematical
model for Maxwell immiscible fluids driven by the electro-osmotic effects, which is found
in Laplace space. It should be noted that Equation (33) is an inhomogeneous ordinary differ-
ential equation (ODE) whose solution can be constructed by the sum of the homogeneous
solution Uh,n(r̄, s) with the particular solution Up,n(r̄, s), as shown below

Un(r̄, s) = Uh,n(r̄, s) + Up,n(r̄, s). (39)

Therefore, the corresponding homogeneous solution for Equation (33) is the modified
Bessel differential equation, whose solution is

Uh,n(r̄, s) = An I0(αn r̄) + BnK0(αn r̄), (40)

while their particular solution takes into account the form of the electric potential solution
and a constant for the pressure gradient term as follows:

Up,n(r̄, s) = Fn I0(κ̄n r̄) + GnK0(κ̄n r̄) + H0. (41)

Here, An, Bn, Fn, Gn, and H0 are integration constants that will be determined later.
Therefore, by replacing Equation (41) into Equation (33), and with the aid of Equation (24),
this results in

d2

dr̄2 [Fn I0(κ̄n r̄) + GnK0(κ̄n r̄)] +
1
r̄

d
dr̄

[Fn I0(κ̄n r̄) + GnK0(κ̄n r̄)]− α2
n[Fn I0(κ̄n r̄) + GnK0(κ̄n r̄) + H0] =

βn[C2n−1 I0(κ̄n r̄) + C2nK0(κ̄n r̄)] +
Γ

sη̄n
. (42)

Using the superposition principle of solutions, the following three relationships can
be obtained from the above equation

Fn

[
d2

dr̄2 I0(κ̄n r̄) +
1
r̄

d
dr̄

I0(κ̄n r̄)− α2
n I0(κ̄n r̄)

]
= βnC2n−1 I0(κ̄n r̄), (43)
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Gn

[
d2

dr̄2 K0(κ̄n r̄) +
1
r̄

d
dr̄

K0(κ̄n r̄)− α2
nK0(κ̄n r̄)

]
= βnC2nK0(κ̄n r̄) (44)

and
−α2

n H0 =
Γ

sη̄n
. (45)

On the other hand, when replacing Equation (24) in Equation (7), and following the
principle of superposition of solutions, it yields

d2

dr̄2 I0(κ̄n r̄) +
1
r̄

d
dr̄

I0(κ̄n r̄) = κ̄2
n I0(κ̄n r̄) (46)

and
d2

dr̄2 K0(κ̄n r̄) +
1
r̄

d
dr̄

K0(κ̄n r̄) = κ̄2
nK0(κ̄n r̄). (47)

Therefore, Fn and Gn are calculated by substituting the equalities of Equations (46)
and (47) into Equations (43) and (44), respectively, resulting in

Fn =
βnC2n−1

κ̄2
n − α2

n
, Gn =

βnC2n

κ̄2
n − α2

n
. (48)

With the above values of the constants given in Equations (45) and (48), the dimen-
sionless velocity distribution for any fluid layer from Equation (39) takes the following
form:

Un(r̄, s) = An I0(αn r̄) + BnK0(αn r̄) + Fn I0(κ̄n r̄) + GnK0(κ̄n r̄)− Γ
sα2

nη̄n
. (49)

In order to obtain the values of the constants An and Bn, the boundary conditions
shown in Equations (35)–(38) have to be applied to Equation (49). First, by applying
Equation (35) to Equation (49) corresponding to the fluid layer n = 1 at the interface placed
at r̄ = a, the following relationship is obtained:

A1

[
I0(α1a)− l̄s,1γ1

η̄1
α1 I1(α1a)

]
+ B1

[
K0(α1a) +

l̄s,1γ1

η̄1
α1K1(α1a)

]
=

−F1

[
I0(κ̄1a)− l̄s,1γ1

η̄1
κ̄1 I1(κ̄1a)

]
− G1

[
K0(κ̄1a) +

l̄s,1γ1

η̄1
κ̄1K1(κ̄1a)

]
+

Γ
sα2

1η̄1
. (50)

Second, by applying Equations (36) and (37) for the boundary conditions placed at
r̄ = r̄n=1,2,3,...,i−1 to Equation (49) yields

An I0(αn r̄n) + BnK0(αn r̄n)− An+1 I0(αn+1r̄n)− Bn+1K0(αn+1r̄n) =

−Fn I0(κ̄n r̄n)− GnK0(κ̄n r̄n) + Fn+1 I0(κ̄n+1r̄n) + Gn+1K0(κ̄n+1r̄n) +
Γ
s

(
1

α2
nη̄n
− 1

α2
n+1η̄n+1

)
(51)

and, respectively,

Anγnαn I1(αn r̄n)− BnγnαnK1(αn r̄n)− An+1γn+1αn+1 I1(αn+1r̄n) + Bn+1γn+1αn+1K1(αn+1r̄n) =

−γnκ̄n[Fn I1(κ̄n r̄n)− GnK1(κ̄n r̄n)] +
ε̄nκ̄n

s
[C2n−1 I1(κ̄n r̄n)− C2nK1(κ̄n r̄n)]

+γn+1κ̄n+1[Fn+1 I1(κ̄n+1r̄n)− Gn+1K1(κ̄n+1r̄n)]−
ε̄n+1κ̄n+1

s

[
C2(n+1)−1 I1(κ̄n+1r̄n)− C2(n+1)K1(κ̄n+1r̄n)

]
. (52)
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And third, by applying Equation (38) to Equation (49) corresponding to the fluid layer
n = i at the interface placed at r̄ = 1, the following relationship is obtained:

Ai

[
I0(αi) +

l̄s,iγi

η̄i
αi I1(αi)

]
+ Bi

[
K0(αi)−

l̄s,iγi

η̄i
αiK1(αi)

]
=

−Fi

[
I0(κ̄i) +

l̄s,iγi

η̄i
κ̄i I1(κ̄i)

]
− Gi

[
K0(κ̄i)−

l̄s,iγi

η̄i
κ̄iK1(κ̄i)

]
+

Γ
sα2

i η̄i
. (53)

The system of equations given by (50)–(53) can be rewritten in matrix form Ax = b,
as is presented in detail in Appendix B. Therefore, the inverse matrix method is used to
find the constants An and Bn given by the vector x.

Once the values of Fn, Gn, An, and Bn have been calculated, they are substituted in
Equation (49) for evaluation. Then, the inverse of the Laplace transform is numerically
applied to the results derived from the previous process by using the concentrated matrix
exponential (CME) distributions [78], obtaining the approximate values of ū, as indicated
below:

ūn(r̄, t̄) ≈ ūn(r̄, t̄, M) =
1
t̄

M

∑
k=1

ωkUn

(
r̄,

θk
t̄

)
, (54)

where, ω1 and θ1 are real coefficients; while, from ω2 to ωM, and from θ2 to θM are
(M− 1)/2 complex conjugate pairs given in [78]. Here, M = 75. The above procedure is
also applicable to the shear stress by changing ūn to τ̄rz,n, and Un to τ̃rz,n in Equation (54).

3.3. Steady-State Velocity Profiles

The simplified Equation (15) is used to determine the steady-state velocity profile as
follows:

1
r̄

d
dr̄

(
r̄

dūn(r̄)
dr̄

)
=

1
η̄n

[
Γ− ε̄nκ̄2

nψ̄n(r̄)
]
. (55)

Then, by integrating twice Equation (55) with respect to r̄, yields

ūn(r̄) =
1

η̄n

{
Γr̄2

4
+ ε̄nC2n−1[1− I0(κ̄n r̄)]− ε̄nC2nK0(κ̄n r̄) + Dn ln(r̄) + En

}
, (56)

where, Dn and En are integration constants, which will be found by implementing the
boundary conditions from Equations (16) and (19)–(21) to Equation (56). First, by applying
Equation (16) to Equation (56) corresponding to the fluid layer n = 1 at the interface placed
at r̄ = a, the following relationship is obtained:

D1

[
aln(a)− l̄s,1

a

]
+ E1 =

Γa
4
(
2l̄s,1 − a

)
− ε̄1

{
C1
[
−I0(κ̄1a) + l̄s,1κ̄1 I1(κ̄1a) + 1

]
− C2

[
K0(κ̄1a) + l̄s,1κ̄1K1(κ̄1a)

]}
. (57)

Second, Equations (19) and (20) for the boundary conditions placed at r̄ = r̄n=1,2,3,...,i−1
are applied to Equation (56). To this, from Equation (9), it should be considered that, for the
steady-state τ̄rz,n(r̄) = −η̄n[dūn(r̄)/dr̄]; therefore, yielding

Dn

(
ln(r̄n)

η̄n

)
+ En

(
1

η̄n

)
− Dn+1

(
ln(r̄n)

η̄n+1

)
− En+1

(
1

η̄n+1

)
=

− 1
η̄n

{
Γr̄2

n
4

+ ε̄n{C2n−1[1− I0(κ̄n r̄n)]− C2nK0(κ̄n r̄n)}
}

+
1

η̄n+1

{
Γr̄2

n
4

+ ε̄n+1

{
C2(n+1)−1[1− I0(κ̄n+1r̄n)]− C2(n+1)K0(κ̄n+1r̄n)

}}
(58)
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and, respectively,

Dn

(
1
r̄n

)
− Dn+1

(
1
r̄n

)
= 2{ε̄nκ̄n[C2n−1 I1(κ̄n r̄n)− C2nK1(κ̄n r̄n)]

−ε̄n+1κ̄n+1

[
C2(n+1)−1 I1(κ̄n+1r̄n)− C2(n+1)K1(κ̄n+1r̄n)

]}
. (59)

And third, by applying Equation (21) to Equation (56) corresponding to the fluid layer
n = i at the interface placed at r̄ = 1, results in

Di l̄s,i + Ei = −
Γ
4
(
2l̄s,i + 1

)
+ ε̄i

{
C2i−1

[
I0(κ̄1) + l̄s,iκ̄i I1(κ̄i)− 1

]
+ C2i

[
K0(κ̄i)− l̄s,iκ̄iK1(κ̄i)

]}
. (60)

The system of equations given by (57)–(60) can be rewritten in matrix form Ax = b,
as is shown in detail in Appendix C. Therefore, the inverse matrix method is used to find
the constants Dn and En given by the vector x.

4. Results and Discussion

The results presented in this section were obtained by taking into account the following
ranges of the physical parameters: 1 ≤ R ≤50 µm, 50 ≤ κ−1

n ≤ 300 nm, ρn = 1000 kg m−3,
10−4 ≤ ηn ≤ 10−2 kg m−1 s−1, Ez ≤ 104 V m−1, −25 ≤ ζI,O ≤ 25 mV, Zn ∼ O(1),
0 ≤ λn ≤ 10−4 s, εn ∼ O(10−10)C V−1 m−1,−12.5 ≤ ∆ψn ≤ 12.5 mV, and ls;1,i . O(100 nm).
Also, the constant values of kB = 1.381× 1023 J K−1 and e = 1.602× 10−19 C were consid-
ered. The reference properties are taken from an aqueous 1:1 electrolyte (e.g., NaCl) as
εref = 7.083× 10−10 C V−1 m−1, ηref = 0.9× 10−3 kg m−1 s−1, ρref = 998 kg m−3, Zref = 1,
and Tref = 298 K. With the above, ζref = kBTref/Zrefe in mV. Therefore, the adequate
combination of the physical parameters allows use of the following values of the dimen-
sionless parameters: −0.5 ≤ ∆ψ̄n ≤ 0.5, 10 ≤ κ̄n ≤ 100, 0.75 ≤ ε̄n ≤ 1.25, 0.6 ≤ η̄n ≤ 6,
0 ≤ λ̄n ≤ 10, and 0 ≤ l̄s;1,i ≤ 0.1. Because any externally applied pressure can be reached by
syringe pumps, in this work, the parameter Γ will be maintained with a value comparable to
the electro-osmotic effect, that is Γ = O(1). Also, moderately and realistically, a finite num-
ber of fluid layers n with a value of O(1) will be considered; however, the present solution
is valid for any value of n. The fluids are stratified with similar densities, i.e., ρ̄n = 1.

4.1. Validation

A comparison with published works was performed to verify the proper functioning
of the analytical (steady-state regime) and semi-analytical (flow start-up) solutions that
describe the electro-osmotic flow in an annular channel. In all the comparative cases,
the percentage of the root mean square error (RMSE) was obtained between the solutions
with the following:

RMSE =

[
100

∑
p=1

(
ūa,p − ūb,p

)2
/

100

∑
p=1

ū2
a,p

]1/2

× 100, (61)

where, ūa,p and ūb,p represent the velocity profile value arrays of the present work (“a”)
and of the work with which it is compared (“b”), respectively. p = 1, 2, ..., m is the nodal
counter; for the velocity profiles and shear stress distributions m = 100, and for the velocity
tracking m = 6600. In the case of the shear stress distribution, the variable ū is changed by
τ̄r,z in Equation (61), following the same procedure.

4.1.1. Steady-State Regime

Figure 2 compares the results obtained in the steady-state regime of the flow field
with the research performed by Tsao [18] on Newtonian fluids (λ̄n = 0). In this figure
κ̄n = 10; where, n = 1 (one fluid layer) or n = 3 (three fluid layers). The rest of the
dimensionless parameters appear in the figure caption. The results in Figure 2a reflect
velocity profiles that depend on the radial coordinate without hydrodynamic slip; that
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is, l̄s;1,i = 0, corresponding to the results of Tsao [18] with one fluid layer (marks) against
the present solution with three fluid layers (continuous line), where very good agreement
between the solutions was found, with an RMSE = 0.69%. Furthermore, Figure 2a shows
the velocity profiles for a multilayer flow subject to hydrodynamic slip effects given by the
parameter l̄s;1,i (=0.01, 0.05, 0.1). Here, the hydrodynamic slip in the microchannel wall is
evident, while the velocity magnitude increases with l̄s;1,i. Figure 2b develops the shear
stress distribution through the annular microchannel for the values of Figure 2a. As can be
seen, the stress distributions are independent of the variation in the parameter l̄s;1,i since,
in all cases, they overlap. This is acceptable since, in Figure 2a, velocity profiles with the
same shape are shown, differing only in magnitude. The results in Figure 2b for the shear
stress distribution with l̄s;1,i = 0 from the present work compared with the one presented
by Tsao [18], have an RMSE = 2%. Additionally, to find the shear stress from Tsao [18],
the following dimensionless velocity profile ūz = AI0(κ̄r̄) + BK0(κ̄r̄) + Cln(κ̄r̄) + D was
taken from this reference and replaced in Equation (9) for a Newtonian fluid; the values of
A, B, C and D were extracted from Tsao [18].

0.5 0.6 0.7 0.8 0.9 1.0

0.5 0.6 0.7 0.8 0.9 1.0

0.00.40.81.21.62.02.4

0.00.40.81.21.62.02.4

(a)

n=10
 Tsao (2000), one fluid layer
 Present work, three fluid layeru

r

ls;1,i = 0, 0.01, 0.05, 0.1Fluid 1 Fluid 2 Fluid 3 0.5 0.6 0.7 0.8 0.9 1.0

0.5 0.6 0.7 0.8 0.9 1.0

-10
-5
0
5

10

-10
-5
0
5
10

(b)

rz

n=10

Fluid 3Fluid 2Fluid 1
r

 Tsao (2000), one fluid layer Present work, three fluid layer

ls;1,i = 0, 0.01, 0.05, 0.1

Figure 2. Comparison of (a) dimensionless velocity profiles and (b) shear stress distributions in
a purely electro-osmotic flow for the present work using n = 3, a = 0.5, r̄1 = 0.666, r̄2 = 0.833,
η̄n = ε̄n = ρ̄n = ζ̄I,O = 1, ∆ψ̄n = Γ = λ̄n = 0, and κ̄n = 10, with the work presented for a single fluid
layer (n = 1) by Tsao [18] in steady-state.

4.1.2. Flow Start-Up

In Figure 3, the transient flow of three Newtonian fluids driven by electro-osmotic
effects in the annular microchannel was compared against that obtained by Chang and
Wang [19] for one fluid layer without slippage (l̄s;1,i = 0). The comparison was per-
formed in two different ways: firstly, by recovering the velocity profiles for the times
t̄1,2,3 = 0.001, 0.01, 0.03 and t̄4 = 10 reported by Chang and Wang [19] in the bottom corner
square of Figure 3, and, secondly, by performing the velocity tracking in the microchan-
nel center (in the middle of the fluid layer 2), where the times reported in the velocity
profiles are shown with white circles. Regarding the velocity profiles presented that are
gradually increasing, there are values of RMSE1,2,3 = 0.0104%, 0.0125%, 0.0237%, and
RMSE4 = 0.0001%, for the times t̄1,2,3 and t̄4, respectively. On the other hand, regarding
the velocity tracking, which begins at t̄ = 0.0002 and grows gradually until the steady-state
is reached, an RMSE = 0.0081% is determined between solutions.
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0.5 0.6 0.7 0.8 0.9 1.00.00.20.40.60.81.0

0.00015

t4=10
t3=0.03

t2=0.01

 Chang and Wang (2008),          one fluid layer
 Present work,          three fluid layer

t

t1=0.001
0.001

n=10
0.00015 0.001

u (r=0.75,t )

Fluid 2

t4
t3
t2

u

r

t1Fluid 1 Fluid 3

Figure 3. Comparison of dimensionless velocity profiles and velocity tracking of a purely electro-
osmotic flow of the present work using n = 3, a = 0.5, r̄1 = 0.666, r̄2 = 0.833, η̄n = ε̄n = ρ̄n = ζ̄I,O =

1, ∆ψ̄n = Γ = λ̄n = l̄s;1,i = 0, and κ̄n = 10, with the work presented for a single fluid layer (n = 1) by
Chang and Wang [19] in transient-state.

Figure 4 compares the velocity profiles and velocity tracking from this research with
the work carried out by Escandón et al. [70] for a multilayer electro-osmotic flow of
Maxwell fluids (λ̄n = 1) in an annular microchannel without slip on the walls. Here,
a perfect convergence with RSME = 0.0% was found between the solutions. Additionally,
in Figure 4, the results for the velocity profiles and velocity tracking with hydrodynamic
slip derived from this research are shown (l̄s;1,i = 0.05), where significant changes in
the velocity magnitude are observed with respect to the cases without slippage on the
walls. At the start-up of the electro-osmotic flow, in all cases (l̄s;1,i = 0 and l̄s;1,i = 0.05),
the indicated times are t̄1,2,3 = 0.01, 0.6, 1.2, and t̄4 = 80 (already within steady-state),
respectively. In particular, for the early time of t̄1 = 0.1, all the velocity profiles overlap—
the one reported by Escandón et al. [70] without slippage, and the two in this work with
l̄s;1,i = 0 and l̄s;1,i = 0.05. The above indicates that the hydrodynamic slip does not
significantly affect the early stage of the start-up of the flow, as it also happens with the
velocity tracking. The results obtained from Figure 4 also indicate that the presence of
electrostatic effects (∆ψ̄n = 0.25) at the interfaces between fluids causes protuberances in the
velocity distribution in these regions, compared to the results achieved in Figures 2 and 3,
whose velocity distribution turns out to be more uniform. Also, it should be noted that
the temporal evolution of the velocity profiles in Figure 4 (see for t̄1,2,3 = 0.01, 0.6, 1.2) is
carried out with an oscillatory phenomenon around the velocity profile in steady-state (see
for t̄4 = 80) due to the elastic characteristics of Maxwell fluids. In contrast, Figure 3 reflects
a gradual growth over time for the evolution of the velocity profiles of Newtonian fluids.

With the above, it is concluded that the present solutions adequately describe, both
qualitatively and quantitatively, the dynamics of the multilayer electro-osmotic flow stud-
ied here.
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Figure 4. Comparison of dimensionless velocity profiles and velocity tracking of a purely electro-
osmotic flow of the present work with that presented by Escandón et al. [70] in transient-state,
for different values of l̄s;1,i (=0, 0.05). In both, n = 3, a = 0.3, r̄1 = 0.533, r̄2 = 0.766, η̄n = 2,
ε̄n = ρ̄n = λ̄n = ζ̄I,O = 1, ∆ψ̄n = 0.25, Γ = 0, and κ̄n = 20.

4.2. Velocity Tracking

Section 4.1 demonstrated the general behavior of fluids. Therefore, this section will
focus on velocity tracking as a function of time for various positions within the annular
microchannel. With this, it will be elucidated how the movement of fluids in the transient-
state regime is affected by the dimensionless parameters, mainly through the effect of
hydrodynamic slip.

Figures 5 and 6 show the transport of three layers of fluids driven by electro-osmotic
effects in an annular microchannel. In addition, the velocity tracking is developed on the
solid–liquid interfaces placed at r̄ = a = 0.3 and r̄ = 1, and at the center of the fluid layers
at r̄ = 0.417, r̄ = 0.592, and r̄ = 0.708, respectively. The figure captions indicate the rest of
the dimensionless parameters. Also, in Figures 5 and 6, two panels of results are observed:
the one on the left represents the velocity tracking of the electro-osmotic flow without slip
effects on the walls (l̄s;1,i = 0), and the right panel represents this with hydrodynamic slip
effects on the microchannel walls (l̄s;1,i = 0.05).

Figure 5a,b develop the velocity tracking for three values of the dimensionless relax-
ation time λ̄n (=0.25, 2.5, 8). In all cases, by increasing the value of λ̄n, the elastic effects
also increase, causing the behavior of viscoelastic fluids to approach the dynamics of a
solid; that is, due to the elastic contribution, the system stores energy. Subsequently, this
energy is dissipated through damped oscillations until a steady-state is reached. This
behavior is more evident in intermediate fluid 2, where the fluid offers the least resistance
to flow. In the case of Figure 5a, the oscillatory motion of the fluids tends to be symmetric
around the equilibrium velocity condition. However, this kind of behavior disappears
when the microchannel walls exhibit hydrodynamic slip, and the flow oscillations tend to
dampen and develop below the equilibrium velocity condition, as presented in Figure 5b.
In general, the time for the fluids to reach the steady-state (t̄ss) is very sensitive to the value
of the parameter λ̄n since this increases considerably with its value. For Figure 5a, the val-
ues of λ̄n (=0.25, 2.5, 8) produce times of t̄ss = 4.69, 40.21, 110.16, respectively. However,
for Figure 5b, these times are reduced to t̄ss = 3.85, 31.38, 89.09, respectively, due to the
effect of the hydrophobic walls. In other results, when comparing Figure 5a,b, in the case
without slip (l̄s;1,i = 0), the velocity of fluids 1 and 3 at the solid–liquid interfaces is zero
over time (no-slip condition); however, when slip is present (l̄s;1,i = 0.05), the velocity at
these locations gradually increases, and the oscillations typical of Maxwell’s fluids seem
almost imperceptible. From this discussion, it follows that although hydrodynamic slip
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increases the velocity magnitude, it has a damping effect on the oscillatory motion that
propagates from the microchannel walls to the rest of the fluids.
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Figure 5. Velocity tracking of a purely electro-osmotic flow with n = 3, a = 0.3, r̄1 = 0.533, r̄2 = 0.766,
η̄n = ε̄n = ρ̄n = ζ̄I,O = 1, ∆ψ̄n = 0.25, Γ = 0, κ̄n = 20 for (a) l̄s;1,i = 0 and λ̄n (=0.25,2.5,8)
with the corresponding t̄ss (=4.69, 40.21, 110.16), and (b) l̄s;1,i = 0.05 and λ̄n (=0.25,2.5,8) with the
corresponding t̄ss (=3.85, 31.38, 89.09).

In Figure 6a,b, the velocity tracking depends on the potential difference ∆ψ̄n (=−0.5,
0, 0.5). In particular, within the structure of the electric double layers at liquid–liquid
interfaces, the potential difference represents the equilibrium value for the ionic activity
across the diffuse layer [77]; for this problem, this parameter produces a change in the
velocity magnitudes depending on their sign. This change in velocity is magnified at
positions from the outer radius to the inner radius of the microchannel, thus having a
higher velocity change in fluid 1. The above can be explained by the slightly antisymmetric
behavior of the velocity profiles in an annular channel with a small inner radius, obtaining
higher velocity magnitudes in positions close to the inner wall [19,20]. As can be seen
in Figure 6a,b, the interfacial hydrodynamic slip condition at the microchannel walls
with l̄s;1,i = 0.05 produces a significant change in the velocity magnitude during the
transient period and until reaching the equilibrium condition. In this sense, for Figure 6a,
the average steady-state velocity is approximately 0.9 at the center of fluid layers 1, 2, and 3.
In Figure 6b, an average velocity close to 2 indicates that the magnitude increased by more
than double. Therefore, the hydrodynamic slip l̄s;1,i has a more significant impact on the
velocity magnitude and the time required for the flow to reach a steady-state than the
interfacial potential difference ∆ψ̄n.
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Figure 6. Velocity tracking of a purely electro-osmotic flow with n = 3, a = 0.3, r̄1 = 0.533,
r̄2 = 0.766, η̄n = ε̄n = ρ̄n = λ̄n = ζ̄I,O = 1, Γ = 0, κ̄n = 20 for (a) l̄s;1,i = 0 and ∆ψ̄n (=−0.5,0,0.5)
with the corresponding t̄ss (=17.70,17.67,17.50), and (b) l̄s;1,i = 0.05 and ∆ψ̄n (=−0.5,0,0.5) with the
corresponding t̄ss (=13.56,13.56,13.54).

Figure 7 presents an electro-osmotic flow of three layers of immiscible Maxwell fluids
in an annular microchannel. Here, four values of the internal radius a (=0.15,0.35,0.65,0.85)
determine the behavior of the velocity tracking. For this arrangement, the velocity tracking
is performed halfway through each fluid layer, as indicated in the figure. Furthermore,
Figure 7a,b represent the flow with walls without hydrodynamic slip (l̄s;1,i = 0) and with
slip (l̄s;1,i = 0.05), respectively. It is observed that the channels with a wider cross-section
(a = 0.15, 0.35) delay the onset of fluid movement. The aforementioned is because the
transfer of momentum from regions of the electric double layers to the central part of each
layer requires a longer time than in narrow channels (a = 0.65, 0.85). As seen in Figure 7a,b,
higher velocity magnitudes are reached in the transient-state in the wider channels than the
narrow ones. With this, it is confirmed that the elastic effects are restricted by reducing the
gap between the walls of the annular channel [20]. Another effect of the gap between the
channel walls is that during the transient flow period within wide channels (a = 0.15, 0.35),
non-linear wave oscillations (complex shape) occur, which are damped over time until
reaching the equilibrium condition (steady-state). On the other hand, when considering
flows in narrow channels (a = 0.65, 0.85), the waves are linear (sinusoidal shape) and are
of a greater number than in the case of wide channels. This is because the dissipation of
energy stored by viscoelastic fluids confined in the widest channels is delayed and occurs
suddenly, compared to what happens with fluids in narrow channels, where the energy
dissipation is immediate and gradual. Additionally, as shown in Figure 7a, the reduction
in the microchannel size causes the time required for the flow to acquire a steady-state to
also tend to decrease, from the value of a = 0.15 with t̄ss = 17.61 to a = 0.8 with t̄ss = 13.62.
However, this time reduction is accentuated in Figure 7b with a = 0.15 with t̄ss = 14.23 up
to a = 0.85 with t̄ss = 7.93. With those mentioned earlier, it is concluded that the narrow
channels release the energy stored by the Maxwell fluids faster than the wide channels.
On the other hand, in Figure 7, the role of hydrodynamic slip is to increase the overall flow
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velocity, dampen the magnitude and number of the oscillations, and decrease the time
required for the flow to acquire a steady-state, a behavior that can be verified by examining
Figure 8 where the effect of hydrodynamic slip on the electro-osmotic flow is analyzed for
three values of l̄s;1,i (=0.01, 0.025, 0.1).
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Figure 7. Velocity tracking of a purely electro-osmotic flow with n = 3, r̄1 = 0.533, r̄2 = 0.766,
η̄n = ε̄n = ρ̄n = λ̄n = ζ̄I,O = 1, ∆ψ̄n = 0.25, Γ = 0, κ̄n = 20, a (=0.15,0.35,0.65,0.85), and for
(a) l̄s;1,i = 0 and (b) l̄s;1,i = 0.05.
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Figure 8. Velocity tracking of a purely electro-osmotic flow with n = 3, a = 0.3, r̄1 = 0.533, r̄2 = 0.766,
η̄n = ε̄n = ρ̄n = λ̄n = ζ̄I,O = 1, ∆ψ̄n = 0.25, Γ = 0, κ̄n = 20, and for l̄s;1,i (=0.01, 0.025, 0.1).

Figure 9 analyzes a multilayer electro-osmotic flow affected by the rest of the dimen-
sionless parameters. The inner radius of the annular microchannel is a = 0.3, and the
velocity tracking is performed at half the annular space in all cases, at r̄ = 0.65. The first
dimensionless parameter analyzed in this figure is the zeta potential ζ̄I,O, and, as observed
in Figure 9a, any combination of values in this parameter modifies the velocity magnitude
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because this parameter represents the impact of the electro-osmotic forces applied to the
flow, achieving the highest velocity when there are symmetrical potentials on the walls,
ζ̄(I,O) = (1, 1). A difference in velocity due to the values of ζ̄I,O is slightly accentuated when
hydrodynamic slip occurs with l̄s;1,i = 0.05 in Figure 9b. The second parameter analyzed
is the permittivities ratio ε̄n. The permittivity is a physical parameter of the fluids that
describes how much they are affected by an electric field; therefore, when its value increases
to ε̄n = 1.25, the flow will reach its maximum velocity, as observed in Figure 9a. Moreover,
the combination of the values displayed for the permittivity ratio ε̄n with a hydrodynamic
slip, increases the velocity, as shown in Figure 9b.
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Figure 9. Velocity tracking of an electro-osmotic flow with a = 0.3, ρ̄n = λ̄n = 1, ∆ψ̄n = 0.25,
and different values of ζ̄I,O (=0.25, 1;1, 1;1, 0.25), ε̄n (=0.75, 1, 1.25), κ̄n (=15, 40, 90), Γ (=3, 0, −3),
n (=3, 4, 5), η̄n (=0.6, 1, 6), and for (a) l̄s;1,i = 0 and (b) l̄s;1,i = 0.05.

In this context, the third parameter κ̄n shown in Figure 9a relates the characteristic
scale of the annular microchannel to the electric double-layer thickness for each fluid layer.
For wide channels and/or thin electric double layers from highly concentrated electrolytes,
the movement of the fluids is delayed more, and its sudden start-up produces non-linear
waves (for κ̄n = 40, 90), increasing the memory effects of the viscoelastic fluids. However,
values of (κ̄n = 15) for narrow channels and/or thick electric double layers tend to produce
waves with more linear behavior, and the movement of the fluids begins more quickly
and gradually. The above is because, as seen in Figure 7, the elastic effects diminish as
the gap between the walls of the annular microchannel decreases, which also happens for
low concentration electrolytes (i.e., for values of κ̄n = 15). Also, the combination between
the parameter κ̄n and the hydrodynamic slip of l̄s;1,i = 0.05 is very relevant, as shown in
Figure 9b, since it significantly modifies the velocity magnitude, increasing the velocity
magnitude around 700% with respect to the case of κ̄n = 90 in Figure 9a. The fourth
dimensionless parameter analyzed in Figure 9 corresponds to the parameter Γ (=3, 0, −3),
which indicates the ratio between the external pressure forces to the electro-osmotic forces.
Positive values of Γ indicate that the pressure forces act in an opposite direction to the
electro-osmotic effects, decreasing the velocity magnitude of the multilayer flow; conversely,



Mathematics 2023, 11, 4231 19 of 29

negative values of Γ act in the same direction, increasing the velocity. With Γ = 0, this is
the case where the only driving force is the electric field. By comparing Figure 9a,b, the
hydrodynamic slip slightly affects the influence of Γ on the flow.

The fifth parameter analyzed in Figure 9 very slightly affects the velocity magnitude
of the fluids, for the cases of the number of fluid layers shown n (=3, 4, 5). This happens
whether the walls are hydrophobic or not (see Figure 9a,b). However, it should be noted that,
as the number of layers in the flow increases with n = 5, the behavior of the waves will tend
to be a little smoother with respect to the cases with n = 3 and n = 4. The aforementioned
occurs because the individual widths of the fluid layers have decreased, and, as a result,
there is a type of rectification of the elastic effects on the waveform in the oscillatory
period of the flow. For the sixth and last dimensionless parameter presented in Figure 9,
corresponding to the viscosity ratios, η̄n, the results show that the resistance to flow is
higher for values of η̄n = 6, producing lower velocity magnitudes and a greater number
of oscillations in flow than is the case with η̄n = 0.6. Also, more viscous Maxwell fluids
dissipate the energy stored in the deformation process faster, as well as their equilibrium
condition, acting as a brake. Furthermore, the combination of the hydrodynamic slip
l̄s;1,i = 0.05 with any value of η̄n, damps the number of oscillations, as shown in Figure 9a,b.
Finally, for Figure 9, the time required for the flow to acquire a steady-state is slightly
affected by most of the parameters, excluding the viscosity ratios that affect this time.
As previously shown, the hydrodynamic slip does influence this time t̄ss, as can be seen by
comparing Figure 9a,b.

Figure 10 evaluates the time to reach the steady-state for different dimensionless
parameters in the presence and absence of hydrodynamic slip, as indicated in the figure
caption. The ranges of the variables represent the general behaviors of the dimensionless
parameters of this work. The results in Figure 10a suggest that the time to reach the steady-
state significantly increases as the relaxation time rises, mainly when hydrodynamic slip is
absent. However, this behavior contrasts with the time response to reach the steady-state
to viscosity changes, which exhibits the opposite trend. The number of fluid layers and
the external pressure slightly impact the time to reach the steady-state, as depicted in
the figure. On the other hand, Figure 10b shows that increasing the annular gap of the
microchannel reduces the time to reach the steady-state. Similarly, the time to reach the
steady-state increases as the symmetrical wall zeta potentials and the electric permittivity
ratios increase, and it is not significantly affected by variation in the electrokinetic parameter.
In particular, Figure 10c indicates that the time to reach the steady-state gradually decreases
due to the hydrodynamic slip condition. From these results and the previous figures,
it can be concluded that the transient evolution provides a better understanding of the
physical characteristics at the start-up of the flow; specifically, the time to reach the steady-
state strongly depends on the relaxation times and partially depends on the rest of the
dimensionless parameters. In this sense, analyzing the transient flow promotes the optimal
and appropriate design of microfluidic platforms.

For the results of velocity tracking, a dimensionless time-step of 0.015 was taken into
account. In Figures 3 and 4, an extra evaluation of the velocity tracking was carried out
in which only the times reported by Chang and Wang [19] and by Escandón et al. [70],
respectively, were considered; these times are reported in these figures with marks in the
form of white circles on the lines. The estimate of the time it takes for the flow to reach
steady-state is obtained from the velocity tracking data by comparing the difference between
two velocity points. This process starts from the final results of the velocity tracking in
the steady-state and towards the flow oscillation condition, continuously comparing the
velocity magnitudes over time until the velocity difference reaches the value of ≥10−5.
Therefore, determining the time t̄ss, in which the flow acquires the steady-state, is referential
since it depends on the time-step and the precision of the velocity difference between the
two points considered. Thus, the general condition of the steady-state regime is when
t̄ss → ∞.
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Figure 10. Time to reach the steady-state of electro-osmotic flow for different values of dimensionless
parameters (a) η̄n, λ̄n, n, Γ; (b) ζ̄I,O, ε̄n, a; and (c) l̄s;1,i. The rest of the complementary variables are
a = 0.3, n = 3, η̄n = ρ̄n = λ̄n = ε̄n = 1, ζ̄I,O = (1, 1), Γ = 0, ∆ψ̄n = 0.25, κ̄n = 20, and l̄s;1,i (=0, 0.05,).

4.3. Shear Stress and Rate-of-Strain Distributions

Figure 11 shows the shear stress and rate-of-strain distributions from Figures 3–5,
respectively; all graphs are with respect to the radial coordinate and time. Figure 11a,b
present the distributions of Figure 3, where electrostatic interactions at liquid–liquid in-
terfaces (∆ψ̄n = 0), fluid memory effects (λ̄n = 0), and the wall slip (l̄s;1,i = 0) are absent.
The results are regular shape distributions of shear stress and rate-of-strain. Conversely,
in Figure 11c–f, dealing with Maxwell fluids (with λ̄n = 1 and λ̄n = 8), as well as with
electrostatic interactions at liquid–liquid interfaces (∆ψ̄n = 0.25), distributions with ir-
regular shapes are developed, showing a series of protuberances. As can be seen in
Figure 11c–f, the profiles for shear stress and rate-of-strain overlap when l̄s;1,i = 0 and
l̄s;1,i = 0.05, indicating that hydrodynamic slip will only affect the velocity magnitude
(see also Figures 2 and 4). Thus, the results shown in Figure 11 represent the general be-
havior of the shear stress and rate-of-strain distributions of the multilayer electro-osmotic
flow analyzed here. Further, these results help to demonstrate that the linear viscoelastic
Maxwell model given by Equation (5) is valid for this flow phenomenon since it satisfies the
restriction that λγ̇n < 1 [72]. The previous restriction can be represented with the variables
of the present study as λ(du/dr) ∼ λ(uc/R)(dū/dr̄) < 1.
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Figure 11. Shear stress and rate-of-strain distributions (a,b) from Figure 3, (c,d) from Figure 4,
and (e,f) from selected times of Figure 5.

4.4. Influence of the Type of Slip Boundary Condition

This section discusses two widely used models to represent the hydrodynamic slip
boundary condition and its influence on this multilayer electro-osmotic flow field. The first
model, also used in the present investigation, takes into account the general linear
Navier slip condition for unidirectional flow as u = (ls/η)|τxy,wall |, where Newtonian
and non-Newtonian fluid behavior characteristics are incorporated through the shear
stress [73,75,79–83]; here, u is the axial velocity, ls is the slip length, η denotes the viscosity,
and τxy,wall is the shear stress at the wall. The second model arises when the shear stress
represented by Newton’s law as τxy,wall = η| du

dn | is replaced in the above model to easily de-
rive the equivalent model for the Navier slip condition for Newtonian fluids as u = ls| du

dn |
(also known as the standard Navier slip condition), and which was used in studies of
electro-osmotic flows in [44–46], or was employed to transport non-Newtonian fluids such
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as those reported by [33,47,48]. However, focusing on the context of non-Newtonian fluids
in electro-osmotic flows, as the viscoelastic fluids treated in this work, as well as those re-
ported by [49,50], the slip boundary condition takes the general form with the stress tensor
u = (ls/η)|τxy,wall |. That is why it is essential to elucidate the impact of the fluid rheology
through these two models of the slip condition on the behavior of the electro-osmotic flow.

In relation to the above discussion, Figure 12 presents the pumping of four layers of
Maxwell fluids driven by purely electro-osmotic forces. The velocity tracking is shown
with λ̄n = 1 and κ̄n = 20; other dimensionless values are placed in the figure caption.
The velocity tracking is carried out in three positions: at the solid–liquid interfaces given
by r̄ = a, r̄ = 1, and r̄ = r̄2 (central position in the annular microchannel). The electro-
osmotic flow in Figure 12a details the velocity tracking considering the general Navier
slip boundary conditions at the walls given by U1,i = ±

[
l̄s:1,i/(1 + λ̄1,is)

]
(dU1,i/dr̄) in the

Laplace transform space (from Equations (35) and (38)). This last equation represents the
effect of the applied viscous stress when combining Equation (34) with Equations (16) and
(21) in the Laplace transform space. While, the velocity tracking for Figure 12b uses the
well-known standard or equivalent Navier slip condition, which in this work is recovered
with the form U1,i = ±l̄s;1,i(dU1,i/dr̄) in the Laplace transform space. The oscillations in
Figure 12a,b are a response to the elastic contribution of the fluids, indicating the stored
energy coming from the microstructure immersed in the fluids, which gives rise to the
viscoelastic behavior of Maxwell fluids [70]. However, it is clear when examining Figure 12a
that the hydrodynamic slip condition in the walls, in combination with the fluid rheology,
considerably dampens (decreases) the magnitude of the velocity in the oscillatory behavior,
as well as the time required for the flow to acquire a steady-state regime t̄ss, with respect
to the results shown in Figure 12b. In this comparison, the oscillations generated by the
evolution of the fluid velocity at positions r̄ = a = 0.3 and r̄ = 1 in Figure 12b tend to
disappear in Figure 12a. Therefore, the previous results regarding the electro-osmotic
flow of Maxwell fluids indicate that the fluid velocity during the transient state and the
time required for the flow to acquire a steady-state will be overestimated when using the
standard model of the Navier equation (U = l̄s|(dU/dr̄)|) compared to those obtained with
the general model (U =

[
l̄s/(1 + λ̄ns)

]
|(dU/dr̄)|).
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Figure 12. Velocity tracking of a purely electro-osmotic flow with n = 4, a = 0.3, r̄1 = 0.475, r̄2 = 0.65,
r̄3 = 0.825, η̄n = ε̄n = ρ̄n = λ̄n = ζ̄I,O = 1, ∆ψ̄n = 0.25, Γ = 0, κ̄n = 20, and l̄s;1,i = 0.05, for (a) the
general Navier slip condition and (b) standard Navier slip condition.

5. Conclusions

The transient electro-osmotic flow of Maxwell immiscible fluids through an annular
microchannel with hydrophobic walls was investigated in this work. The main findings
are the following: The presence of hydrophobic walls in the microchannel increases the
velocity magnitude of the fluids; however, it dampens the oscillatory phenomenon of
the flow, partially decreasing the amplitude of the oscillations below the equilibrium
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condition. The gap of the annular channel and the electrokinetic parameter determine
whether the waves of the oscillatory phenomenon in the flow will be linear or non-linear.
In particular, the hydrodynamic slip effect drastically modifies the velocity of the fluid
layers when the electrokinetic parameter is high. The dimensionless relaxation times play
the dominant role in determining the time it takes for the flow to reach a steady-state,
and they are followed in importance by the annular gap, the hydrodynamic slip lengths,
the wall zeta potential, and the viscosity ratios. The above is because the relaxation times
influence the elastic effects of the fluids, modifying the dynamic behavior through the
energy stored in the system. Also, this work demonstrated that the appropriate selection
of the slip condition is important for analyzing the transport of non-Newtonian fluids.
On the other hand, the numerical solution of this study was successfully integrated with the
previously solved analytical part, yielding validated and accurate results at a reasonable
computational cost. Thus, the analytical-numerical model presented here is versatile and
powerful, serving as a valuable tool for future research in resolving complex transient-
state problems, particularly for very short evaluation times. Therefore, this investigation
serves as a basis for designing microfluidic platforms with high spatio-temporal precision,
facilitating various tasks related to fluid samples in medicine, biology, and chemistry.
Finally, other implications not addressed in the present work, such as high zeta potentials,
other rheological constitutive equations, variable physical properties of fluids, Joule heating
due to high external electric fields, and deformation at the interfaces, can be considered in
future work.
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Appendix A. Integration Constants for the Electric Potential

Equations (25)–(28) are adapted to the matrix form expressed by Ax = b; where A is
the matrix of known coefficients, x is the vector of unknowns to be solved, and b is the
vector of constants. The inverse matrix method [84] serves to determine the constant C
represented by the vector x. Therefore, the system of linear equations that involves the
solid–liquid and liquid–liquid interfaces is
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Appendix B. Integration Constants for Transient-State Velocity Profile

Equations (50)–(53) are adapted to the matrix form expressed by Ax = b; where, A is
the matrix of the known coefficients, x is the vector of unknowns to be solved, and b is the
vector of constants. The inverse matrix method [84] serves to determine the constants An
and Bn represented by the vector x. Therefore, the system of linear equations that involves
the solid–liquid and liquid–liquid interfaces is

I0(α1a)− l̄s,1γ1
η̄1

α1 I1(α1a) K0(α1a) + l̄s,1γ1
η̄1

α1K1(α1a) 0 0 0 0 . . .
I0(α1r̄1) K0(α1r̄1) −I0(α2r̄1) −K0(α2r̄1) 0 0 . . .

γ1α1 I1(α1r̄1) −γ1α1K1(α1r̄1) −γ2α2 I1(α2r̄1) γ2α2K1(α2r̄1) 0 0 . . .
0 0 I0(α2r̄2) K0(α2r̄2) −I0(α3r̄2) −K0(α3r̄2) . . .
0 0 γ2α2 I1(α2r̄2) −γ2α2K1(α2r̄2) −γ3α3 I1(α3r̄2) γ3α3K1(α3r̄2) . . .
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...
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. . .
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αi I1(αi) K0(αi)−

l̄s,iγi
η̄i

αiK1(αi)





A1
B1
A2
B2
A3
B3
...

Ai−1
Bi−1
Ai
Bi



=



H1
H2
H3
H4
H5
...

Hi−2
Hi−1

Hi


. (A2)

where the coefficients H1,2,...,i in Equation (A2) are defined below as:
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H1 = −F1

[
I0(κ̄1a)− l̄s,1γ1

η̄1
κ̄1 I1(κ̄1a)

]
− G1

[
K0(κ̄1a) +

l̄s,1γ1

η̄1
κ̄1K1(κ̄1a)

]
+

Γ
s2α2

1η̄1
,

H2 = −F1 I0(κ̄1r̄1)− G1K0(κ̄1r̄1) + F2 I0(κ̄2r̄1) + G2K0(κ̄2r̄1) +
Γ
s

(
1

α2
nη̄n
− 1

α2
n+1η̄n+1

)
,

H3 = −γ1κ̄1[F1 I1(κ̄1r̄1)− G1K1(κ̄1r̄1)] +
ε̄1κ̄1

s
[C1 I1(κ̄1r̄1)− C2K1(κ̄1r̄1)]

+γ2κ̄2[F2 I1(κ̄2r̄1)− G2K1(κ̄2r̄1)]−
ε̄2κ̄2

s
[C3 I1(κ̄2r̄1)− C4K1(κ̄2r̄1)],

H4 = −F2 I0(κ̄2r̄2)− G2K0(κ̄2r̄2) + F3 I0(κ̄3r̄2) + G3K0(κ̄3r̄2),

H5 = −γ2κ̄2[F2 I1(κ̄2r̄2)− G2K1(κ̄2r̄2)] +
ε̄2κ̄2

s
[C3 I1(κ̄2r̄2)− C4K1(κ̄2r̄2)]

+γ3κ̄3[F3 I1(κ̄3r̄2)− G3K1(κ̄3r̄2)]−
ε̄3κ̄3

s
[C5 I1(κ̄3r̄2)− C6K1(κ̄3r̄2)],

...

Hi−2 = −Fi−1 I0(κ̄i−1r̄i−1)− Gi−1K0(κ̄i−1r̄i−1) + Fi I0(κ̄i r̄i−1) + GiK0(κ̄i r̄i−1),

Hi−1 = −γi−1κ̄i−1[Fi−1 I1(κ̄i−1r̄i−1)− Gi−1K1(κ̄i−1r̄i−1)]

+
ε̄i−1κ̄i−1
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[
C2(i−2)+1 I1(κ̄i−1r̄i−1)− C2(i−1)K1(κ̄i−1r̄i−1)
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+γiκ̄i[Fi I1(κ̄i r̄i−1)− GiK1(κ̄i r̄i−1)]−

ε̄iκ̄i
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[C2i−1 I1(κ̄i r̄i−1)− C2iK1(κ̄i r̄i−1)],

Hi = −Fi

[
I0(κ̄i) +

l̄s,iγi

η̄i
κi I1(κi)
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− Gi

[
K0(κ̄i)−

l̄s,iγi

η̄i
κiK1(κi)
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+

Γ
s2α2

i η̄i
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Appendix C. Integration Constants for Steady-State Velocity Profile

Equations (57)–(60) are adapted to the matrix form expressed by Ax = b; where, A
is the matrix of known coefficients, x is the vector of unknowns to be solved, and b is the
vector of constants. The inverse matrix method [84] serves to determine the constants Dn
and En represented by the vector x. Therefore, the system of linear equations that involves
the solid–liquid and liquid–liquid interfaces is
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where, the coefficients J1,2,...,i in Equation (A4) are defined below as:
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J1 =
Γa
4
(
2l̄s,1 − a

)
− ε̄1

{
C1
[
−I0(κ̄1a) + l̄s,1κ̄1 I1(κ̄1a) + 1

]
− C2

[
K0(κ̄1a) + l̄s,1κ̄1K1(κ̄1a)

]}
,

J2 = − 1
η̄1

{
Γr̄2

1
4

+ ε̄1{C1[1− I0(κ̄1r̄1)]− C2K0(κ̄1r̄1)}
}
+

1
η̄2

{
Γr̄2

1
4

+ ε̄2{C3[1− I0(κ̄2r̄1)]− C4K0(κ̄2r̄1)}
}

,

J3 = 2{ε̄1κ̄1[C1 I1(κ̄1r̄1)− C2K1(κ̄1r̄1)]− ε̄2κ̄2[C3 I1(κ̄2r̄1)− C4K1(κ̄2r̄1)]},

J4 = − 1
η̄2

{
Γr̄2

2
4

+ ε̄2{C3[1− I0(κ̄2r̄2)]− C4K0(κ̄2r̄2)}
}
+

1
η̄3

{
Γr̄2

2
4

+ ε̄3{C5[1− I0(κ̄3r̄2)]− C6K0(κ̄3r̄2)}
}

,

J5 = 2{ε̄2κ̄2[C3 I1(κ̄2r̄2)− C4K1(κ̄2r̄2)]− ε̄3κ̄3[C5 I1(κ̄3r̄2)− C6K1(κ̄3r̄2)]},
...

Ji−2 = − 1
η̄i−1

{
Γr̄2

i−1
4

+ ε̄i−1

{
C2(i−1)−1[1− I0(κ̄i−1r̄i−1)]− C2(i−1)K0(κ̄i−1r̄i−1)

}}

+
1
η̄i

{
Γr̄2

i−1
4

+ ε̄i{C2i−1[1− I0(κ̄i r̄i−1)]− C2iK0(κ̄i r̄i−1)}
}

,

Ji−1 = 2
{

ε̄i−1κ̄i−1

[
C2(i−1)−1 I1(κ̄i−1r̄i−1)− C2(i−1)K1(κ̄i−1r̄i−1)

]
− ε̄iκ̄i[C2i−1 I1(κ̄i r̄i−1)− C2iK1(κ̄i r̄i−1)]

}
,

Ji = −
Γ
4
(
2l̄s,i + 1

)
+ ε̄i

{
C2i−1

[
I0(κ̄1) + l̄s,iκ̄i I1(κ̄i)− 1

]
+ C2i

[
K0(κ̄i)− l̄s,iκ̄iK1(κ̄i)

]}
. (A5)
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