Next Article in Journal
Fast Calculation of Supercritical Carbon Dioxide Flow, Heat Transfer Performance, and Mass Flow Rate Matching Optimization of Printed Circuit Heat Exchangers Used as Recuperators
Next Article in Special Issue
An Inventory Model for Growing Items When the Demand Is Price Sensitive with Imperfect Quality, Inspection Errors, Carbon Emissions, and Planned Backorders
Previous Article in Journal
Theoretical Framework and Practical Considerations for Achieving Superior Multi-Robot Exploration: Hybrid Cheetah Optimization with Intelligent Initial Configurations
Previous Article in Special Issue
Young Duality for Variational Inequalities and Nonparametric Method of Demand Analysis in Input–Output Models with Inputs Substitution: Application for Kazakhstan Economy
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Sufficiency of Solutions for Non-smooth Minimax Fractional Semi-Infinite Programming with (BK)−Invexity

School of Mathematics and Statistics, Yulin University, Yulin 719000, China
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(20), 4240; https://doi.org/10.3390/math11204240
Submission received: 7 August 2023 / Revised: 4 October 2023 / Accepted: 5 October 2023 / Published: 10 October 2023
(This article belongs to the Special Issue Mathematical Programming, Optimization and Operations Research)

Abstract

:
Minimax fractional semi-infinite programming is an important research direction for semi-infinite programming, and has a wide range of applications, such as military allocation problems, economic theory, cooperative games, and other fields. Convexity theory plays a key role in many aspects of mathematical programming and is the foundation of mathematical programming research. The relevant theories of semi-infinite programming based on different types of convex functions have their own applicable scope and limitations. It is of great value to study semi-infinite programming on the basis of more generalized convex functions and obtain more general results. In this paper, we defined a new type of generalized convex function, based on the concept of the K−directional derivative, that is, uniform  ( B K , ρ ) invex, strictly uniform  ( B K , ρ ) invex, uniform  ( B K , ρ ) pseudoinvex, strictly uniform  ( B K , ρ ) pseudoinvex, uniform  ( B K , ρ ) quasiinvex and weakly uniform  ( B K , ρ ) quasiinvex function. Then, we studied a class of non-smooth minimax fractional semi-infinite programming problems involving this generalized convexity and obtained sufficient optimality conditions.

1. Introduction

1.1. Background

Semi-infinite programming is an optimization problem with finite decision variables and infinite constraints. Its mathematical model is
( S I P ) min f ( x )
s . t . g ( x , y ) 0 , y Y
where  f : R n R , g : R n × R m R , Y  is a non-empty bounded closed set in  R m .
The study of semi-infinite programming can be traced back to 1924, when Haar [1] first considered linear systems with infinite constraints in the study of Chebyshev approximation, that is, linear semi-infinite programming, which was then called "Haar" programming. Later, John [2] also mentioned optimization problems with infinite constraints when studying Fritz John conditions. In 1962, Charnes, Cooper, and Kortanek [3] put forward this type of problem and called it "semi-infinite programming", which marked semi-infinite programming becoming one of the independent research branches of mathematical programming. Semi-infinite programming arises in some engineering problems, such as robot trajectory planning [4], vibrating membranes [5], and air pollution control [6]. Once proposed, it attracted extensive attention from many scholars and became a research hotspot. Minimax fraction semi-infinite programming is an important research direction for semi-infinite programming, and is widely used in engineering design, information technology, optimal control, cooperative games, and other fields.

1.2. The Related Work

Convexity plays an important role in optimization theory because it is the basis for studying the optimization, duality, and other related theories of various programming problems. Based on convexity assumptions, mathematical programming problems can be solved efficiently. To weaken the convexity assumption, various generalized convex functions have been introduced. Hanson introduced the invex function [7]. Bector and Singh presented the  b convex function [8]. Hanson defined the  F convex function [9]. Vial introduced the  ρ convex function [10]. Preda introduced the  ( F , ρ ) convex function as an extension of the  F convex function and the  ρ convex function [11]. Liang, Huang, and Pardalos introduced  ( F , α , ρ , d ) convexity [12]. Yuan, Liu, Chinchuluun, and Pardalos defined  ( C , α , ρ , d ) convexity, which is a generalization of  ( F , α , ρ , d ) convexity [13]. Antczak defined the  ( Φ , ρ ) invex and  ( Φ , ρ ) V invex function [14,15]. Yang defined the  K ( F b , ρ ) convex function and established duality results for multi-objective semi-infinite programming involving the generalized convexity assumptions [16].
On the basis of various convexity assumptions, many scholars have studied the optimality and duality of semi-infinite programming with different convexity and obtained a series of research results. Ruckman and Shapiro established the first-order optimality conditions for generalized convex semi-infinite programming [17]. Kim and Lee obtained the optimality of non-smooth Lipschitz optimization problems [18]. Kuk, Lee, and Tanino studied the optimality and duality for non-smooth multi-objective fractional programming with generalized invexity [19]. Nader obtained the necessary conditions for the optimality of non-smooth semi-infinite programs [20]. Liu and Wu derived the sufficient optimality conditions for minmax fractional programming in the framework of the  ( F , ρ ) convex function and invex function [21,22]. Mishra discussed the duality of non-differentiable minimax fractional programming involving generalized  α uniform convexity [23]. Vazquez, Ruckman, and Werner studied the saddle points of non-convex semi-infinite programs [24]. Mordukhovich, Boris, and Nghia discussed the application of non-smooth cone-constrained optimization [25]. Mishra and Jaiswal discussed the optimality conditions and duality for non-differentiable multi-objective semi-infinite programming problems with generalized  ( C , α , ρ , d ) convexity [26]. Yang, Chen, and Zhou studied the optimality conditions for semi-infinite and generalized semi-infinite programs via lower-order exact penalty functions [27]. Liu and Goberna presented asymptotic optimality conditions for linear semi-infinite programming [28]. Mishra, Singh, and Verma discussed the saddle point criteria in non-smooth semi-infinite minimax fractional programming problems [29]. Fan and Qin studied the stability of generalized semi-infinite optimization problems under functional perturbation [30].

1.3. Our Contributions

Many scholars have studied the problem of semi-infinite programming in which both the objective function and the constraint function are differentiable. However, for some practical problems, such as flood discharge from a water dam, or multi-input-multi-output control system and seismic structure design, the situation that the objective function or constraint function is not differentiable will be involved. However, it is impossible to study this kind of semi-infinite programming problem only via a set of theories in the differentiable case. Therefore, it is necessary to do special research on non-smooth semi-infinite programming.
As mentioned above, many scholars have studied the optimality theory and duality results of non-smooth semi-infinite programming involving different convexity, and have achieved results. Unfortunately, these research results have their own limitations and scope of application and a lack of systematization. Therefore, it is necessary to define a new type of non-smooth generalized convex functions, which makes some existing convex functions its special cases. Based on the newly defined non-smooth generalized convex function, the results for the optimality, duality, and other related theories of semi-infinite programming involving such convexity are more general and valuable.
In the present paper, we define a new type of convexity based on the concept of the  K directional derivative and obtained sufficient optimality conditions for non-smooth minimax fractional semi-infinite programming involving uniform  ( B K , ρ ) invexity. Compared with the results in [21,22], the optimality conditions of non-smooth minimax fraction semi-infinite programming in this paper are more general, because the new generalized convex functions defined in this paper are a generalization of many existing convex functions, such as the  b convex function, invex function,  ( F , ρ ) convex function, etc. The research is helpful for enriching the relevant theories of non-smooth fractional semi-infinite programming.

1.4. Organization of the Paper

The rest of this paper is organized as follows. In Section 2, we first introduced the notions of local cone approximation and the  K directional derivative. Then, we defined a new type of generalized convex function based on the concept of the  K directional derivative that is used in this paper, that is, the uniform  ( B K , ρ ) invex, strictly uniform  ( B K , ρ ) invex, uniform  ( B K , ρ ) pseudoinvex, strictly uniform  ( B K , ρ ) pseudoinvex, uniform  ( B K , ρ ) quasiinvex, and weakly uniform  ( B K , ρ ) quasiinvex functions. In Section 3, we study a class of non-smooth minimax fractional semi-infinite programming involving the generalized convexities defined in Section 2 and obtain sufficient optimality conditions. Finally, we conclude this paper in Section 4.

2. Definitions and Preliminaries

Let us, first, recall the definition of local cone approximation and the  K directional derivative, which will be needed subsequently.
Definition 1 
([31]). Let  X = [ X , τ ]  be a local convex Hausdorff space. A mapping  K : 2 X × X 2 X  is called a local cone approximation if a cone  K [ M , x ]  is associated with each set  M 2 X  and each  x X  such that
(i)
K ( M x , 0 ) = K ( M , x ) .
(ii)
K ( M U , x ) = K ( M , x ) , U Ν ( x ) ,  where  Ν ( x )  is a system of neighborhoods of  x .
(iii)
K ( M , x ) = X , x int M ,  where  int M  is the interior of the set  M .
(iv)
K ( M , x ) = , x M ¯ .
(v)
K ( φ ( M ) , φ ( x ) ) = φ ( K ( M , x ) ) ,  where  φ : X X  is any linear homeomorphism.
(vi)
0 + M 0 + K ( M , x ) ,  where  0 + M  is Rockafellar’s recession cone of  M .
Definition 2 
([31]). Let  K ( , )  be a local cone approximation, the function  f K ( x , ) : X R  with
f K ( x ; y ) : = inf { ξ R | ( y , ξ ) K ( e p i f , ( x , f ( x ) ) , y R n ) }
is called  K directional derivative of  f  at  x .
In order to study the optimality of minimax fraction semi-infinite programming in Section 3, we will use the following important concepts. Throughout this paper, we suppose that  C R n  is a non-empty set,  f K ( x , ) : C R  is the  K directional derivative of  f  at  x 0 C ,   b : C × C × [ 0 , 1 ] R + ,   ϕ : R R ,   lim λ 0 + b ( x , x 0 ; λ ) = b ( x , x 0 ) ,   η : C × C R n ,   ρ R ,   θ : C × C R n .  Elster and Thierfelder defined the  K directional derivative and the  K subdifferential and pointed out that the  K subdifferential is the most generalized. Using the  K directional derivative introduced in [31], some new generalized convex functions are defined as follows:
Definition 3. 
The function   f : C R  is said to be uniform  ( B K , ρ ) invex at  x 0 C ,  if for any  x C ,  there exist  b , ϕ , η , θ  and  ρ ,  such that
b ( x , x 0 ) ϕ [ f ( x ) f ( x 0 ) ] f K ( x 0 ; η ( x , x 0 ) ) + ρ θ ( x , x 0 ) 2 .
Definition 4. 
The function   f : C R  is said to be strictly uniform  ( B K , ρ ) invex at  x 0 C ,  if for any  x C  and  x x 0 ,  there exist  b , ϕ , η , θ  and  ρ ,  such that
b ( x , x 0 ) ϕ [ f ( x ) f ( x 0 ) ] > f K ( x 0 ; η ( x , x 0 ) ) + ρ θ ( x , x 0 ) 2 .
Definition 5. 
The function  f : C R  is said to be uniform  ( B K , ρ ) pseudoinvex at  x 0 C ,  if for any  x C ,  there exist  b , ϕ , η , θ  and  ρ ,  such that
b ( x , x 0 ) ϕ [ f ( x ) f ( x 0 ) ] < 0 f K ( x 0 ; η ( x , x 0 ) ) + ρ θ ( x , x 0 ) 2 < 0 .
Definition 6. 
The function   f : C R  is said to be strictly uniform  ( B K , ρ )  pseudoinvex at  x 0 C ,  if for any  x C  and  x x 0 ,  there exist  b , ϕ , η , θ  and  ρ ,  such that
b ( x , x 0 ) ϕ [ f ( x ) f ( x 0 ) ] 0 f K ( x 0 ; η ( x , x 0 ) ) + ρ θ ( x , x 0 ) 2 < 0 .
Definition 7. 
The function   f : C R  is said to be uniform  ( B K , ρ ) quasiinvex at  x 0 C ,  if for any  x C ,  there exist  b , ϕ , η , θ  and  ρ ,  such that
b ( x , x 0 ) ϕ [ f ( x ) f ( x 0 ) ] 0 f K ( x 0 ; η ( x , x 0 ) ) + ρ θ ( x , x 0 ) 2 0 .
Definition 8. 
The function   f : C R  is said to be weakly uniform  ( B K , ρ )  quasiinvex at  x 0 C ,  if for any  x C ,  there exist  b , ϕ , η , θ  and  ρ ,  such that
b ( x , x 0 ) ϕ [ f ( x ) f ( x 0 ) ] < 0 f K ( x 0 ; η ( x , x 0 ) ) + ρ θ ( x , x 0 ) 2 0 .
Remark 1. 
The uniform   ( B K , ρ )  invexity defined on the basis of  K directional derivatives is a kind of non-smooth generalized convex function, and many generalized convex functions are its special cases, such as  b convexity,  F convex function,  ρ convex function,  ( F , ρ ) convexity, etc.

3. Sufficient Optimality Conditions

We consider the following minimax fractional semi-infinite programming problem:
( S I F P ) { min F ( x ) = sup y Y f ( x , y ) h ( x , y ) , s . t . g ( x , u ) 0 , u U , x X .
where  X  is an open subset of  R n ,   Y  is a compact subset of  R m f ( , ) : X × Y R ,   h ( , ) : X × Y R , f ( x , ) , h ( x , )  are continuous on  Y  for every  x X , g : X × Y R , U R  is an infinite index set.  f ( x , y ) 0  and  h ( x , y ) > 0  for each  ( x , y ) X × Y .
The feasible set of (SIFP) is denoted by  X 0 , i.e.,
X 0 = { x | g ( x , u ) 0 , u U , x X } .
We let
Δ = { i | g ( x , u i ) 0 , x X , u i U } ,
I ( x 0 ) = { i | g ( x 0 , u i ) = 0 , x 0 X , u i U } ,
U * = { u i U | g ( x , u i ) 0 , x X , i Δ }   is   a   countable   subset   of   U ,
Λ = { μ j | μ j 0 , j Δ ,   there   is   only   finite   μ j   such   that   μ j > 0 } ,
Y ¯ ( x ) = { y Y | f ( x , y ) h ( x , y ) = sup z Y f ( x , z ) h ( x , z ) } ,
Q = { ( s , λ , y ¯ ) N × R + s × R m s | 1 s n + 1 , λ = ( λ 1 , λ 2 , , λ s ) R + s }
with  i = 1 s λ i = 1 ,  and  y ¯ = ( y ¯ 1 , y ¯ 2 , , y ¯ s )  with  y ¯ i Y ¯ ( x ) , i = 1 , 2 , , s } .
As  Y  is compact and  f ( x , )  and  h ( x , )  are continuous on  Y , it is obviously that  Y ¯ ( x )  is a non-empty compact subset of  Y  for each  x X .  For any  y ¯ i Y ¯ ( x 0 ) ,  we let  q * = f ( x 0 , y ¯ i ) h ( x 0 , y ¯ i ) , which is always a constant.
Definition 9. 
A point   x * X 0  is called an optimal solution for   ( S I F P ) , for any   x X 0 such that
sup y Y f ( x * , y ) h ( x * , y ) sup y Y f ( x , y ) h ( x , y ) .
Theorem 1. 
Assume that  x * X 0 ,  if for any  x X 0 ,  there exist  ( s * , λ * , y ¯ ) Q ,   q * R + , μ j * Λ ,   j Δ  and  b 1 , ϕ 1 , b 2 , ϕ 2 , η , θ , ρ * R s * , τ * R ( Δ ) ,  such that
(i)
For any   y ¯ i Y ¯ ( x * ) , ( f q * h ) ( , y ¯ i )  is uniform   ( B K , ρ i * )  invex at  x *  with respect to  b 1  and  ϕ 1 ,   i = 1 , 2 , , s * ;
(ii)
For any  u j U * , g ( , u j )  is uniform  ( B K , τ j * ) invex at  x *  with respect to  b 2  and  ϕ 2 ,   j I ( x * ) ;
(iii)
i = 1 s * λ i * ( f q * h ) x K ( x * , y ¯ i ; η ( x , x * ) ) + j Δ μ j * g x K ( x * , u j ; η ( x , x * ) ) 0 , u j U * , j Δ ;
(iv)
f ( x * , y ¯ i ) q * h ( x * , y ¯ i ) = 0 , i = 1 , 2 , , s * ;
(v)
μ j * g ( x * , u j ) = 0 , u j U * , j Δ ;
(vi)
α < 0 ϕ 1 ( α ) < 0 , α 0   ϕ 2 ( α ) 0 ,   b 1 ( x , x * ) > 0 , b 2 ( x , x * ) 0 ;
(vii)
i = 1 s * λ i * ρ i * + j Δ μ j * τ j * 0 .
Then  x *  is an optimal solution of  ( S I F P ) .
Proof. 
If we suppose that  x *  is not an optimal solution of  ( S I F P ) , then there exists  x ¯ X 0 ,  such that
sup y Y f ( x ¯ , y ) h ( x ¯ , y ) < sup y Y f ( x * , y ) h ( x * , y ) .
We observe that
sup y Y f ( x * , y ) h ( x * , y ) = f ( x * , y ¯ i ) h ( x * , y ¯ i ) = q * , y ¯ i Y ¯ ( x * ) , i = 1 , 2 , , s * .
Because
f ( x ¯ , y ¯ i ) h ( x ¯ , y ¯ i ) sup y Y f ( x ¯ , y ) h ( x ¯ , y ) ,
we thus have
f ( x ¯ , y ¯ i ) h ( x ¯ , y ¯ i ) < q * , i = 1 , 2 , , s * .
That is,
f ( x ¯ , y ¯ i ) q * h ( x ¯ , y ¯ i ) < 0 , i = 1 , 2 , , s * .
By (iv), we have
f ( x ¯ , y ¯ i ) q * h ( x ¯ , y ¯ i ) < 0 = f ( x * , y ¯ i ) q * h ( x * , y ¯ i ) , i = 1 , 2 , , s * .
By (vi), we get
b 1 ( x ¯ , x * ) ϕ 1 [ ( f ( x ¯ , y ¯ i ) q * h ( x ¯ , y ¯ i ) ) ( f ( x * , y ¯ i ) q * h ( x * , y ¯ i ) ) ] < 0 .
By (i), we have
( f q * h ) x K ( x * , y ¯ i ; η ( x ¯ , x * ) ) + ρ i * θ ( x ¯ , x * ) 2 < 0 .
As  λ i * 0  and  i = 1 s * λ i * = 1 ,  we have
i = 1 s * λ i * ( f q * h ) x K ( x * , y ¯ i ; η ( x ¯ , x * ) ) + i = 1 s * λ i * ρ i * θ ( x ¯ , x * ) 2 < 0 .
Observing that  g ( x ¯ , u j ) 0 = g ( x * , u j ) , u j U * , j I ( x * ) ,  we have
g ( x ¯ , u j ) g ( x * , u j ) 0 , u j U * , j I ( x * ) .
By (vi), we can obtain
b 2 ( x ¯ , x * ) ϕ 2 [ g ( x ¯ , u j ) g ( x * , u j ) ] 0 , u j U * , j I ( x * ) .
By (ii), we get
g x K ( x * , u j ; η ( x ¯ , x * ) ) + τ j * θ ( x ¯ , x * ) 2 0 , u j U * , j I ( x * ) .
As  μ j * Λ , j I ( x * ) ,  we have
j I ( x * ) μ j * g x K ( x * , u j ; η ( x ¯ , x * ) ) + j I ( x * ) μ j * τ j * θ ( x ¯ , x * ) 2 0 , u j U * , j I ( x * ) .
By hypothesis (v), we known that as  j Δ \ I ( x * ) , μ j * = 0  always holds for any  u j U * .  This implies that
j Δ μ j * g x K ( x * , u j ; η ( x ¯ , x * ) ) + j Δ μ j * τ j * θ ( x ¯ , x * ) 2 0 , u j U * , j Δ .
Adding  ( 1 )  and  ( 2 ) , we can obtain
i = 1 s * λ i * ( f q * h ) x K ( x * , y ¯ i ; η ( x ¯ , x * ) ) + j Δ μ j * g x K ( x * , u j ; η ( x ¯ , x * ) )
+ ( i = 1 s * λ i * ρ i * + j Δ μ j * τ j * ) θ ( x ¯ , x * ) 2 < 0 , u j U * , j Δ .
By (vii), we have
i = 1 s * λ i * ρ i * + j Δ μ j * τ j * 0 .
So,
i = 1 s * λ i * ( f q * h ) x K ( x * , y ¯ i ; η ( x ¯ , x * ) ) + j Δ μ j * g x K ( x * , u j ; η ( x ¯ , x * ) ) < 0 , u j U * , j Δ .
which contradicts (iii). Therefore,  x *  is an optimal solution for  ( S I F P ) . □
Theorem 2. 
Assume that   x * X 0 ,  if for any  x X 0 ,  there exist  ( s * , λ * , y ¯ ) Q ,   q * R + , μ j * Λ ,   j Δ  and  b 1 , ϕ 1 , b 2 , ϕ 2 , η , θ , ρ * R s * , τ * R ( Δ ) ,  such that
(i)
For any  y ¯ i Y ¯ ( x * ) , ( f q * h ) ( , y ¯ i )  is uniform  ( B K , ρ i * ) pseudoinvex at  x *  with respect to  b 1  and  ϕ 1 ,   i = 1 , 2 , , s * ;
(ii)
For any  u j U * , g ( , u j )  is uniform  ( B K , τ j * ) quasiinvex at  x *  with respect to  b 2  and  ϕ 2 ,   j I ( x * ) ;
(iii)
i = 1 s * λ i * ( f q * h ) x K ( x * , y ¯ i ; η ( x , x * ) ) + j Δ μ j * g x K ( x * , u j ; η ( x , x * ) ) 0 , u j U * , j Δ ;
(iv)
f ( x * , y ¯ i ) q * h ( x * , y ¯ i ) = 0 , i = 1 , 2 , , s * ;
(v)
μ j * g ( x * , u j ) = 0 , u j U * , j Δ ;
(vi)
α < 0 ϕ 1 ( α ) < 0 , α 0   ϕ 2 ( α ) 0 ,   b 1 ( x , x * ) > 0 , b 2 ( x , x * ) 0 ;
(vii)
i = 1 s * λ i * ρ i * + j Δ μ j * τ j * 0 .
Then  x *  is an optimal solution of  ( S I F P ) .
Proof. 
If we suppose that  x *  is not an optimal solution of  ( S I F P ) , then there exists  x ¯ X 0 ,  such that
sup y Y f ( x ¯ , y ) h ( x ¯ , y ) < sup y Y f ( x * , y ) h ( x * , y ) .
We observe that
sup y Y f ( x * , y ) h ( x * , y ) = f ( x * , y ¯ i ) h ( x * , y ¯ i ) = q * , y ¯ i Y ¯ ( x * ) , i = 1 , 2 , , s * .
Because
f ( x ¯ , y ¯ i ) h ( x ¯ , y ¯ i ) sup y Y f ( x ¯ , y ) h ( x ¯ , y ) ,
we thus have
f ( x ¯ , y ¯ i ) h ( x ¯ , y ¯ i ) < q * , i = 1 , 2 , , s * .
That is,
f ( x ¯ , y ¯ i ) q * h ( x ¯ , y ¯ i ) < 0 , i = 1 , 2 , , s * .
By (iv), we have
f ( x ¯ , y ¯ i ) q * h ( x ¯ , y ¯ i ) < 0 = f ( x * , y ¯ i ) q * h ( x * , y ¯ i ) , i = 1 , 2 , , s * .
By (vi), we get
b 1 ( x ¯ , x * ) ϕ 1 [ ( f ( x ¯ , y ¯ i ) q * h ( x ¯ , y ¯ i ) ) ( f ( x * , y ¯ i ) q * h ( x * , y ¯ i ) ) ] < 0 .
By (i), we have
( f q * h ) x K ( x * , y ¯ i ; η ( x ¯ , x * ) ) + ρ i * θ ( x ¯ , x * ) 2 < 0 .
As  λ i * 0  and  i = 1 s * λ i * = 1 ,  we have
i = 1 s * λ i * ( f q * h ) x K ( x * , y ¯ i ; η ( x ¯ , x * ) ) + i = 1 s * λ i * ρ i * θ ( x ¯ , x * ) 2 < 0 .
We observe that  g ( x ¯ , u j ) 0 = g ( x * , u j ) , u j U * , j I ( x * ) ,  we have
g ( x ¯ , u j ) g ( x * , u j ) 0 , u j U * , j I ( x * ) .
By (vi), we can obtain
b 2 ( x ¯ , x * ) ϕ 2 [ g ( x ¯ , u j ) g ( x * , u j ) ] 0 , u j U * , j I ( x * ) .
By (ii), we get
g x K ( x * , u j ; η ( x ¯ , x * ) ) + τ j * θ ( x ¯ , x * ) 2 0 , u j U * , j I ( x * ) .
As  μ j * Λ , j I ( x * ) ,  we have
j I ( x * ) μ j * g x K ( x * , u j ; η ( x ¯ , x * ) ) + j I ( x * ) μ j * τ j * θ ( x ¯ , x * ) 2 0 , u j U * , j I ( x * ) .
By hypothesis (v), we known that as  j Δ \ I ( x * ) , μ j * = 0  always holds for any  u j U * .  This implies that
j Δ μ j * g x K ( x * , u j ; η ( x ¯ , x * ) ) + j Δ μ j * τ j * θ ( x ¯ , x * ) 2 0 , u j U * , j Δ .
Adding (4) and (5), we can obtain
i = 1 s * λ i * ( f q * h ) x K ( x * , y ¯ i ; η ( x ¯ , x * ) ) + j Δ μ j * g x K ( x * , u j ; η ( x ¯ , x * ) )
+ ( i = 1 s * λ i * ρ i * + j Δ μ j * τ j * ) θ ( x ¯ , x * ) 2 < 0 , u j U * , j Δ .
By (vii), we have
i = 1 s * λ i * ρ i * + j Δ μ j * τ j * 0 .
So,
i = 1 s * λ i * ( f q * h ) x K ( x * , y ¯ i ; η ( x ¯ , x * ) ) + j Δ μ j * g x K ( x * , u j ; η ( x ¯ , x * ) ) < 0 , u j U * , j Δ .
which contradicts (iii). Therefore,  x *  is an optimal solution for  ( S I F P ) . □
Theorem 3. 
Assume that   x * X 0 ,  if for any  x X 0 ,  there exist  ( s * , λ * , y ¯ ) Q ,   q * R + , μ j * Λ ,   j Δ  and  b 1 , ϕ 1 , b 2 , ϕ 2 , η , θ , ρ * R s * , τ * R ( Δ ) ,  such that
(i)
For any   y ¯ i Y ¯ ( x * ) , ( f q * h ) ( , y ¯ i )  is uniform  ( B K , ρ i * )  in vex at  x *  with respect to  b 1  and  ϕ 1 ,   i = 1 , 2 , , s * ;
(ii)
For any  u j U * , g ( , u j )  isuniform  ( B K , τ j * )  quasiinvex at  x *  with respect to  b 2  and  ϕ 2 ,   j I ( x * ) ;
(iii)
i = 1 s * λ i * ( f q * h ) x K ( x * , y ¯ i ; η ( x , x * ) ) + j Δ μ j * g x K ( x * , u j ; η ( x , x * ) ) 0 , u j U * , j Δ ;
(iv)
f ( x * , y ¯ i ) q * h ( x * , y ¯ i ) = 0 , i = 1 , 2 , , s * ;
(v)
μ j * g ( x * , u j ) = 0 , u j U * , j Δ ;
(vi)
α < 0 ϕ 1 ( α ) < 0 , α 0   ϕ 2 ( α ) 0 ,   b 1 ( x , x * ) > 0 , b 2 ( x , x * ) 0 ;
(vii)
i = 1 s * λ i * ρ i * + j Δ μ j * τ j * 0 .  
Then,  x *  is an optimal solution of  ( S I F P ) .
Theorem 4. 
Assume that  x * X 0 ,  if for any  x X 0 ,  there exist  ( s * , λ * , y ¯ ) Q ,   q * R + , μ j * Λ ,   j Δ  and  b 1 , ϕ 1 , b 2 , ϕ 2 , η , θ , ρ * R s * , τ * R ( Δ ) ,  such that
(i)
For any  y ¯ i Y ¯ ( x * ) , ( f q * h ) ( , y ¯ i )  is uniform  ( B K , ρ i * ) quasiinvex at  x *  with respect to  b 1  and  ϕ 1 , i = 1 , 2 , , s * ;
(ii)
For any  u j U * , g ( , u j )  is strictly uniform  ( B K , τ j * ) invex at  x *  with respect to  b 2  and  ϕ 2 , j I ( x * ) ;
(iii)
i = 1 s * λ i * ( f q * h ) x K ( x * , y ¯ i ; η ( x , x * ) ) + j Δ μ j * g x K ( x * , u j ; η ( x , x * ) ) 0 , u j U * , j Δ ;
(iv)
f ( x * , y ¯ i ) q * h ( x * , y ¯ i ) = 0 , i = 1 , 2 , , s * ;
(v)
μ j * g ( x * , u j ) = 0 , u j U * , j Δ ;
(vi)
α < 0 ϕ 1 ( α ) < 0 , α 0   ϕ 2 ( α ) 0 ,   b 1 ( x , x * ) > 0 , b 2 ( x , x * ) 0 ;
(vii)
i = 1 s * λ i * ρ i * + j Δ μ j * τ j * 0 .
Then,  x *  is an optimal solution for  ( S I F P ) .
Theorem 5. 
Assume that  x * X 0 , if for any  x X 0 ,  there exist  ( s * , λ * , y ¯ ) Q ,   q * R + , μ j * Λ ,   j Δ  and  b 1 , ϕ 1 , b 2 , ϕ 2 , η , θ , ρ * R s * , τ * R ( Δ ) ,  such that
(i)
For any  y ¯ i Y ¯ ( x * ) , ( f q * h ) ( , y ¯ i )  is uniform  ( B K , ρ i * ) quasiinvex at  x *  with respect to  b 1  and  ϕ 1 ,   i = 1 , 2 , , s * ;
(ii)
For any  u j U * , g ( , u j )  is strictly uniform  ( B K , τ j * ) pseudoinvex at  x *  with respect to  b 2  and  ϕ 2 ,   j I ( x * ) ;
(iii)
i = 1 s * λ i * ( f q * h ) x K ( x * , y ¯ i ; η ( x , x * ) ) + j Δ μ j * g x K ( x * , u j ; η ( x , x * ) ) 0 , u j U * , j Δ ;
(iv)
f ( x * , y ¯ i ) q * h ( x * , y ¯ i ) = 0 , i = 1 , 2 , , s * ;
(v)
μ j * g ( x * , u j ) = 0 , u j U * , j Δ ;
(vi)
α < 0 ϕ 1 ( α ) < 0 , α 0   ϕ 2 ( α ) 0 ,   b 1 ( x , x * ) > 0 , b 2 ( x , x * ) 0 ;
(vii)
i = 1 s * λ i * ρ i * + j Δ μ j * τ j * 0 .  
Then,  x *  is an optimal solution for  ( S I F P ) .
The proofs of Theorems 3–5 are similar to Theorem 2.
Theorem 6. 
Assume that  x * X 0 ,  if for any  x X 0 ,  there exist  ( s * , λ * , y ¯ ) Q ,   q * R + , μ j * Λ ,   j Δ  and  b 1 , ϕ 1 , b 2 , ϕ 2 , η , θ , ρ * R s * , τ * R ( Δ ) ,  such that
(i)
For any   y ¯ i Y ¯ ( x * ) , ( f q * h ) ( , y ¯ i )  is weakly uniform  ( B K , ρ i * )  quasi in vex at  x *  with respect to  b 1  and  ϕ 1 ,   i = 1 , 2 , , s * ;
(ii)
For any  u j U * , g ( , u j )  is strictly uniform  ( B K , τ j * ) pseudoinvex at  x *  with respect to  b 2  and  ϕ 2 ,   j I ( x * ) ;
(iii)
i = 1 s * λ i * ( f q * h ) x K ( x * , y ¯ i ; η ( x , x * ) ) + j Δ μ j * g x K ( x * , u j ; η ( x , x * ) ) 0 , u j U * , j Δ ;
(iv)
f ( x * , y ¯ i ) q * h ( x * , y ¯ i ) = 0 , i = 1 , 2 , , s * ;
(v)
μ j * g ( x * , u j ) = 0 , u j U * , j Δ ;
(vi)
α < 0 ϕ 1 ( α ) < 0 , α 0   ϕ 2 ( α ) 0 ,   b 1 ( x , x * ) > 0 , b 2 ( x , x * ) 0 ;
(vii)
i = 1 s * λ i * ρ i * + j Δ μ j * τ j * 0 .  
Then,  x *  is an optimal solution for  ( S I F P ) .
Proof. 
If we suppose that  x *  is not an optimal solution of  ( S I F P ) , then there exists  x ¯ X 0 ,  such that
sup y Y f ( x ¯ , y ) h ( x ¯ , y ) < sup y Y f ( x * , y ) h ( x * , y ) .
Observe that
sup y Y f ( x * , y ) h ( x * , y ) = f ( x * , y ¯ i ) h ( x * , y ¯ i ) = q * , y ¯ i Y ¯ ( x * ) , i = 1 , 2 , , s * .
As
f ( x ¯ , y ¯ i ) h ( x ¯ , y ¯ i ) sup y Y f ( x ¯ , y ) h ( x ¯ , y ) ,
we thus have
f ( x ¯ , y ¯ i ) h ( x ¯ , y ¯ i ) < q * , i = 1 , 2 , , s * .
That is,
f ( x ¯ , y ¯ i ) q * h ( x ¯ , y ¯ i ) < 0 , i = 1 , 2 , , s * .
By (iv), we have
f ( x ¯ , y ¯ i ) q * h ( x ¯ , y ¯ i ) < 0 = f ( x * , y ¯ i ) q * h ( x * , y ¯ i ) , i = 1 , 2 , , s * .
By (vi), we get
b 1 ( x ¯ , x * ) ϕ 1 [ ( f ( x ¯ , y ¯ i ) q * h ( x ¯ , y ¯ i ) ) ( f ( x * , y ¯ i ) q * h ( x * , y ¯ i ) ) ] < 0 .
By (i), we have
( f q * h ) x K ( x * , y ¯ i ; η ( x ¯ , x * ) ) + ρ i * θ ( x ¯ , x * ) 2 < 0 .
As  λ i * 0  and  i = 1 s * λ i * = 1 ,  we have
i = 1 s * λ i * ( f q * h ) x K ( x * , y ¯ i ; η ( x ¯ , x * ) ) + i = 1 s * λ i * ρ i * θ ( x ¯ , x * ) 2 < 0 .
Observing that  g ( x ¯ , u j ) 0 = g ( x * , u j ) , u j U * , j I ( x * ) ,  we have
g ( x ¯ , u j ) g ( x * , u j ) 0 , u j U * , j I ( x * ) .
By (vi), we can obtain
b 2 ( x ¯ , x * ) ϕ 2 [ g ( x ¯ , u j ) g ( x * , u j ) ] 0 , u j U * , j I ( x * ) .
By (ii), we get
g x K ( x * , u j ; η ( x ¯ , x * ) ) + τ j * θ ( x ¯ , x * ) 2 0 , u j U * , j I ( x * ) .
As  μ j * Λ , j I ( x * ) ,  we have
j I ( x * ) μ j * g x K ( x * , u j ; η ( x ¯ , x * ) ) + j I ( x * ) μ j * τ j * θ ( x ¯ , x * ) 2 0 , u j U * , j I ( x * ) .
By hypothesis (v), we known that as  j Δ \ I ( x * ) , μ j * = 0  always holds for any  u j U * .  This implies that
j Δ μ j * g x K ( x * , u j ; η ( x ¯ , x * ) ) + j Δ μ j * τ j * θ ( x ¯ , x * ) 2 0 , u j U * , j Δ .
Adding  ( 7 )  and  ( 8 ) , we can obtain
i = 1 s * λ i * ( f q * h ) x K ( x * , y ¯ i ; η ( x ¯ , x * ) ) + j Δ μ j * g x K ( x * , u j ; η ( x ¯ , x * ) )
+ ( i = 1 s * λ i * ρ i * + j Δ μ j * τ j * ) θ ( x ¯ , x * ) 2 < 0 , u j U * , j Δ .
By (vii), we have
i = 1 s * λ i * ρ i * + j Δ μ j * τ j * 0 .
So,
i = 1 s * λ i * ( f q * h ) x K ( x * , y ¯ i ; η ( x ¯ , x * ) ) + j Δ μ j * g x K ( x * , u j ; η ( x ¯ , x * ) ) < 0 , u j U * , j Δ .
which contradicts (iii). Therefore,  x *  is an optimal solution for  ( S I F P ) . □

4. Discussion

Because there are many kinds of generalized convex functions, it is not easy to define a new class of more generalized convex functions. To this end, we consulted a number of relevant materials for inspiration. Finally, we chose to start with local cone approximation and the  K directional derivative and defined a new class of more generalized convex functions. On the basis of the newly defined generalized convex functions, the optimality of minimax fraction semi-infinite programming is studied, and more general results are obtained.

5. Conclusions

In this paper, we first defined a new type of generalized convex function based on the concept of the  K directional derivative, that is, the uniform  ( B K , ρ ) invex, strictly uniform  ( B K , ρ ) invex, uniform  ( B K , ρ ) pseudoinvex, strictly uniform  ( B K , ρ ) pseudoinvex, uniform  ( B K , ρ ) quasiinvex, and weakly uniform  ( B K , ρ ) quasiinvex functions. Then, we studied a class of non-smooth minimax fractional semi-infinite programming problems involving this generalized convexity and obtained sufficient optimality conditions. Compared with existing results, the optimality conditions of the non-smooth minimax fraction semi-infinite programming in this paper are more general. The research is helpful for enriching the relevant theories of non-smooth fractional semi-infinite programming.
Minimax fraction semi-infinite programming is an important research direction for semi-infinite programming. There are still some related problems that require further study. Subsequently, we will continue to study the duality and saddle point theory of minimax fraction semi-infinite programming involving this generalized convexity.

Author Contributions

Conceptualization, H.Y.; methodology, H.Y. and A.C.; formal analysis, H.Y.; investigation, H.Y. and A.C.; resources, H.Y. and A.C.; validation, H.Y. and A.C.; writing—original draft preparation, H.Y.; writing—review and editing, H.Y.; visualization, H.Y. and A.C.; supervision, H.Y. and A.C.; project administration, H.Y.; funding acquisition, H.Y. and A.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the scientific research fund of Shaanxi Province Education Department (21JK1008) and Yulin City Science and Technology Bureau (CXY-2022-91).

Data Availability Statement

Not applicable.

Acknowledgments

The authors thank the referees for their many valuable comments and helpful suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Haar, A. Uber Lineare Ungleichungen. Acta Math. Szeged. 1924, 36, 1–14. [Google Scholar]
  2. John, F. Extremum Problem with Inequalities as Subsidiary Conditions, Studies and Essays, Courant Anniversary Volume; Interscience Publisher: New York, NY, USA, 1948; pp. 132–166. [Google Scholar]
  3. Charnes, A.; Cooper, W.W.; Kortanek, K. Duality, Haar Programming and Finite Sequence Spaces. Proc. Natl. Acad. Sci. USA 1962, 48, 783–786. [Google Scholar] [CrossRef] [PubMed]
  4. Marin, S. Optimal parametrization of curves for robot trajectory design. IEEE Trans. Autom. Control. 1988, 33, 209–214. [Google Scholar] [CrossRef]
  5. Hettich, R.; Kortanek, K.O. Semi-Infinite Programming: Theory, Methods, and Applications. SIAM Rev. 1993, 35, 380–429. [Google Scholar] [CrossRef]
  6. Gorr, W.L.; Gustafson S, Å.; Kortanek, K.O. Optimal Control Strategies for Air Quality Standards and Regulatory Policy. Environ. Plan. A Econ. Space 1972, 16, 183–192. [Google Scholar] [CrossRef]
  7. Hanson, M.A. On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 1981, 80, 545–550. [Google Scholar] [CrossRef]
  8. Bector, C.R.; Singh, C. B-vex function. J. Optim. Theory Appl. 1991, 71, 237–253. [Google Scholar]
  9. Hanson, M.A.; Mond, M. Further generalizations of convexity in mathematical programming. J. Inf. Optim. Sci. 1986, 22, 25–32. [Google Scholar] [CrossRef]
  10. Vial, J.-P. Strong and Weak Convexity of Sets and Functions. Math. Oper. Res. 1983, 36, 231–259. [Google Scholar] [CrossRef]
  11. Preda, V. On efficiency and duality for multiobjective programs. J. Math. Anal. Appl. 1992, 166, 365–377. [Google Scholar] [CrossRef]
  12. Liang, Z.A.; Huang, H.X.; Pardalos, P.M. Optimality Conditions and Duality for a Class of Nonlinear Fractional Programming Problems. J. Optim. Theory Appl. 2001, 110, 611–619. [Google Scholar] [CrossRef]
  13. Yuan, D.H.; Liu, X.L.; Chinchuluun, A.; Pardalos, P.M. Nondifffferentiable minimax fractional programming problems. J. Optim. Theory Appl. 2006, 129, 185–199. [Google Scholar] [CrossRef]
  14. Antczak, T.; Stasiak, A. Invexity in nonsmooth optimization. Numer. Funct. Anal. Optim. 2011, 32, 1–25. [Google Scholar] [CrossRef]
  15. Antczak, T. Sufficient optimality conditions for semi-infinite multiobjective fractional programming under (Ф,ρ)-V-invexity and generalized (Ф,ρ)-V-invexity. Filomat 2016, 30, 3649–3665. [Google Scholar] [CrossRef]
  16. Yang, H. Duality for multiobjective semi-infinite programming with convexity. Comput. Model. New Technol. 2014, 18, 574–577. [Google Scholar]
  17. Rückmann, J.J.; Shapiro, A. First-Order Optimality Conditions in Generalized Semi-Infinite Programming. J. Optim. Theory Appl. 1999, 101, 677–691. [Google Scholar] [CrossRef]
  18. Kim, M.H.; Lee, G.M. On Duality Theorems for Nonsmooth Lipschitz Optimization Problems. J. Optim. Theory Appl. 2001, 110, 669–675. [Google Scholar] [CrossRef]
  19. Kuk, H.; Lee, G.M.; Tanino, T. Optimality and duality for nonsmooth multiobjective fractional programming with general-ized invexity. J. Math. Anal. Appl. 2001, 262, 365–375. [Google Scholar] [CrossRef]
  20. Nader, K. Necessary optimality conditions for nonsmooth semi-infinite programming problems. J. Glob. Optimi-Zation 2011, 49, 713–725. [Google Scholar]
  21. Liu, J.C.; Wu, C.S. On minimax fractional optimality conditions with (F, ρ)-Convexity. J. Math. Anal. Appl. 1998, 219, 36–51. [Google Scholar] [CrossRef]
  22. Liu, J.C.; Wu, C.S. On Minimax Fractional Optimality Conditions with Invexity. J. Math. Anal. Appl. 1998, 219, 21–35. [Google Scholar] [CrossRef]
  23. Mishra, S.K.; Pant, R.P.; Rautela, J.S. Generalized univexity and duality for nondifferentiable minimax fractional pro-gramming. Nonlinear Anal. 2009, 70, 144–158. [Google Scholar] [CrossRef]
  24. Vázquez, F.G.; Ruckman, J.J.; Werner, R. On saddle points in nonconvex semi-infinite programming. J. Glob. Opti-Mization 2012, 54, 433–447. [Google Scholar] [CrossRef]
  25. Mordukhovich, B.S.; Nghia, T.T. Nonsmooth cone-constrained optimization with applications to semi-infinite pro-gramming. Math. Oper. Res. 2014, 39, 301–324. [Google Scholar] [CrossRef]
  26. Mishra, S.K.; Jaiswal, M. Optimality conditions and duality for nondifferentiable multiobjective semi-infinite programming problems with generalized convexity. J. Syst. Sci. Complex. 2015, 28, 47–59. [Google Scholar] [CrossRef]
  27. Yang, X.; Chen, Z.; Zhou, J. Optimality Conditions for Semi-Infinite and Generalized Semi-Infinite Programs Via Lower Order Exact Penalty Functions. J. Optim. Theory Appl. 2016, 169, 984–1012. [Google Scholar] [CrossRef]
  28. Liu, Y.; Goberna, M. Asymptotic optimality conditions for linear semi-infinite programming. Optimization 2016, 65, 446–462. [Google Scholar] [CrossRef]
  29. Mishra, S.K.; Singh, Y.; Verma, R.U. Saddle Point Criteria in Nonsmooth Semi-Infinite Minimax Fractional Programming Problems. J. Syst. Sci. Complex. 2018, 31, 446–462. [Google Scholar] [CrossRef]
  30. Fan, X.; Qin, T. Stability analysis for generalized semi-infinite optimization problems under functional perturbations. J. Ind. Manag. Optim. 2020, 16, 1221–1233. [Google Scholar] [CrossRef]
  31. Elster, K.H.; Thierfelder, J. Abstract cone approximations and generalized differentiability in nonsmooth optimization. Optimization 1988, 19, 315–341. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Yang, H.; Cui, A. The Sufficiency of Solutions for Non-smooth Minimax Fractional Semi-Infinite Programming with (BK)−Invexity. Mathematics 2023, 11, 4240. https://doi.org/10.3390/math11204240

AMA Style

Yang H, Cui A. The Sufficiency of Solutions for Non-smooth Minimax Fractional Semi-Infinite Programming with (BK)−Invexity. Mathematics. 2023; 11(20):4240. https://doi.org/10.3390/math11204240

Chicago/Turabian Style

Yang, Hong, and Angang Cui. 2023. "The Sufficiency of Solutions for Non-smooth Minimax Fractional Semi-Infinite Programming with (BK)−Invexity" Mathematics 11, no. 20: 4240. https://doi.org/10.3390/math11204240

APA Style

Yang, H., & Cui, A. (2023). The Sufficiency of Solutions for Non-smooth Minimax Fractional Semi-Infinite Programming with (BK)−Invexity. Mathematics, 11(20), 4240. https://doi.org/10.3390/math11204240

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop