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Abstract: Survival analysis models allow for predicting the probability of an event over time. The
specificity of the survival analysis data includes the distribution of events over time and the pro-
portion of classes. Late events are often rare and do not correspond to the main distribution and
strongly affect the quality of the models and quality assessment. In this paper, we identify four cases
of excessive sensitivity of survival analysis metrics and propose methods to overcome them. To
set the equality of observation impacts, we adjust the weights of events based on target time and
censoring indicator. According to the sensitivity of metrics, AUPRC (area under Precision-Recall
curve) is best suited for assessing the quality of survival models, and other metrics are used as loss
functions. To evaluate the influence of the loss function, the Bagging model uses ones to select the
size and hyperparameters of the ensemble. The experimental study included eight real medical
datasets. The proposed modifications of IBS (Integrated Brier Score) improved the quality of Bagging
compared to the classical loss functions. In addition, in seven out of eight datasets, the Bagging with
new loss functions outperforms the existing models of the scikit-survival library.

Keywords: machine learning; survival analysis; Kaplan–Meier estimator; recursive partitioning;
model averaging

MSC: 62N02

1. Introduction

Models of event forecasting are important for describing the causes and effects of
various phenomena and processes. Survival analysis is a set of methods for estimating the
probability of occurrence of an event in time. The definition of an event varies depending
on the application area.

For example, in the case of healthcare, the event is a fatal outcome, relapse, or recovery
of the patient. Clinical data and anamnesis is used to predict disease history and prescribe
treatment with minimal risks of negative consequences. In the case of reliability analysis, the
event is a failure of the equipment. The history of the event allows for balancing the load or
replacing individual components at an early stage to prevent the failure of the entire system.

Papers [1–3] emphasize the main features of survival analysis. The usage of incomplete
data leads to the appearance of censored observations with an unknown time of the event
(for example, the event does not occur before the end of the study). In this paper, we
consider only right-censoring cases with a fixed beginning time and expect the event to the
right. In addition, the distribution of events in time is important. There are several split
criteria [4] with high sensitivity to early events and [5–7] late events. However, the models
assume a constant sensitivity of events and do not take into account the event distribution
of the source data.

Finally, the proportion of censored and terminal classes is the cause of bias in forecast-
ing. The most popular approach to overcome the imbalance is data balancing (increasing
the minor class or decreasing the dominant class). However, balancing leads to a bias of a
priori probabilities of classes.

Mathematics 2023, 11, 4246. https://doi.org/10.3390/math11204246 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11204246
https://doi.org/10.3390/math11204246
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9210-5544
https://orcid.org/0000-0002-1236-398X
https://orcid.org/0000-0002-9837-585X
https://doi.org/10.3390/math11204246
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11204246?type=check_update&version=1


Mathematics 2023, 11, 4246 2 of 34

The influence of the highlighted characteristics applies not only to predictive models
but also to quality metrics. In classic machine learning, metrics allow evaluation of the
quality of models and are used as a loss function to solve optimization problems during
model fitting. Finally, metrics influence the selection of the optimal model and its hyperpa-
rameters. Metrics of survival analysis cover the set of predicted values: point estimates
(probability and time of occurrence of events) and integral estimates (history of occurrence
of an event, cumulative risk in time).

The purpose of this work is to analyze the sensitivity of survival analysis metrics. We
propose the classification of the sensitivity biases and modifications of metrics to overcome
them. In addition, we explore the relationship between the loss function and the quality
of the Bagging model. The Bagging model uses a loss function to select the size and
hyperparameters of the ensemble. According to the analytical and experimental results,
we define the best metrics as quality score and loss function. A critical analysis of the
advantages and disadvantages of existing metrics allows us to assess the quality of models
reliably and motivate researchers to conduct additional testing of the stability of metrics to
data characteristics.

The paper is organized as follows: Section 2 presents an overview of survival analysis
models and describes the motivation for choosing quality metrics for each type of predicted
values. Section 4 describes the characteristics of open medical datasets, the presence of
early and late events, and class imbalance. Section 3 describes the main steps of the
sensitivity study. Section 5 classifies the causes of the excessive sensitivity of metrics
and proposes relevant examples for their detection, such as the higher significance of
particular events, metric changes over time, the significance of the time scale, and the
influence of the imbalance of classes. In addition, we propose modified metrics to improve
sustainability and select a reliable quality metric. Section 6 provides an experimental study
of the relationship between modified loss functions and the quality of models. The result is
the selection of the best loss functions for the expansion of the Bagging ensemble. Section 7
presents the main results of the work and directions for further research.

2. Background
2.1. Problem Statement

Let X denote a random vector of variables, T a non-negative random variable of event
time, C a non-negative random variable of censoring time, and δ an event occurrence
indicator. In this case, the target time, yi, of the event is:

yi =

{
Ti, if δi = 1,
Ci, if δi = 0.

Thus, the task is reduced to analyzing triplets (Xi, yi, δi) for each observation, i, where
yi and δi are the target variables. Using variable Xj, the goal is to predict the true time, Tj,
which is hidden for censored observations.

To predict the history of the occurrence of an event, the task of survival analysis
is reduced to three functions [2]. The survival function determines the probability of
non-occurrence of an event after a certain time:

S(t) = P(T > t),

where t is the observation time and T is a random variable of the event time.
The death density function determines the probability of an event occurring at a

specific time, t ∈ R:
f (t) = (1− S(t))′
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The hazard function or the conditional failure rate represents the probability of an
event at a particular time, t, given that the event did not occur earlier:

h(t) =
f (t)
S(t)

.

Depending on the task, the survival analysis functions can be formulated in a continu-
ous and discrete form [2,8]. The continuous-time problem uses the entire time scale, and
the observations Xi correspond to the source event time, Ti. Then, the survival analysis
functions have the following form:

S(t) = P(T > t),

f (t) = − d
dt

S(t),

h(t) = − d
dt
[log S(t)].

Usually, continuous-time models have strict assumptions about the time distribution
and the differentiability of the survival function on the timeline.

In a discrete-time problem, the original timeline is split into n specified time intervals
(bins). Let τ denote an ascending ordered set of time points, then the time points, T,
of the sample are mapped to the set τ. Despite that the discrete-time problem requires
fewer assumptions, it also leads to information loss due to time discretization. In addition,
the number of time intervals is a hyperparameter that strongly affects the accuracy and
computational complexity of the model. Finally, the discrete-time problem imposes a
serious functional limitation on the allowable time points for forecasting. Further, we
consider only continuous-time models.

2.2. Statistical Models
2.2.1. Kaplan–Meier Estimator

The most popular nonparametric estimation of the survival function is the Kaplan–Meier
method [9]. Denote the set of source times of the event as {ti}. For each time point, ti,
there are the number of remaining observations, Ni, and the number of events, Oi, that
occurred at time ti. Then, the survival function at the moment of t is a cumulative product
of survival probability for each previous time:

S(t) = ∏
ti≤t

(
1− Oi

Ni

)
.

The expected lifetime is ti, so that S(ti) = 0.5. In practice, it also needs to predict the
survival function before the first occurrence of the event and after the occurrence of the last
event. There are two ways to expand Kaplan–Meier estimation. In the first case (henceforth,
KM), the survival function is equal to the last cumulative product after all events. However,
if the latest observation is censored, the survival function does not reach zero. In the second
case (henceforth, KM10), the survival function assigns 0 after all events and 1 before the
first event.

2.2.2. Cox Proportional Hazard

Nonparametric methods do not take into account the relationship between the signs
of observations and target variables. At the same time, parametric methods assume a
theoretical relationship and determine the significance of features based on their impact on
the forecast.

The Cox Proportional Hazards (henceforth, CoxPH) [10] assumes that all observations
have the same form of the hazard function and differ by a positive coefficient of proportionality.

h(t | Xi) = h0(t) · eXi β, (1)
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where h0(t) is the base hazard function, Xi is the vector of features, and β is the vector of
linear model coefficients. The importance of features (hazard ratio) calculates as eβ.

The survival function of CoxPH consists of basic survival function, S0(t) (usually is
the Breslow estimator [11]), that is shifted with the weights, β:

S(t | Xi) = S0(t)exp(Xi β). (2)

However, the method has several significant disadvantages:

• The ratio of two hazard functions does not change over time;
• The significance of features does not depend on time. In real clinical practice, the

influence of risk factors may vary over time. For example, the patient is at risk after
surgery, but after rehabilitation is more stable;

• The weights of the model define a linear combination of the data features;
• CoxPH does not support categorical features and missing values.

2.3. Metrics
2.3.1. Concordance Index

The Concordance index (CI) [12] is a ratio of correctly ordered pairs relative to the
event time, which can be calculated as follows:

CI =
∑i,j I(Tj < Ti) · I(ηj < ηi)

∑i,j I(Tj < Ti)
,

where Tk is the true time of occurrence of the event, I(·) is the indicator function, and ηk
is the time expected by the model. The best metric value is 1 (correct ordering), the worst
value is 0 (opposite order), and the value 0.5 reflects the randomness of the model response.

The CI metric uses only point forecasts and does not evaluate survival function as a
whole. In addition, the value of CI does not change with the shift of the survival functions,
although the predicted time itself may be extremely biased compared to the true one.

2.3.2. Integrated AUC

An alternative ranking metric is the integrated area under the curve (IAUC) [13,14],
which extends the calculation of the ROC curve and area under the curve (AUC) to multi-
class or temporary cases.

Denote the cumulative hazard as H(t). There is the following relationship between
cumulative hazard and hazard function:

H(t | X) =
∫ t

0
h(τ | X)dτ.

For each event time, there are two sets of observations with early and late events.
The ÂUC(t) metric measures the weighted proportion of right-ordered pairs (by cumu-
lative hazard) of observations from different sets (occurred events should have a higher
cumulative hazard at time t) and can be calculated as follows:

ÂUC(t) =
∑i ∑j I(yj > t) · I((yi ≤ t) · δi) · wi · I(Ĥ(t | Xj) ≤ Ĥ(t | Xi))

(∑j I(yj > t))(∑i I((yi ≤ t) · δi) · wi)
,

where Ĥ(t | Xi) is the cumulative hazard estimation of Xi in time t and wi is the inverse
probability of censoring in time ti (wi = 1/G(ti), where G(t) is the Kaplan–Meier model
with censoring event).
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Integrated AUC aggregates ÂUC(t) over time with minimal value, tmin, maximum
value, tmax, and general survival function, Ŝ(t), as the Kaplan–Meier model.

IAUC(tmin, tmax) =
1

Ŝ(tmin)− Ŝ(tmax)

tmax∫
tmin

ÂUC(t)dŜ(t). (3)

2.3.3. Likelihood

In general, the likelihood function (henceforth, LL) is the joint distribution of the
sample, considered as a function of a parameter. Denote the describing parameter of
the predictive model as θ. Therefore, the likelihood function of the sample {X′, T′} is
LL(θ | X′, T′) = ∏i Pθ(Ti | Xi).

Based on the survival function, Ŝ, and the hazard function, ĥ, paper [15] denotes
the full likelihood as FL(Ŝ, ĥ | X, T) = ∏i ĥ(Ti|Xi)

δi · Ŝ(Ti|Xi). To solve an optimization
problem, the logarithmic form is:

log FL(Ŝ, ĥ | X, T) = ∑
i

δi · log
(

ĥ(Ti|Xi)
)
+ ∑

i
log
(
Ŝ(Ti|Xi)

)
.

In addition, paper [15] uses only the hazard function, ĥ, and denotes the partial

likelihood as PL(ĥ | X, T) = ∏i
ĥ(Ti |Xi)

∑Tj≥Ti
ĥ(Ti |Xj)

. In addition, the corresponding logarithmic

form is:

log PL(ĥ | X, T) = ∑
i

log
(

ĥ(Ti|Xi)
)
− log

 ∑
Tj≥Ti

ĥ(Ti|Xj)

.

2.3.4. Kullback–Leibler Divergence

Kullback–Leibler Divergence (henceforth, KL) [16] measures the distance between
continuous probability distributions P and Q. On the set X ⊆ Rk, denote the density
functions of the distributions P and Q as p(X) and q(X), accordingly. Then, KL divergence
is KL(P||Q) =

∫ ∞
0 p(x) log

(
p(x)
q(x)

)
dx.

In survival analysis, paper [17] proposes a modification of KL divergence (henceforth,
KLS). Let Gn(t) denote the estimation of the survival function on n observations. Based on the
family of two-parameter Weibull survival functions, the true function is F(t) = exp

[
−
( t

σ

)m
]
,

where t ≥ 0, and m, σ > 0.

KLS(Gn||F) =
∫ ∞

0
Gn(t) · log

(
Gn(t)
F(t)

)
− [Gn(t)− F(t)]dt.

The main disadvantage of KLS is the usage of the nonparametric Gn(t) to estimate
proximity to the theoretical Weibull function, F(t). In such a case, KLS does not take into
account individual features, Xi, and a censoring indicator.

2.3.5. Integrated Brier Score

Integrated Brier score (IBS) [18] is based on the squared deviation of the predicted
survival function from the true one. The true survival function equals 1 before the event
time and 0 after. Denote the number of observations as N and the probability of censoring
as the Kaplan–Meier model, G(t) = P(C > t), with the censoring event. To assess the
quality of the forecast at the time t, the Brier score is:

BS(t) =
1
N ∑

i


(0−S(t|Xi))

2

G(Ti)
, if Ti ≤ t, δi = 1,

(1−S(t|Xi))
2

G(t) , if Ti > t,

0, if Ti = t, δi = 0,

(4)
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where S(t | Xi) is the predicted survival function at time, t for observation Xi with the true
time Ti. Then, for a fixed moment, t, and an observation, Xi, if the event occurs before time
t, we expect a low survival probability (close to 0). Otherwise, if the event occurs after the
moment t, we expect a high survival probability (close to 1).

To score censored data, BS(t) (4) uses the δi indicator and the probability of censoring.
Squared deviations are weighted on the inverse probability: 1

G(Ti)
if the event occurs before

time t, and 1
G(t) if the event occurs after time t. Censored observations before time t are not

taken into account. Integrated Brier score aggregates, BS(t), over time:

IBS =
1

tmax

tmax∫
0

BS(t)dt. (5)

2.3.6. AUPRC

The Survival -AUPRC (henceforth, AUPRC) metric [19] measures the concentration
of the distribution mass around the true time of the event. The idea is similar to the metric
“area under Precision-Recall curve”, but AUPRC compares distributions for one observation.

For a terminal event with true time Ti and features Xi, the metric is an average
difference between early and late values of the survival function Ŝ(t) at different intervals
(each ϕ ∈ [0, 1] determines the interval [Ti · ϕ, Ti/ϕ]):

AUPRCδi=1(Ŝ, Ti, Xi) =
∫ 1

0

[
Ŝ(Ti · ϕ | Xi)− Ŝ(Ti/ϕ | Xi)

]
dϕ.

Figure 1 shows an example of calculating AUPRC for two terminal events of the
GBSG dataset with the true times Ti = 698 (left figure) and Ti = 1807 (right figure). The
vertical red line highlights the true time moment, and blue vertical lines correspond to the
ϕ level and reflect the compared values Ŝ(Ti · ϕ) and Ŝ(Ti/ϕ).

(a) (b)
Figure 1. Example of the AUPRC (area under Precision-Recall curve) metric for two terminal
observations of the GBSG dataset with the event times Ti = 698 (a) and Ti = 1807 (b). The vertical
red line highlights the true time moment, and the blue vertical lines correspond to the ϕ level.
AUPRC provides a symmetrical contribution of early and late intervals and covers the entire timeline.
(a) True time is 698 (AUPRC = 0.38). (b) True time is 1807 (AUPRC = 0.42).
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For censored observation with time Ti and features Xi, AUPRC proposes zero survival
probability after the event:

AUPRCδi=0(Ŝ, Ti, Xi) =
∫ 1

0
Ŝ(Ti · ϕ | Xi)dϕ.

The best value of the metric is 1 when the survival function is a step-function that
equals 1 before the event and 0 after. The smallest value is 0 if the survival function is a
constant (in terminal events for any constant function and in censored observations only for
constant 0). However, paper [19] presents only partial metric values and does not describe
a method to aggregate the AUPRC for multiple observations. In this paper, we propose to
aggregate values by mean:

AUPRC =
1
N ∑

i
AUPRCδi (Ŝ(t), Ti, Xi). (6)

2.3.7. Motivation for Choosing a Metric

In this section, we summarize the properties of all considered metrics. Firstly, each
metric estimates one of the predicted values: the expected event time, T (CI), the survival
function, S(t) (KL, IBS, and AUPRC), and the hazard function, h(t) (IAUC and LL). For a
comprehensive assessment of the quality of forecasting, it is necessary to choose a metric
for each of the variables.

Based on the comparison approach, metrics can be classified into ranking (CI and
IAUC compare relative values) and regression (LL, KL, IBS, and AUPRC compare absolute
values) types. Based on the covering approach, metrics can be divided into point and
integral types. Point metrics (CI and LL) use a single value to evaluate the quality. Integral
metrics (IAUC, KL, IBS, and AUPRC) compare the predicted survival and hazard function
with the target function. Thus, integral metrics allow us to score the quality of functions
over time.

Finally, all metrics except KL have the ability to differ in the processing of censored
observations from terminal events. In particular, the uncertain behavior after censoring
time leads to the false comparison of forecasting.

Thus, we recommend several metrics to assess the following quantities:

1. CI metric for estimating the time of the event T. For censored observations, CI
considers only pairs that the second event occurred before the moment of censoring.

2. IAUC metric for estimating the hazard function, h(t). Unlike the LL metric, IAUC
evaluates the overall survival function.

3. IBS and AUPRC metrics for estimating the survival function, S(t). Unlike KL,
these metrics take into account censored observations. In addition, KL is limited
by the nonparametric survival function, S(t), which does not use the feature space
of observations.

2.4. Machine Learning Models

Instead of classic parametric methods, tree-based approaches do not use strict theoret-
ical assumptions (proportionality of hazards and definite distribution) and split the feature
space into regions with a similar target variable.

Models applied in various tasks: classification, regression, and outlier detection. For
each task, there is a criterion for splitting to calculate the proximity of the partitions by the
values of the source features. In survival analysis, the most popular criteria are a statistical
log-rank criterion (Section 2.4.1) and its modifications. Section 2.4.2 describes a method for
constructing a binary survival tree.

To improve the quality of decision trees, there are ensemble algorithms. Decision trees
are well suited as basic models, as they exactly describe the training sample. The random
survival forest method (Section 2.4.3) is an ensemble of independent survival trees with
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log-rank criteria. The survival Bagging (Section 2.4.4) method uses more confident trees
with modified log-rank and works with missing and categorical data.

The gradient boosting method [20] is an ensemble of models where each next algorithm
fixes the errors of the previous model. Gradient Boosting uses only one target variable,
but survival analysis has two variables with different types: the time of the event and the
event indicator. Section 2.4.5 describes the Gradient Boosting method in terms of survival
analysis and its component-wise modification (Section 2.4.6).

2.4.1. Log-Rank Criterion

To measure the differences between two survival functions, the most widespread
criterion is log-rank [3]. A higher value of log-rank statistics determines a greater difference
between survival functions. The null hypothesis of the criterion assumes that survival
functions from two samples are equal. However, papers [1,3] suggest poor sensitivity
of log-rank to the real data with early events. The log-rank criterion does not assume a
relationship between the censoring indicator and the forecast, and the significance of events
is the same at the early and late stages of the study.

There are many ways to increase the sensitivity of the criterion. For example, several
weighted criteria [1,3,4] have a high significance of the contribution of early events. Criteria
define the weights of log-rank statistics by the following schemes:

1. Wilcoxon weights are the number of remaining observations at the time.
2. Peto-peto weights are the value of the parent survival function at the time.
3. Tarone-ware weights are the square root of the number of observations at the time.

Tarone-Ware is the “golden mean” among weighted criteria [1].

Fleming–Harrington [7] is a flexible criterion sensitive to a certain type of events.
The criterion is based on the family of statistics {Gρ,γ | ρ ≥ 0, γ ≥ 0} with weights
Ŝ(τ)ρ · (1− Ŝ(τ))γ for each time τ. In particular, the criterion G0,0 equals the log-rank
(sensitivity to proportional risks), G1,0 equals the peto-peto (sensitivity to early events), and
G0,1 is sensitive to late events [5]. According to article [7], weighted log-rank statistics are
distorted in the case of strong censorship, and the reliability of weighted statistics seriously
decreases when censorship increases. In addition, local sensitivity enhancement does not
apply to all data, and it needs to use different directions for assessing the proximity of
survival functions.

A comprehensive study [21] noticed that MaxCombo [5] is a universal criterion for
assessing the proximity of survival functions (it shows the best results for 18 datasets). The
MaxCombo criterion combines several weighted log-rank criteria to provide sensitivity for
early and late events simultaneously. In particular, MaxCombo is defined as the maximum
of the criteria G1,0 and G0,1.

2.4.2. Survival Tree

A tree-like survival algorithm (ST) [22] recursively divides the sample into groups
with different survival functions. The tree starts from the root node with full data. Using a
log-rank criterion, the root node is divided into two child nodes, which are also divided.
The process is repeated recursively for each subsequent node.

In the case of a binary tree, the splitting approach considers all possible intermediate
values for each feature from the space X. For each intermediate point, the statistic value
is calculated by target features T and δ from two branches of the partition. The best
partition has the maximum value of statistics among all possible pairs of partitioning. For
an observation with a feature vector x, the forecast of the survival function is Kaplan–Meier
estimation for the associated leaf (end node) by the x feature.

The advantage of the method is a strong interpretation. Each leaf has a set of rules
passing from the root to the leaf. Thus, if the depth of the tree is not too great, the expert
can analyze the set of rules for consistency and correctness.

Nevertheless, the method has significant drawbacks. Firstly, a classical survival tree
works only on filled data. Secondly, without any restrictions on the number of observations
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in a node, the survival tree has an addiction to overfitting. Finally, a tree needs a sufficient
amount of data to reach a high quality. In the case of limited data, the decision tree model
is often used as a basic “weak” model in ensembles.

2.4.3. Random Survival Forest

Random Forest is the most widely used method of ensembling. For survival analysis,
Random Survival Forest (RSF) [23] is an ensemble of independent survival trees [22],
aggregating their forecasts. The construction algorithm is:

1. Build N bootstrap samples (with replacement) from the source sample. Each bootstrap
subsample excludes approximately 37% of the data, which is called out-of-bag (OOB);

2. Build a survival tree for each bootstrap sample [22]. Finding the best partition uses
only P features at each node. The best partition maximizes the difference between
child nodes;

3. Each survival tree is built until bootstrap sampling is exhausted. In other words, there
are no restrictions on the depth and number of observations for trees.

The constructed ensemble evaluates the error of the model with OOBi (with i = 1 . . . N).
For each observation with the feature vector x, the forecast is the average forecast over trees
so that x ∈ OOBi. Similarly, the forecast of the survival function is the average value for all
tree forecasts in the ensemble for all time points. Averaging forecasts of trees allows us to
improve quality and avoid overfitting.

2.4.4. Survival Bagging

In previous work [24], we developed a new model of survival tree that uses weighted
log-rank criteria and has a high sensitivity to data characteristics. In particular, the model
supports the following criteria: Peto-peto, Wilcoxon, and Tarone-ware. To predict the
survival function, the model uses the following nonparametric estimators for each leaf: the
Kaplan–Meier model (KM from the Section 2.2.1), expanded Kaplan–Meier model (KM10
from the Section 2.2.1).

The model handles categorical features using the weight of evidence (WOE) mapping
method. To handle missing values, a set of observations with a missing feature are placed
in turn in each branch of the partition. The final branch has the greatest statistical value. To
reduce the computational complexity for continuous features, we use quantiles as splitting
points (the number of quantiles is a hyperparameter).

In addition, we developed a Bagging model (Bagging) as an ensemble of proposed
survival trees. To select the optimal size of the ensemble, for each iteration we evaluated
the OOB error with the following quality metrics (loss functions): CI, LL, and IBS. Similar
to RSF, the forecast of the survival function is the average forecast of the survival trees
relative to each point in time.

Previously, we have not considered universal criteria and criteria with increased sensi-
tivity to late events. In addition, it is necessary to study the impact of data characteristics on
loss functions. Excessive sensitivity of metrics to early or late events influences the optimal
size of the ensemble. In addition , it is necessary to investigate the stability of metrics to
class imbalance.

2.4.5. Gradient Boosting Survival Analysis

The Gradient Boosting model [20] is based on iterative learning of each new decision
tree on the errors of the previous one. The purpose of the algorithm is to minimize the loss
function by the iterative counting of a gradient of prediction error. The forecast of gradient
boosting is a weighted sum of all tree forecasts in the ensemble. The main advantages
of the model are simplicity, versatility, flexibility to modifications, and high generalizing
ability. Although the approach provides high-quality forecasting, the interpretability of the
model is poor.
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There are many difficulties of gradient boosting in survival analysis. In particular,
Gradient Boosting uses only one target variable, but survival analysis has two variables
with different types (the time of the event and the censoring indicator).

However, paper [25] proposes the Gradient Boosting Survival Analysis (GBSA) model
with an expanded scope of applicability of classical Gradient Boosting to survival analysis
tasks. GBSA predicts the probability of the event g(X) : RN f → [0, 1] (where N f is the
number of features) as the linear combination, XT β, from CoxPH. An ensemble of regression
decision trees is used to describe g(X). As a loss function, GBSA uses a modification of the
likelihood function, taking into account the assumption of proportional hazards:

loss = −∑
i

δi ·

g(Xi)− log

 ∑
tj≥ti

eg(Xj)

.

Based on the forecast of g(X), the forecasts of functions S(t | X), h(t | X) are:

h(t | X) = h0(t) · eg(X),

S(t | X) = S0(t)exp(g(X)),

where h0(t) and S0(t) are the cumulative hazard and survival function from the CoxPH model.
Thus, GBSA reduces survival tasks to the regression problem of predicting the point

value of g(X). To predict the survival and hazard function, GBSA extends the point value
using a nonparametric model and inherits the limitations of the CoxPH assumption.

2.4.6. Component-Wise Gradient Boosting

Article [26] provides an overview of the existing methods of Component-wise Gra-
dient Boosting (CWGBSA). Instead of basic algorithms fitting on the entire feature space,
X, component-wise boosting uses only one variable for fitting. This approach is also
called likelihood-based boosting since the ensemble maximizes the overall probability at
each iteration by choosing the underlying algorithm that leads to the greatest increase in
probability.

In survival analysis, the goal of CWGBSA is to optimize the loss function with respect
to linear coefficients, β, of the CoxPH model. The gradient of the loss functions is calculated
by the weights, β. In this case, each loss function should be expressed in terms of the weights
of the CoxPH model (which additionally requires a hazard proportionality condition).

The model response is g(x, β) = xT β. Function S(t | X), h(t | X) constructs according
to formulas (1) and (2) of the CoxPH model. According to study [26], CWGBSA with
loss = BrierScore outperforms alternative approaches, where the base learner is the least
squares method. Thus, the survival and hazard forecasts of CWGBSA are based on a
nonparametric model and a point estimation of the probability of an event. To obtain point
estimation, an ensemble of linear models iteratively finds optimal coefficients, β, of the
CoxPH model. In that case, the model inherits the limitations of the CoxPH assumption.

2.5. Summary

Based on the review of the metrics of the survival analysis, we emphasize the following
conclusions. To assess the predicted event time, we recommend using the concordance
index, which equals the ratio of correctly ordered pairs of events in time. To assess the
predicted survival and hazard functions, we consider point and integral metrics. Point
metrics use a single value of the forecast and reduce the survival task to a classical regression
problem, taking into account the censoring flag. Integral metrics compare the predicted
and theoretical functions for all time points. In Section 2.3.7, we recommend using metrics
IAUC, IBS, and AUPRC as the most promising. In addition, we have not found studies on
the sensitivity of metrics to data characteristics.

Based on the review of survival analysis models, we emphasize the following con-
clusions. The Kaplan–Meier method is applied to the continuous time problem and has
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no restrictions on the time distribution. However, the KM method does not describe the
relationship between the feature space and target variables. The classic Cox proportional
hazards model has a strict assumption that leads to several disadvantages: independence
of the significance of features in time, linearity of the model, inapplicability to categorical
features, and missing values.

The survival tree model uses the log-rank criterion in order to find the best partition.
However, the log-rank criterion has poor sensitivity to the characteristics of real data [1,3].
Ensembles of independent (Random Forest) and dependent (GBSA, CWGBSA) models are
used to increase the accuracy of forecasting survival trees. The limitations of the Random
Forest model follow from the base survival models. The gradient boosting model solves
a classical regression problem by extending the point estimate using CoxPH. The most
popular metrics of the boosting model are modification of likelihood with the assumption
of proportional hazards (GBSA) and Brier score (CWGBSA).

3. Methodology

The formulated conclusions from Section 2 are the justification for the directions of
further research. Figure 2 presents the scheme of the main steps of the sensitivity study.
First, we consider the most popular open-source datasets and highlight the following
characteristics of the data (Section 4): the concentration of events over time (early and late
events) and class imbalance. The excessive sensitivity of models or metrics can negatively
affect the quality of models and resistance to new data.

With high sensitivity to early events, the penalty for an error at early events exceeds
the late event penalty. Thus, to optimize the loss function, it is profitable to understate the
survival function to minimize the late error of an early event. In addition, an increased
concentration of early events tends to decrease a survival function close to constant 0. With
high sensitivity to late events, models tend to overstate the survival function. With a high
concentration of late events, the survival function tends to be constant 1.

Figure 2. Scheme of the steps of the proposed algorithm. The first step is to highlight the charac-
teristics of events for datasets. The second step is to investigate the sensitivity of metrics to these
characteristics and check for equality between events. In the case of inequality, we modify the metrics.
Metrics are compared with each other and divided into groups: quality metrics and loss functions.
Finally, we evaluate the impact of modified metrics on the quality and compare models.

Later, we analyze existing metrics to detect the excessive sensitivity to described
characteristics (Section 5). As we show below, the following cases distort the true quality
of the forecast: the different significance of the contribution of events, increasing the
contribution of late time, the influence of time scale, and a small contribution of terminal
events in the case of an imbalance of censored observations. We present examples of the
biases and propose modifications of metrics. To summarize the results of the analysis, we
compare the metrics to each other based on their properties and resistance to biases. The
most stable metrics are used to score the quality of the models, and others are used as the
loss function.

At the experiments stage (Section 6), we use the previously proposed Survival Bagging
(Section 2.4.4) and the following external models: Cox Proportional Hazard (Section 2.2.2),
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Survival Tree (Section 2.4.2), Random Survival Forest (Section 2.4.3), Gradient Boosting
Survival Analysis (Section 2.4.5), Component-wise Gradient Boosting (Section 2.4.6). Only
the Bagging model is able to use the loss function in model fitting. To compare the influence
of loss functions, Bagging considers them as hyperparameters. Based on experimental
results, we provide a model comparison and a loss function comparison.

In addition, we visualize how modified metrics affect the choice of the best model.
In the case of the leaf model hyperparameter, modified metrics allow for achieving better
quality for the expanded Kaplan–Meier model (KM10).

4. Real Data Description

This section describes the most popular datasets in survival analysis. To provide a
comprehensive analytical and experimental study, we consider eight datasets with different
properties and characteristics. The SurvSet [27] library allows us to obtain files of the
following datasets. In addition, we notice source links for each dataset.

The German Breast Cancer Study Group (GBSG) dataset, collected from 1984 to 1989,
was presented in [28]. The dataset event is cancer relapse. The dataset contains 686
observations and 8 features according to anamnesis, tumor description, and treatment
strategy. There are three categorical features: htreat, menostat, and tumgrad. The dataset
does not contain missing values. During the study, 387 patients were censored.

The Cohort study on the breast cancer dataset from the Netherlands (rott2) was pre-
sented in [29]. The dataset event is the relapse of cancer. The dataset contains 2982 obser-
vations and 11 features according to anamnesis, tumor description, and treatment strategy.
There are six categorical features: meno, tsize, grade, hormone, chemo, and recent. The
dataset does not contain any missing values. During the study, 1710 patients were censored.

The Study to Understand Prognoses and Preferences for Outcomes and Risks of
Treatments (support2) [30] dataset describes incurable patients using life support devices.
The dataset event is death. The dataset contains 9105 observations and 35 features according
to anamnesis, the class of the patient’s disease, the severity of physiological abnormalities,
and concomitant diseases. There are 11 categorical features: sex, dzgroup, dzclass, num_co,
race, diabetes, dementia, ca, dnr, sfdm2, income. In addition, 21 features contain missing
values, where the maximum number of missing values is 5641 for the ADL feature. During
the study, 2904 patients were censored.

The WUHAN dataset, collected from January 10 to 18 February 2020, was presented
in [31]. The dataset event is the patient’s discharge. The dataset contains 375 observations
and 76 features according to anamnesis and the results of clinical studies during treatment.
The feature space is formed from the minimum, maximum, and average indicators of the
patient’s clinical trials. All features contain missing values, where the maximum number of
missing values is 173 for the indicators of antithrombin and fibrin breakdown products.
During the study, 174 patients were censored.

The Primary Biliary Cirrhosis (PBC) dataset, collected from 1974 to 1984, was presented
in [32]. The dataset event is death. The dataset contains 276 observations and 17 features
according to anamnesis, cirrhosis status, treatment strategy, and clinical indicators. There
are five categorical features: trt, sex, ascites, hepato, and spiders. In addition, 12 features of
the dataset contain missing values (in particular, treatment strategies and clinical indicators),
where the maximum number of missing values is 134 for the cholesterol index and 136 for
the triglyceride index. During the study, 263 patients were censored.

The Second Manifestations of ARTerial Disease (SMARTO) [33] dataset is a sample
from a study of patients hospitalized with clinically manifest atherosclerotic vascular
disease or pronounced hazard factors for atherosclerosis. The dataset event is death. The
dataset contains 3873 observations and 26 features of anamnesis, clinical indicators, and
markers of atherosclerosis. There are nine categorical features: sex, diabetes, cerebral, aaa,
periph, stenosis, albumin, smoking, and alcohol. In addition, 16 features contain missing
values, where the maximum number of missing values is 1499 for diastolic by hand and
1498 for systolic by hand. During the study, 3413 patients were censored.
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The AIDS Clinical Trials Group Study (actg) [34] dataset is a sample from a study
comparing two sets of drugs in HIV-infected patients. The dataset event is the diagnosis
of AIDS or death. The dataset contains 1151 observations and 11 features according to
anamnesis, clinical indicators, and treatment strategy. There are seven categorical features:
tx, txgrp, strat2, sex, raceth, ivdrug, hemophil. The dataset does not contain any missing
values. During the study, 1055 patients were censored.

The Assay of Serum Free Light Chain ( f lchain) [35] dataset is a sample of Olmsted
County residents from a study of the relationship between serum-free light chains (FLC)
and mortality. The dataset event is the death of a patient. The dataset contains 7874
observations and 11 features according to anamnesis, clinical blood analysis, and the
presence of monoclonal gammopathy. There are four categorical features: sex, chapter,
sample_yr, and mgus. Only one feature (creatinine) contains 1350 missing values. During
the study, 5705 patients were censored.

Figures 3 and 4 show the event time density for each of the considered datasets. Brief
statistics for all datasets are shown in Table 1. The column “N” contains the number of
observations, and the column “feat” contains the number of features. The percentage of
terminal events is presented in column “Event”. The number of features with possible
missing values is presented in column “NaN (feat)”.

(a) (b)

(c) (d)

Figure 3. The time densities of terminal events and censored observations of the datasets support2,
WUHAN, GBSG, and rott2. Datasets contain predominant early events. (a) support2 [30].
(b) WUHAN [31]. (c) GBSG [28]. (d) rott2 [29].
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(a) (b)

(c) (d)

Figure 4. The time densities of terminal events and censored observations of the datasets PBC,
f lchain, actg, and SMARTO. The distributions of terminal and censored observations are very
different for f lchain and actg data. Datasets do not contain the predominant interval of events.
(a) PBC [32]. (b) f lchain [35]. (c) actg [34]. (d) SMARTO [33].

Table 1. Description of considered datasets. The datasets follow in descending order the percentage
of terminal events.

Name N Feat Cens, Event Event (%) NaN (Feat)

support2 [30] 9105 35 (2904, 6201) 0.681 21

WUHAN [31] 375 224 (201, 174) 0.464 222

GBSG [28] 686 8 (387, 299) 0.436 0

rott2 [29] 2982 11 (1710, 1272) 0.427 0

PBC [32] 418 17 (257, 161) 0.385 12

f lchain [35] 7874 10 (5705, 2169) 0.275 1

SMARTO [33] 3873 26 (3413, 460) 0.119 16

actg [34] 1151 11 (1055, 96) 0.083 0

Based on the described open datasets and figures of the time density, we highlight the
following characteristics of the datasets:

1. Early events have the highest significance for the support2 dataset because the data
describes the incurable patients using life support devices. The imbalance of event
classes is biased toward terminal events.

2. The WUHAN, GBSG, rott2, and PBC datasets are balanced relative to the event
classes, and the early and middle events have the greatest importance.
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3. The f lchain, SMARTO, and actg datasets have a high imbalance of censored events
and are uniform for the importance of event time contribution. It is important to note
that for f lchain and actg datasets, the distribution of censoring time differs from the
distribution of event time in the direction of increasing the importance of late events.
The shapes of the SMARTO dataset density functions are close.

5. Analysis of Biases in the Sensitivity of Metrics

In Section 2.3.7, we have described the primary motivation for choosing existing
metrics to estimate survival forecasts. For a comprehensive study of the sensitivity of
quality metrics, in this section, we consider the following characteristics and biases of
chosen metrics:

1. The significance of the contribution of partial events (Section 5.1). The metric may
have an implicit relationship between the contribution of events and its true time,
which affects the reliability of the estimation. For example, the increased impact of
late events is not suitable for data with dominant early events.

2. Dependence of integral metrics in time (Section 5.2). Integrated metric values may
have a latent dependence on the timeline. In this case, the increased importance of a
certain time period is not suitable for different data.

3. The influence of time variable in the integral metric (Section 5.3). The integrated vari-
able directly affects aggregation over time and can lead to distortion of the significance
of a certain period of time.

4. Resistance to the imbalance of censored observations (Section 5.4). The dominance of
censoring can lead to false overstatement or understatement of the metric.

Later, we will reveal these biases for integrated metrics of survival analysis. To
overcome the excessive sensitivity, we will adjust the weighting scheme of observation
contributions. Finally, we will select the best metric for quality assessment and use other
metrics as loss functions of the Bagging model. Comparing loss functions, we will assess
the impact of biased and unbiased metrics on model quality.

5.1. The Significance of the Contribution of Partial Events

In this section, we investigate the metrics IBS, IAUC, and AUPRC for the presence of
dependence on the contribution of partial events. To check the dependence, we visualize
the metric values for each observation relative to the event time. To ensure equal conditions
for early and late events, we consider the constant forecast of the survival function as
S(t) = 0.5. Using constant forecasts as one or zero, the quality of the events would be
different. The main requirement for verification is the ability to represent the metric as an
aggregation of values for each observation.

5.1.1. IBS

We present an alternative form of IBS (5). In particular, we transfer the integration
operation for each iteration of summation. Since the sum and the constant N do not depend
on the observation time, the formula has the following form:

IBS =
1
N ∑

i

1
tmax

tmax∫
0




(0−S(t,xi))
2

G(Ti)
, if Ti ≤ t, δi = 1,

(1−S(t,xi))
2

G(t) , if Ti > t,

0, if Ti = t, δi = 0,

dt.

Reveal the value of the integral for each of the conditions:

IBS =
1
N ∑

i

1
tmax

 Ti∫
0

(1− S(t, xi))
2

G(t)
dt +

tmax∫
Ti

δi ·
(0− S(t, xi))

2

G(Ti)
dt

.
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Then, IBS can be represented as the sum of partial IBSi for each observation, i, with
the corresponding event time, Ti, features, Xi, and the censoring indicator, δi:

IBSi =
1

tmax

 Ti∫
0

(1− S(t, xi))
2

G(t)
dt +

tmax∫
Ti

δi ·
(0− S(t, xi))

2

G(Ti)
dt

, i = 1, 2, ..., N.

An alternative form of the IBS metric is the average of the partial IBSi for each of
the sample observations. The final form of IBS allows us to calculate the metric value for
each observation:

IBS =
1
N ∑

i
IBSi. (7)

The first biased sensitivity of IBS is a growth of the values relative to the event time.
For example, we consider S(t) = 0.5 as a constant survival function for each observation.
The left side of Figure 5 shows the values of IBS for each observation of GBSG dataset. The
x-axis corresponds to the event time and the y-axis corresponds to the value of the partial
IBSi. The color of the dots determines the type of event: blue dots define censored events
and orange dots define terminal events. Based on the left-hand figure, we notice that IBS
increases during the growth of the event time. Consequently, late observations make a
greater contribution in the metric (7).

Bias appears due to the monotonically increasing weight scheme, 1/G(t). The weight
of the contribution depends on the time before the event occurrence and after the event
is equal to the constant 1/G(Ti). Consequently, increasing the event time, the weights
of deviations and their aggregation also increase. The logic is contrary to other studies,
according to which weighted log-rank criteria are highly sensitive to early events. In
addition, terminal and censored observations determine two curves, so the censored curve
is located below. This effect is due to the censored IBS containing only up deviations to the
moment of censorship.

To overcome this disadvantage of the original IBS, we propose the IBSWW metric
without a weighting scheme (assuming G(t) = 1). Thus, the value of the BSWW(t) metric
has the following form:

BSWW(t) =
1
N ∑

i


(0− S(t, xi))

2, if Ti ≤ t, δi = 1,
(1− S(t, xi))

2, if Ti > t,
0, if Ti = t, δi = 0,

(8)

IBSWW =
1

tmax

tmax∫
0

BSWW(t)dt. (9)

The right side of Figure 5 shows the values of IBSWW for each observation of GBSG.
The figure notations are equivalent to the left side of Figure 5. According to the figure,
the metric value for terminal events equals the constant 0.25 and eliminates an increasing
dependence on the true time. We see persistent linear dependence for censored observations
because of the sum of early deviations, where the highest value is 0.25 (in the case of the
latest censoring observation).

Thus, the inverse G(t) weighting scheme gives excessive sensitivity to late obser-
vations, even in the case of a constant forecast. With the transition from the weighting
scheme to the constant contribution of deviations, the increasing dependence disappears.
An alternative disadvantage of the 1/G(t) weights is the dependence of the metric on the
estimation of the general survival function for censored observations, G(t). Consequently,
the estimation of the global survival function changes with the growth of data, leading to a
bias of the previous values of the metric.
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(a) (b)
Figure 5. Example of the relationship between partial IBSi (Integrated Brier Score) and IBSi

WW values
for each observation of the GBSG dataset relative to the event time. IBS increases depending on
the event time and has a greater contribution to late observations. IBSWW is constant over time (for
terminal events) and determines equal contributions. (a) IBS. (b) IBSWW .

5.1.2. IAUC

The IAUC metric (3) does not have a representation in terms of partial IAUCi, which
depends on the forecast for only one object, i. The reason for this is the ranking type
of metric. In particular, the construction of a partial score uses only one pair of the true
and predicted hazard functions, but IAUC is based on a comparison of different hazard
functions for pairs of observations.

5.1.3. AUPRC

The AUPRC metric (6) already has a partial form. Figure 6 shows an example of the
dependence of AUPRC on the true observation time for the constant forecast, S(t) = 0.5,
of GBSG. All notations are the same as those in Figure 5. Note that the minimum value for
censored observations is 0.5.

Figure 6. Example of the relationship between AUPRC values and the event time for each observation
of the GBSG dataset. AUPRC is constant over time and determines equal contributions.
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According to the figure, the metric value for terminal events equals the constant 0.0 and
does not determine an increasing dependence on the true time. For censored observations,
the metric equals the constant 0.5 and also does not assume increasing dependence. Thus,
the AUPRC metric does not have false sensitivity to partial observations.

5.2. Dependence of Integral Metrics in Time

In this section, we check the dependence of the time-based components AUC(t), BS(t),
and AUPRC(ϕ) over time. Later, integrated metrics will use the components to aggregate
the scores for each moment of the timeline.

5.2.1. IBS

Calculating time-dependent metrics, BS(t) (4) and BSWW(t) (8), averages the devia-
tions of all observations for each time, t (the total number of observations is N).

As noted earlier, we consider the constant survival function, S(t) = 0.5, in time.
Figure 7 shows the trend of quadratic deviations over time. The x-axis corresponds to the
bins of the timeline, and the y-axis corresponds to the time-based values. The blue line
refers to the BS(t) values. The highest values of the metric are reached in the time interval
from 1500 to 2000. Consequently, early observations (occurring before the 1000th moment)
have a smaller contribution to the integral value of IBS. The reason for excessive sensitivity
is the weight, 1/G(t), which increases the contribution of deviations of late events.

The orange line refers to BSWW(t) and monotonically decreases in time. Therefore,
early observations have a greater contribution to the integral value of IBS. According
to the BSWW(t) (8), the contribution equals 0 after the censoring time. In general, the
deviation after censoring is indefinite (due to the absence of the true time of the event).
At the averaging stage, the zero deviation makes a false contribution, assuming the high
quality of forecasting, S(t).

To overcome the problems of the BS(t) and BSWW(t) metrics, we propose a BSRM(t)
metric with controlled averaging of observed events by time, t. In this case, the constant
of the total number of events, N, is replaced by the variable N(t) = Nevent + Ncens(t) =
Nevent + ∑i:δi=0 I(Ti > t). Therefore, the following modification does not take into account
the contribution of observations after the moment of censoring:

BSRM(t) =
1

N(t)∑i


(0− S(t, xi))

2, if Ti ≤ t, δi = 1,
(1− S(t, xi))

2, if Ti > t,
0, if Ti = t, δi = 0,

(10)

IBSRM =
1

tmax

tmax∫
0

BSRM(t)dt. (11)

In Figure 7, the green line relates to the BSRM(t) (10). Thus, the metric does not
have false sensitivity, such as the contribution of each time is 0.25. It is important to note
that the study (Section 5.1) of partial IBSi assumes N = N(t) = 1 (for one observation).
Consequently, this characteristic of time sensitivity affects only a set of observations. In the
case of partial observations IBSi

RM = IBSi
WW .

Thus, the weighting scheme, 1/G(t), and the averaging approach of all deviations
lead to excessive sensitivity to late and early events, respectively. Using a modification of
controlled averaging, false sensitivity disappears.
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Figure 7. Example of BS(t) trend over time for a constant forecast of S(t) = 0.5. The blue line relates
to IBS, the orange line to IBSWW , and the green line to IBSRM. Metrics IBS and IBSWW change over
time and have false sensitivity. We propose IBSRM, which determines equal contributions.

5.2.2. IAUC

Similarly, we consider the behavior of the AUC(t) metric over time (Figure 8). Evaluating
the cumulative hazard function, we use the following transformation: H(t) = −log(S(t)). For
a constant function, S(t) = 0.5, we set H(t) = −log(0.5) = log(2) = 0.693. Based on the
figure, we conclude that the metric does not have false sensitivity in time.

Figure 8. Example of the trend of AUC(t) over time for a constant forecast of H(t) = −log(S(t)) =
−log(0.5). It is seen that AUC(t) determines an equal contribution in time.

5.2.3. AUPRC

Figure 9 shows an example of changing the AUPRC(ϕ) metric in time for a constant
function, S(t) = 0.5, of GBSG. Based on the figure, the AUPRC(ϕ) metric does not have
false sensitivity in time.
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Figure 9. Example of AUPRC(ϕ) trend over time for a constant forecast of S(t) = 0.5 on GBSG
dataset. It is seen that AUPRC determines equal contributions.

5.3. The Influence of the Integration Variable

In Section 5.2, we considered the sensitivity of the time-based values relative to the
time, t. Further, before obtaining the integral values, it is necessary to investigate the
sensitivity of the variable of integration in time.

For integrated metrics (IBS, IAUC, AUPRC), we aggregate quality for all time points
by calculating the integral on a timeline. In practice, a timeline can be set by the user to
predict the function at a certain time. In this paper, the timeline is the set of times between
the occurrence of the first and last event of the training sample (hereafter, we denote the set
of bins as {ti} : tmin ≤ T ≤ tmax).

Integrating with this set of bins leads to an equal contribution of dt = 1 in time. In
terms of the IBS metrics (IBS, IBSWW , IBSRM), the integral is calculated directly from the
time, t, and has an equal contribution each time. Similarly, integrating over the variable ϕ,
AUPRC determines the equal contribution.

For the metric IAUC (Section 2.3.2), there are several defining sets of differentials to
calculate the integral. In particular, papers [13,14,36,37] present weight schemes with the
general formula IAUC = 1∫

w(t)dt

∫
AUC(t) · w(t)dt. At the same time, papers [14,36,37]

assume weights as the density function, w(t) = f̂ (t). Hence, w(t)dt = f̂ (t)dt = −dŜ(t),
where Ŝ(t) is the KM estimation (Section 2.2.1). Paper [13] considers the weight scheme as
w(t) = 2 · f̂ (t) · Ŝ(t). Hence, w(t)dt = 2 · f̂ (t) · Ŝ(t)dt = −2 · Ŝ(t)dŜ(t) = −dŜ2(t), where
Ŝ(t) is the KM estimation.

Figure 10 shows a behavior of different weights in time, w(t), for the GBSG and
SMARTO datasets. The green line relates to weighing with an equal contribution (used
in IBS). The blue line relates to the weighted scheme w(t) = 2 · f̂ (t) · Ŝ(t), and the orange
line to scheme w(t) = f̂ (t) (used in IAUC).

Both IAUC weight schemes have similar behavior and have two drawbacks. Firstly,
some of the time points do not affect the value of the integral metric. The presence of a
zero contribution is due to the equality of the survival functions for the start, t1, and the
end, t2 (so that t2 ≥ t1), points of the interval [t1, t2] so S(t1)− S(t2) = 0. According to the
KM estimation, it happens if there are no observed events in the interval [t1, t2]. In this
case, censoring observations in the range [t1, t2] changes the AUC(t) value, which does not
affect the integral metric, IAUC.
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(a) (b)
Figure 10. Example of the dependence of the contribution of w(t) on time for GBSG and SMARTO
datasets. There are three weight schemes: w(t) = 1, w(t) = f̂ (t), and w(t) = 2 · f̂ (t) · Ŝ(t). Only a
constant weighting scheme provides equal contributions of bins. Other schemes increase over time
and have false sensitivity to later bins. (a) GBSG. (b) SMARTO.

The second disadvantage is the increased significance of AUC(t) for late time points.
According to the dataset densities (Figures 3 and 4), the datasets GBSG and SMARTO
contain predominant early events, and most of the events have happened by the time
t = 2000. However, Figure 10 shows the higher importance of ranking quality for late time
points. To overcome the disadvantages of IAUC, we recommend using the unit weight
scheme w(t) = 1.

Thus, the metrics IBS and AUPRC have equal contributions over time (without
false sensitivity). At the same time, both weight schemes of IAUC lead to the excessive
contributions of late times and ignore AUC(t) values at the moments of non-occurrence of
terminal events (they do not take into account the fact of censoring).

5.4. The Impact of the Imbalance

In practice, real datasets have a different ratio of censored and terminal events. For a
terminal event, the best survival function is a threshold function that equals 1 before the
event and 0 after. For censored observation, the quality of the survival function is certain
only before the moment of censoring Ti.

5.4.1. IBS

According to IBS (5), the best survival function for censored observation equals 1
until the moment of censoring and has an arbitrary value after. Therefore, for censored
observations, the smallest value of IBS = 0 is reached by a constant forecast, S(t) = 1. The
deviation before and after moment Ti are considered for terminal events. Therefore, for the
same forecast, S(t), it is true that IBSδ=1(S(t)) > IBSδ=0(S(t)).

To demonstrate the sensitivity of IBS to class imbalance, we present an alternative form
of IBS (5). In particular, we represent the metric BS(t) as the sum of deviations for each
type of event, BS(t) = BSδ=1(t) + BSδ=0(t), where BSδ=1(t) is the proportion of deviations
of terminal events and BSδ=0(t) is the proportion of deviations of censored observations:

BSδ=1(t | N) =
1
N ∑

i:δi=1


(0−S(t,xi))

2

G(Ti)
, if Ti ≤ t,

(1−S(t,xi))
2

G(t) , if Ti > t,
(12)

BSδ=0(t | N) =
1
N ∑

i:δi=0

{
(1−S(t,xi))

2

G(t) , if Ti > t,

0, if Ti ≤ t.
(13)
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Therefore, IBS has the following form:

IBS =
1

tmax

tmax∫
0

BSδ=1(t | N) + BSδ=0(t | N)dt. (14)

For data with the domination of censored observations, Nδ=1 � Nδ=0, the op-
timal forecast, S(t), is shifting to 1 and providing a smaller error for the dominant
censored observations.

The left side of Figure 11 shows a change of BS(t) for the SMARTO dataset with
a high imbalance of classes (12% of terminal events and 88% of censored observations).
The dotted and dashed lines define BS(t) values only for censored and terminal events,
respectively. The solid line defines the total value of BS(t) (sum of values). Based on the
figure, there is an understating of the significance of the error of terminal events, and the
curve, BS(t), is close to BSδ=0(t). Consequently, deviations of censored observations have
a higher impact on the IBS metric. In this case, changing the deviations for terminal events
does not lead to significant changes to the IBS metric.

Figure 11. Example of the behavior of IBS and IBSBAL metrics over time with a constant forecast of
S(t) = 0.5 for the SMARTO dataset. Due to the imbalance, there is an understating of the significance
of the error of terminal events, and the curve, BS(t), is close to BSδ=0(t). Blue lines present IBS
values (event, censoring, and total) with the source proportionality of classes. Red lines present
IBSBAL values (event, censoring, and total) with an equal ratio of classes.

In addition, we consider an example for other data. The left side of Figure 12 shows
a change of BS(t) for the GBSG dataset, with a small class imbalance (44% of terminal
events, 56% of censored observations). The notation is equivalent to Figure 11. There is no
dominance of the contribution of a certain type of event. In this case, deviations for both
types of event have a significant impact on the value of the IBS metric.

To overcome the disadvantage of the different contributions of event types, we propose
establishing an equal contribution of the deviations of censored and terminal events to the
value of BS(t). In (12), we replace the total number of events, N, by the number of terminal
events, Nδ=1. Similarly, in (13), we replace N with the number of censored events, Nδ=0.
Thus, the value of the metric BSBAL(t) is defined as a balanced average relative to two
types of event, and the metric IBSBAL is defined similarly to (5):

BSBAL(t) =
1
2
(BSδ=1(t | Nδ=1) + BSδ=0(t | Nδ=0)),
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IBSBAL =
1

tmax

tmax∫
0

BSBAL(t)dt. (15)

Note that the metrics BSδ=1(t | Nδ=1), BSδ=0(t | Nδ=0), and BSBAL(t) can be defined
for the previously described modifications, BSWW(t) and BSRM(t), similarly.

The right side of Figure 11 shows a change of the BSBAL(t) metric for the SMARTO
dataset. Compared to the metric BS(t) in the left-hand figure, the contribution of deviations
of the terminal and censored events equally affects the values of BSBAL(t). The right side
of Figure 12 shows a change of the BSBAL(t) metric for the GBSG dataset. The values of
the metrics are close, and the contribution of deviations of terminal and censored events
significantly affects the values of BS(t) and BSBAL(t).

Thus, with an imbalance of a certain type of observation, the average deviation shifts
towards the prevailing class. Using a balanced modification of IBS, we overcome excessive
sensitivity to the prevailing class.

Figure 12. Example of the behavior of IBS and IBSBAL metrics over time with a constant forecast
of S(t) = 0.5 for the GBSG dataset. The right figure shows the proposed IBSBAL metric, which is
resistant to class imbalance. The metric values are close since the GBSG dataset is balanced relative
to the event types.

5.4.2. AUPRC

Similarly, we conduct reasoning for the AUPRC metric. The left side of Figure 13
shows a change of AUPRC(t) for the SMARTO dataset. Unlike the IBS metric, the final
metric is the average of two values. The other notifications repeat Figure 11. There is an
understating of the significance of the terminal events, and the curve AUPRC(t) is close to
AUPRCδ=0(t). Consequently, deviations of censored observations contribute more to the
metric AUPRC.

The left side of Figure 14 shows a change of AUPRC(t) for the GBSG dataset. Unlike
the IBS metric, the final metric is the average of two values. The other notifications repeat
Figure 12. There is no dominance of a certain class of events.

Therefore, to increase the stability of AUPRC, we propose the following balanced
modification (similar to the (15) metric):

AUPRCBAL(ϕ) =
1
2
(AUPRCδ=1(ϕ | Nδ=1) + AUPRCδ=0(ϕ | Nδ=0)),
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AUPRCBAL =

1∫
0

AUPRCBAL(ϕ)dϕ. (16)

Figure 13. Example of a change of AUPRC metric over time for SMARTO dataset with a constant
forecast of S(t) = 0.5. The left figure shows the total value of the AUPRC metric is shifted toward
the dominant class of censored events. The modification AUPRCBAL determines an equal ratio of
the contributions.

Figure 14. Example of a change of AUPRC(t) over time for a GBSG dataset with a constant forecast
of S(t) = 0.5. AUPRCδ=0 and AUPRCδ=1 are close since GBSG is balanced relative to the event
types. In addition, AUPRCBAL determines an equal ratio of the contributions.

5.4.3. IAUC

Among the discussed metrics (Section 2.3.7), IAUC is resistant to imbalance. In
papers [38,39], the authors advise using AUC in the case of unbalanced data. In addition,
papers [40,41] noticed that AUC is invariant for a priori probabilities of classes. In survival
analysis, AUC(t) and the integral value IAUC have similar properties.

5.5. Summary

In this section, we studied the sensitivity of existing integral metrics of survival
analysis to score the hazard and the survival function. In the course of the study, we
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considered four different cases of metric excessive sensitivity involving false sensitivity to
early events, late events, and class imbalance. To overcome the revealed biases, we have
proposed several modifications to existing metrics.

Based on the conducted research (Sections 5.1–5.4), there is a summary, Table 2, that
shows the properties of all integral metrics and their modifications. In addition, the
summary table shows which metrics use the general survival function G(t). In practice, the
calculation and usage of G(t) requires additional data and computing resources. Also, the
estimation of the survival function changes with the growth of data, leading to a distortion
of the previous values of the metric.

Table 2. The sensitivity properties of integral metrics. The column names are the numbers of the
sections with studied excessive sensitivity: Section 5.1—the significance of the contribution of partial
events, Section 5.2—the dependence of integral metrics in time, Section 5.3—the influence of the
integration variable, Section 5.4—the impact of the imbalance. The column “G(T)” reflects the
dependence of the metric on the theoretical general survival function. The cells indicate the presence
of certain bias:“-”—stable, “+”—excessive, “?”—no information. The best metrics are grayed out.

Metric Name Section 5.1 Section 5.2 Section 5.3 Section 5.4 G(T)

IBS + + - + +

IBSWW - + - + -

IBSRM - - - + -

IBSBAL + + - - +

IBSWW,BAL - + - - -
IBSRM,BAL - - - - -
IAUC
w(t) = 2 · f (t) · S(t)

? - + - ? +

IAUC
w(t) = f (t)

? - + - ? +

IAUC
w(t) = 1

? - - - ? +

AUPRC - - - + -
AUPRCBAL - - - - -

A better metric should have fewer biases. We highlight the stability of metrics to
the considered bias as “-”. Unknown verification or lack of information are highlighted
as “?”. For example, for the IAUC family, we cannot check the contributions of partial
observations because there is no representation of the metric in partial form. In addition,
the stability of the IAUC family to data imbalance is taken from papers [40,41], but this
has not been tested in practice. The best metric from each family is grayed out.

Thus, the most stable metrics are IBSRM,BAL, IAUC(w(t) = 1), and AUPRCBAL.
The unknown behavior of IAUC(w(t) = 1) to imbalance and partial events leads to less
visibility and reliability compared with other families. Comparing the metrics IBSRM,BAL
and AUPRCBAL, we note an important property of the later. Estimating the probability
of P(Ti/ϕ > T > Ti · ϕ), we evaluate the quality of the survival function before and after
the event occurrence. Therefore, the early (before the event) and late (after the event)
intervals have equal contributions to the AUPRC metric. In the case of IBS, the early and
late intervals have a different contribution proportional to the length of the time interval.

In addition, when calculating the integral, AUPRC avoids additional false sensitivity.
In particular, the distance between the bins does not affect the integral and avoids increasing
the contribution of rare late events. In the case of IBS, the late outliers lead to additional late
bins with an increased contribution of late events to the integral metric. Finally, paper [19]
notes the stability of AUPRC to calibration. In particular, saving the forecast form but
changing the offset of predicted probabilities, IBS metrics give an unreliable assessment.
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Thus, according to the results of the conducted research, the most stable and reliable
metric for assessing the quality of the survival function is AUPRC.

6. Experiments

Based on the results of the conducted studies of the sensitivity of metrics (Section 5), we
conclude that AUPRC has the least false sensitivity. In addition, the proposed modifications
of the IBS metrics allow us to achieve a comparable level of reliability.

Each noticed metric can be used as a loss function in machine learning models. The
choice of the loss function for survival analysis models has a significant role. Firstly, during
the model fitting, the loss function helps us to select the optimal size of the tree ensemble.
Secondly, to deploy the model, it is necessary to determine a set of hyperparameters that
achieve the best quality of the model. In the future, we plan to embed the loss function into
boosting ensembles to minimize the error for each observation.

This section contains an experimental study of the impact of the loss function on the
model quality. The AUPRC metric and its modifications determine the model quality, but
CI [42], LL [43,44], and IBS [24,26] and its modifications are used as the loss function.
The study aims to select an optimal loss function (from the reviewed metrics in Section 5)
and detect the impact of modifications of metrics to the model quality. The study of loss
functions performs on the proposed survival bootstrap ensemble (Section 2.4.4).

The second goal of the experimental study is to evaluate and analyze the quality of
existing and proposed models on the AUPRC metric. At the time of this paper, we have
not found any open studies about evaluating the models on AUPRC.

6.1. Experimental Setup

The experiment setup is divided into three stages (Figure 15). Initially, we process
feature space and target variables of each dataset (time before the event, a censoring
indicator). In the first stage, the source data is split into a training and a test sample (66%
and 33%, respectively) with stratification by the censoring indicator.

Figure 15. Scheme of experimental setup. There are three primary steps: train and test splitting, cross-
validation (CV) grid search, and multi-sample validation. The pipeline is performed for each survival
model (CoxPH, ST, RSF, GBSA, CWGBSA, Bagging), with a corresponding grid of hyperparameters.

In the second stage, using a training sample, we conduct a 5-fold cross-validation [45]
according to a given grid of hyperparameters. During cross-validation, we divide the initial
sample into five non-overlapping parts, four of which are used to train the model, and one
part is used for model testing and for calculating metrics. Thus, there are five iterations of
training/testing of the model, where each part becomes a test sample once. The resulting
metric for cross-validation is the average value of the metric for all iterations. Using a
predefined quality metric, we search the best hyperparameters for each model by grid.

In the third stage, we generate training and test data from the source 20 times (with
66% and 33% sizes, respectively). According to the best hyperparameters of each model
(selected during cross-validation), we fit models on training data and apply them to test
ones. The final quality of the model is the average quality for 20 test samples.

In the experimental study, we use the implementations of the CoxPH Survival Analysis
(CoxPH), Survival Tree (ST), Random Survival Forest (RSF), Component-wise Gradient
Boosting (CWGBSA), and Gradient Boosting Survival Analysis (GBSA) from the open
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library scikit-survival. The scikit-survival [25] package is written in the Python programming
language and allows one to build classical survival analysis models. According to the
overview [25] of the completeness of existing libraries (scikit-survival, lifelines, statsmodels,
pycox), scikit-survival contains the widest functionality. The implementation of Bagging
was presented in Section 2.4.4 of this paper.

Table 3 contains the grid of hyperparameters for each model. The hyperparameters of
the CoxPH model are the regularization parameter for ridge regression penalty (regulariza-
tion penalty), and the method to handle tied event times (ties). The hyperparameters of
the ST model control the tree growth by the depth of the tree (max depth), the number of
splitting features (max features), the algorithm of best split choosing (split strategy), and the
size of nodes (min sample leaf). The hyperparameters of the RSF model are the size of the
ensemble (num estimators) and the tree growth control parameters. The hyperparameters
of the GBSA model are the num estimators, the coefficient of the contribution of each
tree (learning late), and the tree growth control parameters. The hyperparameters of the
CWGBSA model are the num estimators, the learning rate, the fraction of samples to fit the
individual base models (subsample), and the percentage of dropped base models during
the fitting (dropout rate).

Table 3. The grid of hyperparameters of predictive models.

Model Name Hyperparameter Grid

CoxPH Survival Analysis regularization penalty 0.1, 0.01, 0.001

ties breslow, efron

Survival Tree split strategy best, random

max depth from 10 to 30 step 5

min sample leaf from 1 to 20 step 1

max features sqrt, log2, none

Random Survival Forest num estimators from 10 to 100 step 10

max depth from 10 to 30 step 5

min sample leaf from 1 to 20 step 1

max features sqrt, log2, none

Component-wise Gradient Boosting num estimators from 10 to 100 step 10

learning rate from 0.01 to 0.5 step 0.01

subsample from 0.5 to 1.0 step 0.1

dropout rate from 0.0 to 0.5 step 0.1

Gradient Boosting SA num estimators from 10 to 100 step 10

max depth from 10 to 30 step 5

min sample leaf from 1 to 20 step 1

max features sqrt, log2, none

learning rate from 0.01 to 0.5 step 0.01

Bagging bootstrap sample size from 0.5 to 1.0 step 0.1

num estimators from 10 to 50 step 10

max depth from 10 to 30 step 5

min sample leaf 0.05, 0.001

max features 0.3, sqrt

leaf model KM, KM10 (Section 2.2.1)

criterion maxcombo, peto, tarone-ware, wilcoxon, logrank
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The hyperparameters of Bagging are the num estimators, the fraction of samples to fit
base trees (bootstrap sample size), the estimation of S(t) and h(t) for each leaf (leaf model),
weighted statistic for split choosing (criterion), and the tree growth control parameters.

6.2. Results

In this section, we present detailed experimental results for 8 datasets: support2,
WUHAN, GBSG, rott2, PBC, f lchain, SMARTO, and actg. The purpose of the experiment
is to evaluate the relationship between the loss function and the quality of model prediction.
For each dataset, we evaluate the quality of existing and proposed methods using the
metrics AUPRC, AUPRCδ=1 (metric is based on terminal events), and AUPRCBAL (metric
is based on equal contributions of censured and terminal observations).

Figures 16–23 present the obtained results for each dataset. Each figure contains
information about the quality of the existing models and Bagging for five loss functions: LL
(likelihood), CI (concordance index), IBS (integrated Brier score), IBSWW (9) (integrated
Brier score without weighting), IBSRM (11) (integrated Brier score with controlled averaging
of remained events). The x-axis corresponds to method name and the y-axis corresponds to the
quality of the method. The proposed models (BSTR(IBSWW) and BSTR(IBSRM)) are marked
in bold. For each method, we have created a boxplot with the distribution of metrics on 20 test
samples. In addition, the medians of the values are marked by the gray line.

Figure 16. AUPRC comparison for GBSG dataset.

Figure 17. AUPRC comparison for PBC dataset.
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Figure 18. AUPRC comparison for actg dataset.

Figure 19. AUPRC comparison for WUHAN dataset.

Figure 20. AUPRC comparison for SMARTO dataset.
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Figure 21. AUPRC comparison for rott2 dataset.

Figure 22. AUPRC comparison for f lchain dataset.

Figure 23. AUPRC comparison for support2 dataset.

Table 4 contains summary results for all datasets. According to the dataset and metric,
each cell contains a list of the best loss functions, or the value “no winner” if all loss
functions have achieved similar quality. The row “Total” determines the recommended
loss function for each metric. The best loss function for all metrics is IBSRM. The second
place in all metrics is taken by IBSWW . The third place in the AUPRC metric is taken by
CI. Thus, the IBS modifications lead to better quality compared to the original metric and
alternative non-integrated metrics. In addition, for seven out of eight datasets, Bagging
outperforms the existing scikit-survival models.
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Table 4. Summary table of the best loss function for each dataset and metric (descending order of the
datasets by the proportion of terminal events). The row “Total” defines the best loss function for each
metric. The best loss function for all metrics is IBSRM.

DATASET AUPRC AUPRCδ=1 AUPRCBAL

support2 CI, IBS CI, IBS CI, IBS

WUHAN IBSRM, LL IBSWW , IBSRM IBSRM, LL

GBSG IBSWW , IBSRM IBSRM IBSWW , IBSRM

rott2 IBSWW , IBSRM IBSWW , IBSRM IBSWW , IBSRM

PBC IBSWW , IBSRM IBSRM IBSWW , IBSRM

f lchain no winner no winner no winner

SMARTO CI, IBS IBSWW , IBSRM IBSWW , IBSRM

actg CI, LL IBSRM, CI IBSRM, CI

Total IBSRM IBSRM IBSRM

According to the results of an experimental study, the proposed modification of IBSRM
(used as a loss function for an ensemble of independent survival trees) showed an increase
in quality for AUPRC, AUPRCδ=1, and AUPRCBAL. Loss functions with an equal impact
of events allow us to build models that are more resistant to imbalance. Thus, we should
apply the proposed modifications of metrics to build a high-quality ensemble of survival
trees. In further research, we plan to use IBSRM for boosting model construction.

6.3. Discussion of Hyperparameters

In the experimental study, we showed the positive impact of the proposed modifica-
tions of IBS on the model quality. In this section, we use these modifications to analyze
the hyperparameters of predictive models. For example, we have proposed analyzing the
influence of two types of Kaplan–Meier leaf models (KM and KM10) that we defined in
Section 2.2.1. Recall that KM10 is an extension of the standard Kaplan–Meier model with a
zero value after the moment of the occurrence of the last event.

To analyze the hyperparameters, we use the obtained table in the second stage of
the experiments. In particular, we compare the value of the loss function for each set of
parameters. Based on the previously described algorithm, the result of this stage is the
best set of hyperparameters for each model. We consider the relationship between the
values of loss functions (IBS, IBSWW , IBSRM) and quality metrics (AUPRC, AUPRCδ=1,
AUPRCBAL). In plots, we note the values for each set of hyperparameters and stratify them
relative to the type of leaf model. To increase visibility, we visualize an estimate of spatial
density based on kernel functions.

Figure 24 shows nine plots of pairwise dependence of three quality metrics and three
loss functions for GBSG datasets. The vertical axis corresponds to the quality of the cross-
validation model. The horizontal axis corresponds to the values of the model’s loss function
on cross-validation. To choose the best hyperparameters, we consider the minimum value
of IBS and the best quality related to the largest AUPRC. Hyperparameters with KM10
are highlighted in orange, with KM in blue.
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Figure 24. Example of the relationship between the model quality (AUPRC, AUPRCδ=1, AUPRCBAL)
at the cross-validation stage (GBSG dataset) and loss functions (IBS, IBSWW , IBSRM). Based on the
quality of Bagging for each hyperparameter, we visualize a kernel density estimation. The KM10 leaf
model provides better quality than KM and corrects the linear relationship in the case of the modified
IBS metrics. In addition, the best quality is reached for modified IBS metrics.

Based on Figure 24, we notice the following conclusions. Firstly, for all plots, the
density of KM10 hyperparameters is higher than those for KM. Therefore, using the KM10
leaf model, AUPRC increases. Secondly, minimizing the IBS metric (left plots), there is a
linear relationship between IBS and AUPRC for KM10. This dependence is contrary to the
best quality of IBS and AUPRC. Therefore, by choosing hyperparameters with the lowest
value of IBS, the quality of AUPRC is also lower. Note that we observe the inverse linear
relationship for the KM model (AUPRC increasing for decreasing IBS).

However, minimizing IBSWW and IBSRM metrics (central and right plots), we observe
an inverse linear relationship between the loss function and the quality metric for the KM10
hyperparameter. Thus, modifications of IBS restore the correct relationship for the KM10
parameter. Finally, minimizing IBS (left plots), there is an unstable choice between the
KM10 and KM parameters, although the KM10 class leads to a significant improvement in
quality. In the case of IBS modifications, the KM10 class shifts to the left and leads to a stable
minimal loss value. Thus, modified metrics allows us to detect a class of hyperparameters
that leads to an improvement of AUPRC.

7. Conclusions

Survival analysis data have several specific characteristics, such as rare early and late
events and the proportion of classes. The rare late events often do not correspond to the
general distribution of time and contribute to the bias of forecasts. In this paper, we have
researched the excessive sensitivity of survival analysis metrics to data features. We have
determined four cases of increased sensitivity: the higher significance of partial events,
the growth of integral metrics in time, the impact of time bins, and the influence of the
imbalance of censored observations.

IBS and IAUC metrics increase the contribution of rare late events, which leads to a
distortion of the quality assessment. AUPRC, IBS, and IAUC metrics are unstable due to
class imbalance. To set the equality of observation impacts, we adjust the weighting schemes
of the event contribution and propose a controlled averaging approach. In particular,
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IBSRM has equal contributions of times and partial events. In addition, IBSBAL, IAUCBAL,
and AUPRCBAL modifications provides equal contributions of censured and terminal
observations. Based on the analytical study, we recommend AUPRC to evaluate the
prediction of the survival function.

The experimental study included eight datasets of real medical data. The goal of
the study was to assess the impact of the loss function (LL, CI, IBS, and the proposed
modifications) on the quality (according to the metrics AUPRC, AUPRCδ=1, AUPRCBAL)
of the Bagging ensemble of independent survival trees. The Bagging uses a loss function
to select the size and hyperparameters of the ensemble. According to the experimental
results, IBSRM shows an increase in quality compared to the original metric and alternative
non-integrated metrics. Loss functions with an equal impact of events allow us to build
models that are more resistant to imbalance. In addition, IBSRM allows us to detect a
class of hyperparameters (with leaf model as extended Kaplan–Meier) that leads to an
improvement of AUPRC. Finally, for seven datasets, the Bagging model outperforms the
existing models of the scikit-survival library.

In further research, we plan to apply the proposed modifications of metrics to build a
boosting ensemble of survival trees. The usage of stable metrics will prevent overfitting
and bias in the model. In addition, we plan to study the quality of the proposed approaches
on real datasets from alternative applications of survival analysis.
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