
Citation: Wang, M.; Zhang, J.; Li, Y.;

Shangguan, L. Maps Preserving Zero

∗-Products on B(H). Mathematics

2023, 11, 4278. https://doi.org/

10.3390/math11204278

Academic Editor: Raul E. Curto

Received: 26 August 2023

Revised: 8 October 2023

Accepted: 12 October 2023

Published: 13 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Maps Preserving Zero ∗-Products on B(H)

Meili Wang 1, Jing Zhang 2,*, Yipeng Li 1 and Lina Shangguan 1

1 Department of Applied Mathematics, Xi’an University of Science and Technology, Xi’an 710054, China;
wangmeili@xust.edu.cn (M.W.); pengyl@xust.edu.cn (Y.L.); sgln654@163.com (L.S.)

2 Modern Industrial Innovation Practice Center, Dongguan Polytechnic College, Dongguan 523808, China
* Correspondence: 2010120@dgpt.edu.cn

Abstract: The conventional research topic in operator algebras involves exploring the structure of
algebras and using homomorphic mappings to study the classification of algebras. In this study, a
new invariant is developed based on the characteristics of the operator using the linear preserving
method. The results show that the isomorphic mapping is used for preserving this invariant, which
provides the classification information of operator algebra from a new perspective. LetH and K be
Hilbert spaces with dimensions greater than two, and let B(H) and B(K) be the set of all bounded
linear operators onH and K, respectively. For A, B ∈ B(H), the ∗, ∗-Lie, and ∗-Jordan products are
defined by A∗B, A∗B− B∗A, and A∗B + B∗A, respectively. Let Φ : B(H) → B(K) be an additive
unital surjective map. It is confirmed that if Φ preserves zero ∗, ∗-Lie, and ∗-Jordan products, then Φ
is unitary or conjugate unitary isomorphisms.
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1. Introduction

In recent years, numerous studies have studied preserver problems concerning the
characterization of maps on operator algebras that yield certain functions, subsets, relations,
and invariants. Therefore, certain intrinsic isomorphism invariants between operator
algebras must be determined [1–9].

Accordingly, the maps preserving certain products, such as the Lie and Jordan prod-
ucts, can be considered. The commutative elements in operator algebras play a crucial
role in the study of algebraic structure, and scholars are actively studying the maps that
preserve the product commutable. Let R be a ring; for any A, B ∈ R, AB − BA is Lie
product. Notably, if the Lie product is zero, then the product of A and B is commutative.
Therefore, studying the commutability is equivalent to studying a zero-Lie product. Studies
by [10–23] have previously demonstrated the preservation of zero products.

In addition to the special relationship where the product is a zero element, studies have
reported the relationship characteristics of other products, such as whether the product
is a self-adjoint element, positive element, idempotent element, nilpotent element, or
projection [24–30].

In [31], Cui and Li proved that the nonlinear bijective map that preserves the product
XY − YX∗ on factor von Neumann algebras is a ∗-ring isomorphism. This result shows
that some new product which is related to the ∗-operation and Lie (resp. Jordan) product
can entirely determine the isomorphisms between factor von Neumann algebras. Thus, the
study of invariants with the ∗-operation has become an active area of research [31–34].

In our study, the isomorphism invariants of operator algebras are determined from
another new perspective. We define new invariants by combining the ∗-operation of the
product, the Lie product, and the Jordan product of operators. For any A, B ∈ B(H), we
call A∗B the ∗ product of A, B, A∗B+ B∗A the ∗-Jordan product of A, B, and A∗B− B∗A the
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∗-Lie product of A, B. For more on the ∗-Jordan product and ∗-Lie product, refer to [32,33].
These products are collectively referred to as the ∗ products.

In this study, we find that there are very close relationships between the ∗ products
and the zero product. Interestingly, A∗B = 0 reflects a number of characteristics of the
kernel and domain of operators A and B. Similarly, A∗B− B∗A = 0 and A∗B + B∗A = 0, il-
lustrating that A∗B are self-adjoint and anti-self-adjoint, respectively. Lastly, we investigate
additive maps from B(H) to B(K) preserving zero-∗ products. The zero-∗ products are
highly correlated with the self-adjoint properties of the operator. At the same time, ref. [32]
recently provided the form of a map that preserves commutation on the set of self-adjoint
elements. Using their conclusion, we solved the following three problems, finding three
new invariants of B(H).

First, we chose the zero-∗ product as invariant and considered an additive unital
surjective map Φ from B(H) to B(K) preserving the zero-∗ product; that is, for any
A, B ∈ B(H), we have

A∗B = 0⇔ Φ(A)∗Φ(B) = 0.

Therefore, we can prove that Φ is a unitary or conjugate unitary isomorphism, thereby
indicating that the zero-∗ product can act as an isomorphism invariant of B(H), keeping
the algebraic structure intact.

Second, we chose the zero ∗-Lie product as invariant and considered an additive unital
surjective map Φ from B(H) to B(K) preserving the zero ∗-Lie product; that is, for any
A, B ∈ B(H), we have

A∗B− B∗A = 0⇔ Φ(A)∗Φ(B)−Φ(B)∗Φ(A) = 0.

Accordingly, we can prove that Φ is a unitary or conjugate unitary isomorphism, which
indicates that the zero-∗ Lie-product can act as an isomorphism invariant of B(H), keeping
the algebraic structure intact.

Lastly, we chose the zero ∗-Jordan product as invariant and considered an additive
unital surjective map Φ from B(H) to B(K) preserving the zero ∗-Jordan product; that is,
for any A, B ∈ B(H), we have

A∗B + B∗A = 0⇔ Φ(A)∗Φ(B) + Φ(B)∗Φ(A) = 0.

Therefore, we can prove that Φ is a unitary or conjugate unitary isomorphism, which
indicates that the zero ∗-Jordan product can act as an isomorphism invariant of B(H),
keeping the algebraic structure intact.

The completion of the above three problems shows that we have developed three new
invariants which can provide new tools and perspectives for operator algebra classifications.
The following sections present our main results.

Theorem 1. LetH and K be two complex Hilbert spaces with dimensions greater than two, and
let Φ : B(H)→ B(K) be an additive unital surjective map. If Φ satisfies

A∗B = 0⇔ Φ(A)∗Φ(B) = 0,

for any A, B ∈ B(H), then there exists a unitary or conjugate unitary operator U : H → K such
that Φ(A) = UAU∗ for every A ∈ B(H).

Theorem 2. LetH and K be two complex Hilbert spaces with dimensions greater than two and let
Φ : B(H)→ B(K) be an additive unital surjective map. If Φ satisfies

A∗B− B∗A = 0⇔ Φ(A)∗Φ(B)−Φ(B)∗Φ(A) = 0,

for any A, B ∈ B(H), then there exists a unitary or conjugate unitary operator U : H → K such
that Φ(A) = UAU∗ for every A ∈ B(H).
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Theorem 3. LetH and K be two complex Hilbert spaces with dimensions greater than two and let
Φ : B(H)→ B(K) be an additive unital surjective map. If Φ satisfies

A∗B + B∗A = 0⇔ Φ(A)∗Φ(B) + Φ(B)∗Φ(A) = 0,

for any A, B ∈ B(H), then there exists a unitary or conjugate unitary operator U : H → K such
that Φ(A) = UAU∗ for all A ∈ B(H).

2. Preliminaries

In this section, we review several necessary preliminaries.

• R denotes the real number field.
• C denotes the complex number field.
• H,K denote the complex Hilbert spaces with dimensions greater than two.
• B(H) denotes all bounded linear operators onH.
• B(K) denotes all bounded linear operators on K.
• Bs(H) denotes the set of all self-adjoint operators of B(H).
• P(H) denotes the set of projections of B(H).
• P1(H) denotes the set of one-rank projections of B(H).
• L(P(H)) denotes the linear manifold spanned by P(H).
• M(H) = {A ∈ B(H) : A∗ = −A}.
• M(K) = {A ∈ B(K) : A∗ = −A}.
• [x] = {λx : λ ∈ C} for any x ∈ H.
• [x]⊥ = {y ∈ H : 〈x, y〉 = 0} for any x ∈ H.
• [x, y] denotes the subspace generated by x and y.
• 〈x, y〉 denotes the inner product of x and y.
• ker A denotes the kernel space of A for any A ∈ B(H).

Definition 1 ([35]). If x, y ∈ H, then the one rank operator x⊗ y is defined as (x⊗ y)z = 〈z, y〉x,
∀z ∈ H. If x ∈ H is a unit vector, then x⊗ x is one rank projection.

Definition 2 ([35]). If A ∈ B(H), then: (1) A is unitary if A∗ = A−1; (2) A is conjugate unitary
if A∗ = −A−1.

Theorem 4 ([36]). Each operator in B(H) can be written as the sum of five idempotent operators.

Theorem 5 ([34]). Let H,K be two Hilbert spaces of dimensions greater than two; then, Φ :
P(H)→ P(K) preserves the orthogonality of projections bilaterally.

(1) IfH,K are real, then there exists a unitary operator U : H → K, such that Φ(P) = UPU∗

for every projection P ∈ P(H).
(2) IfH,K are complex, then there exists a unitary or conjugate unitary operator U : H → K

such that Φ(P) = UPU∗ for every projection of P ∈ P(H).

Theorem 6 ([34]). LetH,K be complex Hilbert spaces with dimensions greater than two and let
Φ : Bs(H)→ Bs(K) be an additive surjection. If Φ satisfies

AB = BA⇔ Φ(A)Φ(B) = Φ(B)Φ(A)

for any A, B ∈ Bs(H), then there exists a unitary or conjugate unitary operator U : H → K
with the additive injective τ : R → R and real additive functional f on L(P(H)) such that
Φ(aP) = τ(a)UPU∗ + f (aP)I for all P ∈ P(H) and a ∈ R.

3. Proof of Theorem 1

Proof. The proof of Theorem 1 is completed by the following claims.
Claim 1 Φ is bijective.
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We need to prove that A = 0 when Φ(A) = 0. As Φ(A) = 0, Φ(A)∗Φ(B) = 0 for all
B ∈ B(H), therefore, A∗B = 0 holds for all B ∈ B(H), that is, A = 0.

Claim 2 There exists a unitary or conjugate unitary operator U : H → K such that
Φ(P) = UPU∗ for any P ∈ P(H).

For any projection P, we have

P∗(I − P) = (I − P)∗P = 0.

Therefore,
Φ(P)∗Φ(I − P) = Φ(I − P)∗Φ(P) = 0

which is equivalent to

Φ(P)∗ −Φ(P)∗Φ(P) = Φ(P)−Φ(P)∗Φ(P) = 0.

Therefore,
Φ(P) = Φ(P)∗, Φ(P) = Φ(P)2.

This demonstrates that Φ preserves the projection. As Φ is bijective, the same method can be
used for Φ−1 to obtain two-sided Φ, which preserves the projection. For any P, Q ∈ P(H),
if PQ = 0, then Φ(P)Φ(Q) = 0. In contrast, if Φ(P)Φ(Q) = 0, then there exists PQ = 0,
indicating that Φ preserves the orthogonality of the projection on both sides. Theorem 5
demonstrates that for any projection P ∈ P(H) there exists a unitary or conjugate unitary
operator U : H → K such that Φ(P) = UPU∗.

Let
Ψ(A) = U∗Φ(A)U, ∀A ∈ B(H).

Then, Ψ : B(H)→ B(K) remains an additive bijection and satisfies

∀A, B ∈ B(H), A∗B = 0⇔ Ψ(A)∗Ψ(B) = 0.

Notably,
Ψ(I) = I, Ψ(P) = P, ∀P ∈ P(H).

Therefore, we need to prove that Ψ(A) = A, ∀A ∈ B(H). Claims 3 and 4 will complete
this proof.

Claim 3 For any one rank operator x⊗ y, we have Ψ(x⊗ y) = x⊗ y.
Let x⊗ y ∈ B(H) be an arbitrary rank operator. For any unit vector z ∈ [x]⊥, we have

(x⊗ y)∗(z⊗ z) = (z⊗ z)∗(x⊗ y) = 0,

meaning that
Ψ(x⊗ y)∗Ψ(z⊗ z) = Ψ(z⊗ z)∗Ψ(x⊗ y) = 0.

From Claim 2, it is evident that

Ψ(x⊗ y)∗(z⊗ z) = (z⊗ z)Ψ(x⊗ y) = 0. (1)

Therefore, Ψ(x⊗ y)∗z = 0, indicating that Ψ(x⊗ y)∗ |[x]⊥= 0. Thus, there exists a vector
ux,y ∈ H such that Ψ(x⊗ y)∗ = ux,y ⊗ x, that is, Ψ(x⊗ y) = x⊗ ux,y.

We now prove that ux,y ∈ [x, y]. If x and y are linearly dependent, then Equation (1)
suggests that

0 = Ψ(x⊗ y)∗(z⊗ z)x = (z⊗ z)Ψ(x⊗ y)x, ∀z ∈ [x]⊥.

This means that Ψ(x⊗ y)x ∈ [x]. Therefore, ux,y ∈ [x]. We assume that Ψ(x⊗ y) = λx,yx⊗ y,
where λx,y is related to x and y. If x and y are linearly independent, then x⊗ y = x⊗ y1 + x⊗ y2,
where x and y1 are linearly dependent and x ⊥ y2. Therefore, we only need to prove the
case of x ⊥ y. Because dimH > 2, we can determine a nonzero unit vector z ∈ [x, y]⊥.
By applying the same method above, we obtain Ψ(x⊗ y)x ∈ [x, y] and Ψ(x⊗ y)y ∈ [x, y].
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Evidently, Ψ(x⊗ y)∗([x, y]) ⊆ [x, y], that is, ux,y ∈ [x, y]. For any x1, x2 ∈ H, if x1 and x2
are linearly independent, then there exists ux1,y, ux2,y, and ux1+x2,y such that

Ψ(x1 ⊗ y) = x1 ⊗ ux1,y,

Ψ(x2 ⊗ y) = x2 ⊗ ux2,y,

and
Ψ((x1 + x2)⊗ y) = (x1 + x2)⊗ ux1+x2,y.

From the additivity of Ψ, we obtain

x1 ⊗ (ux1+x2,y − ux1,y) + x2 ⊗ (ux1+x2,y − ux2,y) = 0.

Thus, ux1,y = ux2,y. This means that ux,y does not depend on x; that is, Ψ(x⊗ y) = x⊗ λyy.
If x1 and x2 are linearly dependent, then there exists x3 ∈ H such that x3 is linearly
independent on both x1 and x2. Similarly, λy is not dependent on y. The above discussion
indicates that Ψ(x⊗ y) = λx⊗ y and ∀x, y ∈ H. As Ψ(x⊗ x) = x⊗ x holds for all unit
vectors x, we have Ψ(x⊗ y) = x⊗ y, ∀x, y ∈ H.

Claim 4 For any A ∈ B(H), it is the case that Ψ(A) = A.
If dimH < ∞, then Ψ(A) = A, ∀A ∈ B(H).
If dimH = ∞, then any A ∈ B(H) can be written as the sum of five idempotent

operators (Theorem 4). Therefore, we only need to prove that Ψ(Q) = Q holds for every
idempotent Q ∈ B(H). For any non-trivial idempotent element Q, if Q is a finite rank, then
Ψ(Q) = Q. Else, there should be ker Q∗ 6= {0}. Let P be the projection on ker Q∗; then,
Q∗P = 0 = P∗Q and Ψ(P) = P indicate that Ψ(Q)∗P = 0 = PΨ(Q), that is,

Ψ(Q)∗ = Q∗Ψ(Q)∗Q∗ + (I −Q)∗Ψ(Q)∗Q∗.

Similarly, for idempotent I −Q, we have

Ψ(I −Q)∗ = (I −Q)∗Ψ(I −Q)∗(I −Q)∗ + Q∗Ψ(I −Q)∗(I −Q)∗.

Therefore,

I = Ψ(I) = Ψ(Q)∗ + Ψ(I −Q)∗

= Q∗Ψ(Q)∗Q∗ + (I −Q)∗Ψ(Q)∗Q∗

+(I −Q)∗Ψ(I −Q)∗(I −Q)∗ + Q∗Ψ(I −Q)∗(I −Q)∗
. (2)

Multiplying Equation (2) by (I−Q)∗ and Q∗ from the left and right, respectively, we obtain
(I −Q)∗Ψ(Q)∗Q∗ = 0. By further multiplying Equation (2) by Q∗ from the left and right,
respectively, we obtain Q∗Ψ(Q)∗Q∗ = Q∗. Therefore, Ψ(Q)∗ = Q∗, that is, Ψ(Q) = Q.

4. Proof of Theorem 2

Proof. The proof of Theorem 2 is completed by the following claims.
Claim 1 A is bijective.
If Φ(A) = 0, then for any B ∈ B(H) we have

Φ(A)∗Φ(B) = Φ(B)∗Φ(A) = 0.

Therefore, A∗B = B∗A holds for all B ∈ B(H). If B = I, we can obtain A = A∗, while
AB = BA holds for all B ∈ Bs(H). Therefore, there exists λ ∈ R such that A = λI. If
B 6= B∗, then A = 0.

Claim 2 Φ(Bs(H)) = Bs(K).
For any A ∈ Bs(H), there exists A∗ I = I∗A; therefore, Φ(A)∗Φ(I) = Φ(I)∗Φ(A).

As Φ is unital, we have Φ(A)∗ = Φ(A), which is Φ(A) ∈ Bs(K). By applying the same
method to Φ−1, we obtain Φ, which preserves the self-adjoint nature of both sides.
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The following conclusion can be obtained from Theorem 6 and Claims 1 and 2. There
exists a unitary or conjugate unitary operator U : H → K, an additive monomorphism
τ : R→ R, and an additive mapping f : L(P(H))→ R such that

Φ(aP) = τ(a)UPU∗ + f (aP)I, ∀P ∈ P(H), a ∈ R.

Let
d = τ(1)−1, Ψ(A) = dU∗Φ(A)U, ∀A ∈ B(H).

Therefore, Ψ : B(H)→ B(H) remains an additive bijection and satisfies

A∗B = B∗A⇔ Ψ(A)∗Ψ(B) = Ψ(B)∗Ψ(A), ∀A, B ∈ B(H).

Furthermore,
Ψ(I) = dI, d = τ(1)−1 ∈ R. (3)

Therefore, it can be verified that

Φ(Bs(H)) = Bs(H)

and
Ψ(P) = P + h(P)I, ∀P ∈ P(H), h(P) = d f (P).

We then need to prove Ψ(A) = A, ∀A ∈ B(H). Claims 3–5 will complete the proof of
Ψ(A) = A.

Claim 3 For any P ∈ P1(H), Ψ(P) = P.
For any one rank projection x⊗ x ∈ P1(H), we have Ψ(x⊗ x) = x⊗ x + h(x⊗ x)I.

Suppose there is a unit vector x ∈ H such that h(x ⊗ x) 6= 0. For any operator A, if
A∗x = λx, λ ∈ R, then A∗(x⊗ x) = (x⊗ x)A; therefore,

Ψ(A)∗Ψ(x⊗ x) = Ψ(x⊗ x)∗Ψ(A). (4)

BecauseH = [x]⊕ [x]⊥, if A is a self-adjoint operator, then A =

(
λ 0
0 A22

)
. Let

Ψ(A) =

(
S11 S12
S∗12 S22

)
, S∗11 = S11, S∗22 = S22.

According to Equation (4), we have S12 = 0, that is,

Ψ(A) =

(
S11 0
0 S22

)
, S∗11 = S11, S∗22 = S22. (5)

If A is not a self-adjoint operator, we can set A =

(
λ 0

A21 A22

)
. Let

Ψ(A) =

(
T11 T12
T21 T22

)
. From Equation (5), we obtain

(
(1 + h(x⊗ x))T∗11 h(x⊗ x)T∗21
(1 + h(x⊗ x))T∗12 h(x⊗ x)T∗22

)
=

(
(1 + h(x⊗ x))T11 (1 + h(x⊗ x))T12

h(x⊗ x)T21 h(x⊗ x)T22

)
.

We claim that h(x⊗ x) 6= −1. If h(x⊗ x) = −1, then

Ψ(A) =

(
T11 T12
0 T22

)
, T∗22 = T22.
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By considering any unit vector y ∈ [x]⊥, we obtain

Ψ(y⊗ y) = y⊗ y + h(y⊗ y)I.

If h(y ⊗ y) 6= 0, then we let B = y ⊗ y =

(
0 0
0 B22

)
. There is a non-zero operator

A21 such that B22 A21 = 0. We let A =

(
1 0

A21 1

)
such that A∗B = B∗A; therefore,

Ψ(A)∗Ψ(B) = Ψ(B)∗Ψ(A), i.e.,(
h(y⊗ y)T∗11 0

1 + h(y⊗ y)T∗12 T22S22

)
=

(
h(y⊗ y)T11 h(y⊗ y)T12

0 S22T22

)
where S22 = y⊗ y + h(y⊗ y)(I − x⊗ x). Therefore, T11 = T∗11, T12 = 0, and Ψ(A) is self-
adjoint, indicating that A is self-adjoint as well. This is a clear contradiction; therefore,
h(y⊗ y) = 0.

Let

B = I − y⊗ y =

(
1 0
0 B22

)
, B22 = I − x⊗ x− y⊗ y.

There exists a non-zero operator A21 such that B22 A21 = 0; moreover, order

A =

(
1 0

A21 1

)
. Notably, A∗B = B∗A; hence,

Ψ(A)∗Ψ(B) = Ψ(B)∗Ψ(A).

Therefore, (
T∗11 0
T∗12 T22S22

)
=

(
T11 T12
0 S22T22

)
where S22 = I − x ⊗ x − y⊗ y. Evidently, T11 = T∗11, T12 = 0, and Ψ(A) are self-adjoint.
Consequently, A is self-adjoint, which is a contradiction. Hence, h(x⊗ x) 6= −1. From the
above proof, the following conclusion can be drawn. If

A =

(
λ 0

A21 A22

)
, λ ∈ R,

then

Ψ(A) =

(
T11 T12

1+h
h T∗12 T22

)
, h = h(x⊗ x), T11 = T∗11, T22 = T∗22. (6)

From the surjectivity of Ψ, Ψ(P) = P + h(P)I, and Equation (6), we can determine
an operator

B =

(
α 0
0 β

)
, α, β ∈ R

such that

Ψ(B) =
(

1 0
0 h

1+h

)
.

Notably, Ψ(A)∗Ψ(B) = Ψ(B)∗Ψ(A). Thus, A∗B = B∗A, that is,(
αλ βA∗21
0 βA22

)
=

(
αλ 0

βA21 βA22

)
.

Therefore, βA21 = 0. If β 6= 0, then A21 = 0. This is a clear contradiction; therefore,
h(x⊗ x) = 0.
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If β = 0, then B =

(
α 0
0 0

)
. Additionally, ∀γ ∈ R has Ψ(γx⊗ x) = g(γ)Ψ(x⊗ x),

where g : R→ R is bijection. In fact,

(γx⊗ x)∗B = B∗(γx⊗ x),

(γx⊗ x)∗A = A∗(γx⊗ x).

Therefore, we obtain
Ψ(γx⊗ x)Ψ(B) = Ψ(B)∗Ψ(γx⊗ x)

and
Ψ(γx⊗ x)Ψ(A) = Ψ(A)∗Ψ(γx⊗ x).

There exists g(γ) ∈ R, such that

Ψ(γx⊗ x) = g(γ)Ψ(x⊗ x).

However, as ∀δ ∈ R, the surjectivity of Ψ shows that there exists C ∈ B(H) such that
Ψ(C) = δΨ(x⊗ x). Note that

Ψ(B)∗Ψ(C) = Ψ(C)∗Ψ(B),

Ψ(B + (I − x⊗ x))∗Ψ(C) = Ψ(C)∗Ψ(B + (I − x⊗ x))

and
Ψ(C)∗Ψ(A) = Ψ(A)∗Ψ(C).

Consequently, there exists γ ∈ R such that C = γx⊗ x and δ = g(γ).
If h(x⊗ x) 6= 1, then

A3 =

(
A11 A12

aA21 A22

)
, A11 = A∗11, A22 = A∗22, A12 6= 0, a ∈ R \ {0}.

Because
(ax⊗ x + (I − x⊗ x))∗A3 = A∗3(ax⊗ x + (I − x⊗ x)),

we obtain

Ψ(ax⊗ x + (I − x⊗ x))∗Ψ(A3) = Ψ(A3)
∗Ψ(ax⊗ x + (I − x⊗ x)). (7)

We know that

Ψ(ax⊗ x + (I − x⊗ x)) =
(

g(a) + (g(a)− 1)h 0
0 (g(a)− 1)h + 1

)
.

As g : R→ R is bijective, there exists a nonzero real number a such that g(a) + (g(a)− 1)h 6= 0
and (g(a)− 1)h + 1 6= 0. Therefore, from Equation (7) we obtain

Ψ(A3) =

(
S11 S12
bS∗12 S22

)
, S11 = S∗11, S22 = S∗22, b ∈ R.

Similarly, there exists a nonzero real number a such that g(a) = h−1
h , i.e.,

Ψ(ax⊗ x + (I − x⊗ x)) =
(

g(a) + (g(a)− 1)h 0
0 0

)
where g(a) + (g(a)− 1)h 6= 0. Evidently, S12 = 0 and Ψ(A3) are self-adjoint. However, A3
is not self-adjoint. Therefore, h(x⊗ x) = 0.
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If h(x⊗ x) = 1, then

A1 =

(
λ 0

A∗12 A22

)
, A2 =

(
λ A12
0 A22

)
, λ ∈ R, A22 = A∗22.

From Equation (5), we obtain

Ψ(A1) =

(
T11 T12

2T∗12 T22

)
, T11 = T∗11, T22 = T∗22.

Meanwhile,
A∗2(I − x⊗ x) = (I − x⊗ x)∗A2,

Ψ(I − x⊗ x) = −x⊗ x

and
Ψ(A2)

∗(−x⊗ x) = (−x⊗ x)∗Ψ(A2).

Evidently,

Ψ(A2) =

(
S11 0
S21 S22

)
, S11 = S∗11, S22 = S∗22.

As A1 + A2 is self-adjoint, we know that S21 = −T∗12 because of the additivity of Ψ.
Therefore,

Ψ(A1 + 2A2)
∗Ψ(I − x⊗ x) = Ψ(I − x⊗ x)∗Ψ(A1 + 2A2).

By contrast,
(A1 + 2A2)

∗(I − x⊗ x) 6= (I − x⊗ x)∗(A1 + 2A2).

This is contradictory; hence, h(x⊗ x) = 0.
Claim 4 For any one rank operator x⊗ y ∈ B(H), there exists λx,y ∈ iR related to x, y

such that Ψ(x⊗ y) = x⊗ y + λx,y I.
Let x ⊗ y ∈ B(H) be an arbitrary rank-one operator. For any unit vector z ∈ [x]⊥,

we obtain
(x⊗ y)∗(z⊗ z) = (z⊗ z)∗(x⊗ y).

Therefore,
Ψ(x⊗ y)∗Ψ(z⊗ z) = Ψ(z⊗ z)∗Ψ(x⊗ y).

From Claim 2, it can be observed that

Ψ(x⊗ y)∗(z⊗ z) = (z⊗ z)Ψ(x⊗ y). (8)

Therefore, there exists λz ∈ C, such that Ψ(x⊗ y)∗z = λzz. This implies that there exists
constant λx,y such that

Ψ(x⊗ y)∗ |[x]⊥= λx,y I |[x]⊥ .

More specifically, there exists vector ux,y ∈ H such that

Ψ(x⊗ y)∗ = ux,y ⊗ x + λx,y I.

From the above results and Equation (3), it can be concluded that λx,yz⊗ z = λx,yz⊗ z.
Therefore, λx,y ∈ R, that is,

Ψ(x⊗ y) = x⊗ ux,y + λx,y I, λx,y ∈ R.

Subsequently, we prove that ux,y ∈ [x, y]. If x and y are linearly dependent, then,
based on Equation (3), for any unit vector z ∈ [x]⊥ there is

0 = Ψ(x⊗ y)∗(z⊗ z)x = (z⊗ z)Ψ(x⊗ y)x,
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that is, Ψ(x⊗ y)x ∈ [x]. If x and y are linearly independent, then x⊗ y = x⊗ y1 + x⊗ y2,
where x and y1 are linearly dependent and x ⊥ y2. Therefore, we need to prove the case
of x ⊥ y. Because dimH > 2, we can determine a nonzero unit vector z ∈ [x, y]⊥. By
applying the above method, we obtain Ψ(x ⊗ y)x ∈ [x, y] and Ψ(x ⊗ y)y ∈ [x, y]. It is
evident that

Ψ(x⊗ y)∗([x, y]) ⊆ [x, y], ux,y ∈ [x, y].

Here, ∀x1, x2 ∈ H, and if x1 and x2 are linearly independent, then there exists
ux1,y, ux2,y, ux1+x2,y such that

Ψ(x1 ⊗ y) = x1 ⊗ ux1,y + λx1,y I,

Ψ(x2 ⊗ y) = x2 ⊗ ux2,y + λx2,y I

and
Ψ((x1 + x2)⊗ y) = (x1 + x2)⊗ ux1+x2,y + λx1+x2,y I.

From the additivity of Ψ, we obtain

x1 ⊗ (ux1+x2,y − ux1,y) + x2 ⊗ (ux1+x2,y − ux2,y) = (λx1+x2,y − λx1,y − λx2,y)I.

As dimH > 2, ux1,y = ux2,y, we know that ux,y does not depend on x, that is,

Ψ(x⊗ y) = x⊗ λyy + λx,y I.

If y1 and y2 are linearly dependent, then there exists y3 ∈ H such that y3 is linearly
independent on both y1 and y2. Similarly, λy does not depend on y; therefore,

Ψ(x⊗ y) = λx⊗ y + λx,y I.

As Ψ(x⊗ x) = x⊗ x holds for all unit vectors x, we have λ = 1. For any x, y ∈ H, there
exists λx,y ∈ R such that Ψ(x⊗ y) = x⊗ y + λx,y I.

Claim 5 For any A ∈ B(H), Ψ(A) = A.
When dimH < ∞, there is Ψ(A) = A + λA I for any A ∈ B(H), where λA ∈ R

depends on A. If ker A∗ 6= {0}, then for any non-zero vector x ∈ ker A∗ there exists a
non-zero vector y ∈ H such that x⊥y. Therefore, we obtain

A∗(x⊗ y) = (x⊗ y)∗A = 0.

From Claim 4, it is evident that

(A + λA I)∗(x⊗ y + λx,y I) = (x⊗ y + λx,y I)∗(A + λA I).

The above equation can be reduced to

λx,y(A− A∗) = λAx⊗ y− λAy⊗ x.

If λx,y = 0, then λA = 0. This is equivalent to Ψ(A) = A.
If λx,y 6= 0, then

A− A∗ =
λA
λx,y

x⊗ y− λA
λx,y

y⊗ x.

Because dimH ≥ 3, there exists a nonzero vector z ∈ H such that z ⊥ x and z ⊥ y.
Similarly, if λx,z = 0, then λA = 0. If λx,z 6= 0, then

A− A∗ =
λA
λx,z

x⊗ z− λA
λx,z

z⊗ x.
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Therefore, we have

x⊗ (
λA
λx,y

y− λA
λx,z

z) = (
λA
λx,y

y− λA
λx,z

z)⊗ x.

Thus, λA = 0.
For any unit vector x ∈ H, let B = A− (x⊗ x)A. If ker A∗ = {0}, then ker B 6= {0}.

Therefore,
Ψ(B) = B, Ψ((x⊗ x)A) = (x⊗ x)A,

that is,
Ψ(A) = Φ(B)−Ψ((x⊗ x)A) = A.

If dimH = ∞, then every A ∈ B(H) can be written as the sum of five idempo-
tents (Theorem 4). Accordingly, we only need to prove Ψ(Q) = Q for every idempotent
Q ∈ B(H).

First, it is known that Ψ(P) = P holds for all P ∈ P(H). For any non-zero projec-
tion P, there exists a non-zero vector x such that Px = 0. Thus, there exists a non-zero
vector y such that x ⊥ y. This indicates that P∗(x ⊗ y) = (x ⊗ y)∗P. Therefore, Claim 3
suggests that

(P + h(P)I)(x⊗ y) = (x⊗ y)∗(P + h(P)I).

The above equation can be simplified to h(P)x ⊗ y = h(P)y ⊗ x, which indicates that
h(P) = 0. Note that for all P ∈ P(H), there exists

Ψ(P) = dU∗Φ(P)U = P.

Therefore,
I = Φ(I) = Φ(P) + Φ(I − P) = d−1 I.

that is, d = 1. Hence, Ψ(I) = I can be obtained using Equation (3).
Second, we prove that Ψ(Q) = Q holds for all idempotents Q ∈ B(H). For any

idempotent Q, if Q is a finite rank operator, there exists Ψ(Q) = Q, else there should be
ker Q∗ 6= {0}. Let P be a projection on ker Q∗. Evidently, Q∗P = P∗Q and Ψ(P) = P;
therefore, Ψ(Q)∗P = PΨ(Q), that is,

Ψ(Q)∗ = Q∗Ψ(Q)∗Q∗ + Q∗Ψ(Q)∗(I −Q)∗ + (I −Q)∗Ψ(Q)∗(I −Q)∗.

Similarly, for idempotent I-Q we obtain

Ψ(I −Q)∗ = (I −Q)∗Ψ(I −Q)∗(I −Q)∗ + (I −Q)∗Ψ(I −Q)∗Q∗ + Q∗Ψ(I −Q)∗Q∗.

Therefore,

I = Ψ(I) = Ψ(Q)∗ + Ψ(I −Q)∗

= Q∗Ψ(Q)∗Q∗ + Q∗Ψ(Q)∗(I −Q)∗ + (I −Q)∗Ψ(Q)∗(I −Q)∗

+(I −Q)∗Ψ(I −Q)∗(I −Q)∗ + (I −Q)∗Ψ(I −Q)∗Q∗

+Q∗Ψ(I −Q)∗Q∗
. (9)

By multiplying the equality in Equation (9) by Q∗ and (I − Q)∗ from the left and right,
respectively, we obtain Q∗Ψ(Q)∗(I −Q)∗ = 0. Thus,

Ψ(Q)∗ = Q∗Ψ(Q)∗Q∗ + (I −Q)∗Ψ(Q)∗(I −Q)∗.

For any unit vector x ∈ ker Q∗, Q∗(x⊗ x) = (x⊗ x)∗Q. Therefore, as seen from Claim 2,

Ψ(Q)∗(x⊗ x) = (x⊗ x)Ψ(Q).
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This result implies that Ψ(Q)∗x = µxx for all unit vectors x ∈ ker Q∗, where µx ∈ C.
Accordingly,

Ψ(Q)∗|ker Q∗ = µQ I|ker Q∗ ,

that is,
Ψ(Q)∗ = Q∗Ψ(Q)∗Q∗ + µQ(I −Q)∗.

Similarly, for idempotent I −Q, there exists γQ ∈ C such that

Ψ(I −Q)∗ = (I −Q)∗Ψ(I −Q)∗(I −Q)∗ + µI−QQ∗.

Again, using Equation (9), we obtain

I = Q∗Ψ(Q)∗Q∗ + µQ(I −Q)∗ + (I −Q)∗Ψ(I −Q)∗(I −Q)∗ + µI−QQ∗. (10)

Using Q∗ to multiply Equation (10) from the left and right, respectively, we obtain

Ψ(Q)∗ = (1− µI−Q − µQ)Q∗ + µQ I.

Therefore, we obtain

Ψ(Q) = αQQ + βQ I, αQ = 1− µI−Q − µQ, βQ = µQ.

If Q is a finite rank operator, then Ψ(Q) = Q. If Q is not a finite rank operator, then let Q1
be a non-zero finite rank idempotent such that QQ1 = Q1Q = Q1. Thus, Q = Q1 + Q2 and
Q1Q2 = Q2Q1 = 0, where Q2 = Q−Q1 is an idempotent. Therefore,

Ψ(Q) = Ψ(Q1 + Q2) = αQQ + βQ I = Q1 + βQ1 I + αQ2 Q2 + βQ2 I,

that is,
(αQ − 1)Q1 + (αQ − αQ1)Q2 = (βQ1 + βQ2 − βQ)I.

This implies that αQ = 1 = αQ2 , that is, Ψ(Q) = Q + βQ I. Considering any two non-zero
vectors x ∈ ker Q∗ and y ∈ H such that x ⊥ y, owing to

0 = Q∗(x⊗ y) = (x⊗ y)∗Q,

we obtain
(Q + βQ I)∗(x⊗ y) = (x⊗ y)∗(Q + βQ I),

that is, βQx⊗ y = βQy⊗ x; thus, βQ = 0.

5. Proof of Theorem 3

Proof. The proof of Theorem 3 is completed by the following claims.
Claim 1 Φ is bijective.
If Φ(A) = 0, then for any B ∈ B(H) there is

Φ(A)∗Φ(B) + Φ(B)∗Φ(A) = 0.

Therefore, A∗B + B∗A = 0 holds for all B ∈ B(H). If B = I, then we can obtain A = −A∗.
This implies that AB− BA = 0 holds for all B ∈ Bs(H). Consequently, A = λiI, λ ∈ R.
However, if B 6= −B∗, then A = 0.

Claim 2 Φ(M(H)) =M(K).
For any A ∈ M(H), we have A∗ I + I∗A = 0. Therefore, Φ(A)∗Φ(I) + Φ(I)∗Φ(A) = 0.

As Φ is unital, Φ(A) ∈ M(K). Applying the same method to Φ−1, we find that Φ preserves
anti-self-adjoint elements on both sides.

Claim 3 Φ(RI) = RI.
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For any B ∈ M(H) and λ ∈ R, we obtain (λI)∗B + B∗(λI) = 0. Therefore,

Φ(λI)∗Φ(B) + Φ(B)∗Φ(λI) = 0.

Accordingly, there exists B ∈ B(H) such that Φ(B) = iI. Consequently, Φ(λI)∗ = Φ(λI).
Evidently, Φ(λI)Φ(B) = Φ(B)Φ(λI) holds for all B ∈ M(H); thus, Φ(λI) ∈ RI. As
indicated from Claim 1, there exists A ∈ B(H) for any λ ∈ R such that

Φ(A) = λI, Φ(A)∗Φ(iI) = Φ(iI)Φ(A).

Therefore, A∗(iI) = (iI)A, that is, A∗ = A. For any M ∈ M(K), there exists B ∈ M(H)
such that Φ(B) = M and Φ(A)Φ(B) = Φ(B)Φ(A). Thus, from Claim 1, we know that
AB = BA, that is, A ∈ RI.

Claim 4 Φ(iI) = ±iI.
Because

[(1 + i)I]∗(1− i)I + [(1− i)I]∗(1 + i)I = 0,

we have
Φ((1 + i)I)∗Φ((1− i)I) + Φ((1− i)I)∗Φ((1 + i)I) = 0.

Therefore, Φ(iI)2 = −I. If Φ(iI) 6= ±iI, then Φ(iI) =

(
i 0
0 −i

)
. For any self-adjoint

operator A, we have A∗(iI) + (iI)∗A = 0; hence,

Φ(A)∗Φ(iI) + Φ(iI)∗Φ(A) = 0.

Letting

Φ(A) =

(
T11 T12
T21 T22

)
,

we have

Φ(A) =

(
0 T12
−T∗12 0

)
∈ M(K).

As this contradicts Claim 2, Claim 4 is proved.
Claim 5 There exists a unitary or conjugate unitary operator U : H → K such that

Φ(P) = UPU∗, ∀P ∈ P(H).
First, it can be easily proven that Φ preserves self-adjoint elements on both sides. For

any self-adjoint element A,
(iI)∗A + A∗(iI) = 0,

therefore,
Φ(iI)∗Φ(A) + Φ(A)∗Φ(iI) = 0,

that is, Φ(A)∗ = Φ(A). Applying the same method to Φ−1, we obtain Φ, preserving the
self-adjoint nature on both sides.

Second, we prove that Φ preserves projections on both sides. For any projection
P ∈ P(H),

P∗(I − P) + (I − P)∗P = 0.

Therefore,
Φ(P)∗Φ(I − P) + Φ(I − P)∗Φ(P) = 0.

Because Φ preserves self-adjoint elements bilaterally, we obtain

Φ(P)∗ = Φ(P), Φ(P)2 = Φ(P),

that is, Φ preserves the projection. The same method is applied to Φ−1 to obtain Φ bilateral
preserving projection.
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Because Φ is an additive map and preserves the projection bilaterally, it is easy to verify
that Φ preserves orthogonality on both sides. In fact, for all P, Q ∈ P(H), if PQ = QP = 0,
then P + Q remains a projection. Therefore, Φ(P) + Φ(Q) is a projection. Thus,

Φ(P)Φ(Q) = Φ(Q)Φ(P) = 0,

that is, Φ preserves the orthogonality of the projection. Applying the same method to Φ−1,
we find that Φ preserves orthogonality on both sides. Therefore, Claim 5 is proved by
Theorem 5.

Let
Ψ(A) = U∗Φ(A)U, ∀A ∈ B(H). (11)

Then, it is easy to verify that Ψ : B(H)→ B(K) remains an additive bijection and satisfies
the requirement that for any A, B ∈ B(H), there is

A∗B + B∗A = 0⇔ Ψ(A)∗Ψ(B) + Ψ(B)∗Ψ(A) = 0.

Additionally, we can verify that Ψ(I) = I, Ψ(P) = P holds for all P ∈ P(H). Consequently,
we only need to prove that Ψ(A) = A holds for all A ∈ B(H). Claims 6 and 7 complete
this proof.

Claim 6 For any one rank operator x⊗ y ∈ B(H), there exists λx,y ∈ iR that is related
to x, y such that Ψ(x⊗ y) = x⊗ y + λx,y I.

Let x ⊗ y ∈ B(H) be an arbitrary one rank operator. For any unit vector z ∈ [x]⊥,
we have

(x⊗ y)∗(z⊗ z) + (z⊗ z)∗(x⊗ y) = 0.

Thus,
Ψ(x⊗ y)∗Ψ(z⊗ z) + Ψ(z⊗ z)∗Ψ(x⊗ y) = 0.

Evidently,
Ψ(x⊗ y)∗(z⊗ z) + (z⊗ z)Ψ(x⊗ y) = 0. (12)

Therefore, there exists λz ∈ C such that Ψ(x⊗ y)∗z = λzz. This indicates that there exists
constant λx,y such that

Ψ(x⊗ y)∗ |[x]⊥= λx,y I |[x]⊥ .

More specifically, there exists a vector ux,y ∈ H such that

Ψ(x⊗ y)∗ = ux,y ⊗ x + λx,y I.

From the above result and Equation (12), we can observe that λx,yz⊗ z = λx,yz⊗ z. Evi-
dently, λx,y ∈ R, that is,

Ψ(x⊗ y) = x⊗ ux,y + λx,y I, λx,y ∈ R.

Next, we prove that ux,y ∈ [x, y]. If x and y are linearly dependent, then, as seen from
Equation (12), for any z ∈ [x]⊥, we have

0 = Ψ(x⊗ y)∗(z⊗ z)x = (z⊗ z)Ψ(x⊗ y)x,

that is, Ψ(x⊗ y)x ∈ [x]. If x and y are linearly independent, then x⊗ y = x⊗ y1 + x⊗ y2,
where x and y1 are linearly dependent and x ⊥ y2. Therefore, we only need to prove the
case of x ⊥ y. Owing to dimH > 2, we can determine a non-zero unit vector z ∈ [x, y]⊥.
Applying the same method as above, we obtain

Ψ(x⊗ y)x ∈ [x, y], Ψ(x⊗ y)y ∈ [x, y].

Thus,
Ψ(x⊗ y)∗([x, y]) ⊆ [x, y], ux,y ∈ [x, y].
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For any x1, x2 ∈ H, if x1 and x2 are linearly independent, then there exists ux1,y, ux2,y,
ux1+x2,y such that

Ψ(x1 ⊗ y) = x1 ⊗ ux1,y + λx1,y I,

Ψ(x2 ⊗ y) = x2 ⊗ ux2,y + λx2,y I

and
Ψ((x1 + x2)⊗ y) = (x1 + x2)⊗ ux1+x2,y + λx1+x2,y I.

From the additivity of Ψ, we know that

x1 ⊗ (ux1+x2,y − ux1,y) + x2 ⊗ (ux1+x2,y − ux2,y) = (λx1+x2,y − λx1,y − λx2,y)I.

As dimH > 2, ux1,y = ux2,y. Therefore, ux,y does not depend on x, that is,

Ψ(x⊗ y) = x⊗ λyy + λx,y I.

If y1 and y2 are linearly dependent, then there exists y3 ∈ H, such that y3 is linearly
independent on y1 and y2, respectively. Similarly, for any x1, x2 ∈ H there exists λy, which
does not depend on y, such that

Ψ(x⊗ y) = λx⊗ y + λx,y I.

Note that Ψ(x⊗ x) = x⊗ x holds for all unit vectors x. Therefore, there exists λx,y ∈ R for
any x, y ∈ H such that

Ψ(x⊗ y) = x⊗ y + λx,y I.

Claim 7 For any A ∈ B(H), we have Ψ(A) = A.
If dimH < ∞, then Ψ(A) = A + λA I holds for all A ∈ B(H), where λA ∈ R depends

on A. If ker A∗ 6= {0}, then for any non-zero vector x ∈ ker A∗ there exists a nonzero vector
y ∈ H that satisfies x⊥y. We have

A∗(x⊗ y) + (x⊗ y)∗A = 0.

Evidently from Claim 4,

(A + λA I)∗(x⊗ y + λx,y I) + (x⊗ y + λx,y I)∗(A + λA I) = 0.

The above equality can be reduced to

λx,y(A− A∗) = λAx⊗ y− λAy⊗ x.

If λx,y = 0, then λA = 0; thus, Ψ(A) = A.
If λx,y 6= 0, then

A− A∗ =
λA
λx,y

x⊗ y− λA
λx,y

y⊗ x.

As dimH ≥ 3, then there exists a non-zero vector z ∈ H, such that z ⊥ x and z ⊥ y.
Similarly, if λx,z = 0, then λA = 0. If λx,z 6= 0, then

A− A∗ =
λA
λx,z

x⊗ z− λA
λx,z

z⊗ x.

We know that
x⊗ (

λA
λx,y

y− λA
λx,z

z) = (
λA
λx,y

y− λA
λx,z

z)⊗ x.

Thus, λA = 0.
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If ker A∗ = {0}, there exists a unit vector x ∈ H such that ker B 6= {0}, where
B = A− (x⊗ x)A. Thus,

Ψ(B) = B, Ψ((x⊗ x)A) = (x⊗ x)A,

that is,
Ψ(A) = Ψ(B)−Ψ((x⊗ x)A) = A.

If dimH = ∞, then each A ∈ B(H) can be written as the sum of five idempo-
tents (Theorem 4). Therefore, we only need to prove that Ψ(Q) = Q for all idempotents
Q ∈ B(H).

First, it is known that Ψ(P) = P holds for all P ∈ P(H). For any non-zero projection
P, there exists a nonzero vector x such that Px = 0, and considering the non-zero vector y,
such that x ⊥ y. It is easy to verify that P∗(x⊗ y) + (x⊗ y)∗P = 0; therefore, from Claim 3,
it is known that

(P + h(P)I)(x⊗ y) + (x⊗ y)∗(P + h(P)I) = 0.

The above equality can be simplified to h(P)x⊗ y = h(P)y⊗ x, indicating that h(P) = 0.
Note that for any P ∈ P(H) we have

Ψ(P) = dU∗Φ(P)U = P.

Therefore,
I = Φ(I) = Φ(P) + Φ(I − P) = d−1 I,

that is, d = 1. Hence, Ψ(I) = I can be obtained using Equation (11).
Second, we prove that Ψ(Q) = Q holds for all idempotents Q ∈ B(H). For any

idempotent Q, if Q is a finite rank operator then there exits Ψ(Q) = Q, else there should
be ker Q∗ 6= {0}. Let P be a projection on ker Q∗. Notably, Q∗P + P∗Q = 0 and Ψ(P) = P.
Therefore, Ψ(Q)∗P + PΨ(Q) = 0, that is,

Ψ(Q)∗ = Q∗Ψ(Q)∗Q∗ + Q∗Ψ(Q)∗(I −Q)∗ + (I −Q)∗Ψ(Q)∗(I −Q)∗.

Similarly, for idempotent I-Q we can obtain

Ψ(I −Q)∗ = (I −Q)∗Ψ(I −Q)∗(I −Q)∗ + (I −Q)∗Ψ(I −Q)∗Q∗ + Q∗Ψ(I −Q)∗Q∗.

Therefore,

I = Ψ(I) = Ψ(Q)∗ + Ψ(I −Q)∗

= Q∗Ψ(Q)∗Q∗ + Q∗Ψ(Q)∗(I −Q)∗ + (I −Q)∗Ψ(Q)∗(I −Q)∗

+(I −Q)∗Ψ(I −Q)∗(I −Q)∗ + (I −Q)∗Ψ(I −Q)∗Q∗

+Q∗Ψ(I −Q)∗Q∗
. (13)

By multiplying the equality in Equation (13) by Q∗ and (I − Q)∗ from the left and right,
respectively, we obtain Q∗Ψ(Q)∗(I −Q)∗ = 0. Thus, there exits

Ψ(Q)∗ = Q∗Ψ(Q)∗Q∗ + (I −Q)∗Ψ(Q)∗(I −Q)∗.

For any unit vector x ∈ ker Q∗, we have Q∗(x⊗ x) + (x⊗ x)∗Q = 0. Evidently, from Claim 2,

Ψ(Q)∗(x⊗ x) + (x⊗ x)Ψ(Q) = 0.

This indicates that there exists µx ∈ C such that

Ψ(Q)∗x = µxx, ∀x ∈ ker Q∗.

Then,
Ψ(Q)∗|ker Q∗ = µQ I|ker Q∗ .
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Thus,
Ψ(Q)∗ = Q∗Ψ(Q)∗Q∗ + µQ(I −Q)∗.

Similarly, for idempotent I −Q there exists γQ ∈ C such that

Ψ(I −Q)∗ = (I −Q)∗Ψ(I −Q)∗(I −Q)∗ + µI−QQ∗.

It can again be inferred from Equation (13) that

I = Q∗Ψ(Q)∗Q∗ + µQ(I −Q)∗ + (I −Q)∗Ψ(I −Q)∗(I −Q)∗ + µI−QQ∗. (14)

By multiplying the equality in Equation (14) by Q∗ from the left and right, respectively,
we obtain

Ψ(Q)∗ = (1− µI−Q − µQ)Q∗ + µQ I.

Thus, there is
Ψ(Q) = αQQ + βQ I, αQ = 1− µI−Q − µQ, βQ = µQ.

If Q is a finite rank operator, then Ψ(Q) = Q. If Q is not a finite rank operator, then let
Q1 be a non-zero finite rank idempotent such that QQ1 = Q1Q = Q1. Then, we have
Q = Q1 + Q2 and Q1Q2 = Q2Q1 = 0, where Q2 = Q−Q1 is an idempotent. Therefore,

Ψ(Q) = Ψ(Q1 + Q2) = αQQ + βQ I = Q1 + βQ1 I + αQ2 Q2 + βQ2 I,

that is,
(αQ − 1)Q1 + (αQ − αQ1)Q2 = (βQ1 + βQ2 − βQ)I.

This shows that αQ = 1 = αQ2 , that is, Ψ(Q) = Q + βQ I. Considering any two non-zero
vectors x ∈ ker Q∗ and y ∈ H such that x ⊥ y, we obtain

0 = Q∗(x⊗ y) = (x⊗ y)∗Q.

Thus,
(Q + βQ I)∗(x⊗ y) = (x⊗ y)∗(Q + βQ I),

essentially meaning that βQx⊗ y = βQy⊗ x; thus, βQ = 0.

6. Conclusions

In this study, the isomorphism invariant zero-∗ products on B(H) were found using the linear
preservation method. We have demonstrated that: (1) if Φ satisfies A∗B = 0⇔ Φ(A)∗Φ(B) = 0
for any A, B ∈ B(H), then Φ is a unitary or conjugate unitary isomorphism; (2) if Φ
satisfies A∗B− B∗A = 0 ⇔ Φ(A)∗Φ(B)−Φ(B)∗Φ(A) = 0 for any A, B ∈ B(H), then Φ
is a unitary or conjugate unitary isomorphism; and (3) if Φ satisfies A∗B + B∗A = 0 ⇔
Φ(A)∗Φ(B) + Φ(B)∗Φ(A) = 0 for any A, B ∈ B(H), then Φ is a unitary or conjugate
unitary isomorphism. This indicates that the zero-∗, ∗-Lie, and ∗-Jordan products can
be used as isomorphism invariants on B(H), retaining the basic structure and properties
of the algebra, which has crucial implications for the study of algebraic classification.
Furthermore, the elements on B(H) with zero-∗ products completely determine the basic
structure and properties of this algebra. This finding has important implications for the
study of algebraic categorization. Lastly, to retain the structure and properties of two
algebras, one need only consider a small fraction of elements, namely, those elements with
zero-∗ products, which greatly reduces the workload. Additionally, this approach can be
applied to the study of other subjects, such as quantum information. Therefore, the results
of this paper have considerable research value and significance.

In terms of research methods, the traditional research idea of the preserving problem
was originally adopted. The detailed technique of the proof has its own originality; its core
is to use A∗B = 0, A∗B− B∗A = 0 and A∗B + B∗A = 0 to construct special operators. A
key step in the proof is using the two conclusions from reference [34].
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Another most important point is that in the process of proving Theorem 3 we have
used the relationship A∗B = B∗A = 0 to construct operators in several places. This relation
is a partial special operator satisfying A∗B + B∗A = 0. Therefore, we guess that if we can
find a new proof method that takes full advantage of the properties of the zero-∗ Jordan
products, then the conditions of the mapping in Theorem 3 may be weakened, thereby
narrowing the range of invariants and yielding better results. Although we predict that
this will be a very difficult task, we intend to continue exploring it.
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