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Abstract: We obtain some generalized Minkowski type integral formulas for compact Riemannian
(resp., spacelike) hypersurfaces in Riemannian (resp., Lorentzian) manifolds in the presence of an
arbitrary vector field that we assume to be timelike in the case where the ambient space is Lorentzian.
Some of these formulas generalize existing formulas in the case of conformal and Killing vector fields.
We apply these integral formulas to obtain interesting results concerning the characterization of such
hypersurfaces in some particular cases such as when the ambient space is Einstein admitting an
arbitrary (in particular, conformal or Killing) vector field, and when the hypersurface has a constant
mean curvature.
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1. Introduction

In 1903, H. Minkowski published in [1] his two famous integral formulas for compact
surfaces in three-dimensional Euclidean space. After that, many authors obtained integral
formulas that generalized the two Minkowski formulas to hypersurfaces in Euclidean space
and then in a general Riemannian manifold that admits a Killing or conformal vector field.
For instance, in [2,3], C. C. Hsiung obtained generalized integral formulas of Minkowsi type
for embedded hypersurfaces in Riemannian manifolds (see also [4]). In [5,6], Y. Katsurada
generalized the work of Hsiung and derived some integral formulas of Minkowski type that
were valid for Einstein manifolds and used them to prove that given a hypersurface (M, g)
with constant mean curvature in an Einstein Riemannian manifold

(
M, g

)
, and given a

homothetic vector field ξ of
(

M, g
)

such that the inner product of ξ and the normal to M
does not change sign and does not vanish on M, then M is necessarily umbilical. In [7], K.
Yano obtained three integral formulas of Minkowski type for hypersurfaces with constant
mean curvature in a Riemannian manifold admitting a homothetic vector field. Then, over
time, several integral formulas of Minkowski type appeared in the literature that were used
to obtain rigidity results for isometrically immersed hypersurfaces in pseudo-Riemannian
manifolds admitting a conformal vector filed. In [8–10], L. J. Alias, A. Romero, and M.
Sanchez obtained the first and second integral formulas of Minkowski type for compact
spacelike hypersurfaces in a generalized Robertson–Walker spacetime (resp., conformally
stationary spacetime), and applied them to the study of compact spacelike hypersurfaces
with constant mean curvature. Two years later, in [11], S. Montiel provided another proof
of the first and second Minkowski formulas in the case where the ambient spacetime is
equipped with a conformal timelike vector field. In 2003, L. J. Alias, A. Brasil JR, and
A. G. Colares generalized in [12] the integral formulas obtained in [8–10] for spacelike
hypersurfaces in conformally stationary spacetimes. See also [13,14].
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The assumption that the ambient space admits a conformal vector field is inspired by
the fact that the position vector field in Euclidean space is a closed conformal vector field
(which in some references is called a concircular vector field). The importance of conformal
vector fields comes from the use of conformal mappings as a mathematical tool in general
relativity. In fact, although a conformal vector field does not leave the Einstein tensor
invariant, its existence in a pseudo-Riemannian manifold (M, g) is a symmetry assumption
for g that can be used (for example) to obtain exact solutions of Einstein’s equation.

Consider now an (n + 1)-dimensional either Riemannian or Lorentzian manifold(
M, g

)
admitting a conformal vector field ξ that we assume to be timelike in the case where(

M, g
)

is Lorentzian. Let (M, g) be a connected n -dimensional Riemannian manifold that
is isometrically immersed as a hypersurface into

(
M, g

)
, and let ξ denote the restriction

of ξ to M. Consider the function θ = g(ξ, N), where ξ is an arbitrary vector field and N is
a globally defined unit vector field normal to M. In the case where it is Riemannian, L. J.
Alias, M. Dajczer, and J. Ripoll gave in [15] an expression for the Laplacian ∆θ in terms of
the Ricci curvature of

(
M, g

)
and the norm of the shape operator of (M, g). One year later,

in 2008, A. Barros, A. Brasil, and A. Caminha obtained in [16] the analogous expression
when

(
M, g

)
is Lorentzian.

In 2010, A. L. Albujer, J. A. Aledo, and L. J. Alias gave in [17] an expression for ∆θ in
a slightly different way than given in [15,16]. Then, they used that expression to obtain a
Minkowski type integral formula for compact Riemannian and spacelike hypersurfaces,
and applied this to deduce some interesting results concerning the characterization of
compact Riemannian and spacelike hypersurfaces under certain hypotheses such as the
constancy of the mean curvature or the assumption that the ambient space is Einstein or a
product space. For more recent references pertaining to this work, we may cite [18–21].

In this paper, we mainly wish to generalize previous results concerning Minkowski type in-
tegral formulas for Riemannian (resp., spacelike) hypersurfaces in Riemannian (resp., Lorentzian)
manifolds in the presence of an arbitrary vector field that we assume to be timelike in the case
where it is Lorentzian, and apply these integral forms to compact Riemannian and spacelike
hypersurfaces in order to obtain interesting results concerning the characterization of such
hypersurfaces in some particular cases, such as the ambient space being Einstein and admitting
an arbitrary (and in particular, a conformal Killing) vector field, or the hypersurface being
minimal (resp., maximal) or having a constant mean curvature.

In particular, we generalize the results in [7,17] for any arbitrary Riemannian or space-
like hypersurface in any arbitrary ambient space with an arbitrary vector field. More
precisely, given an (n + 1)-dimensional either Riemannian or Lorentzian manifold

(
M, g

)
admitting an arbitrary vector field ξ that we assume to be timelike in the case where

(
M, g

)
is Lorentzian, and given a connected n -dimensional Riemannian manifold (M, g) that is
isometrically immersed as a hypersurface into

(
M, g

)
, let ξ denote the restriction of ξ to M,

and let N be a globally defined unit vector field normal to M. Of course, N is supposed to
be timelike in the case where

(
M, g

)
is Lorentzian. Our first main goal in this paper is to

give a useful expression for the Laplacian ∆θ of the function θ = g(ξ, N) in terms of the
Ricci and scalar curvatures of the ambient space, the mean curvature of the hypersurface,
and the tangent part of the restriction of the vector field ξ to M. In the particular case
where ξ is a conformal (resp., Killing) vector field, our expression reduces to that obtained
in [17] (resp. [7]). We deduce from the generalized expression for ∆θ different generalized
Minkowski type integral formulas valid for any Riemannian or spacelike hypersurface
in any arbitrary Riemannian or Lorentzian manifold admitting an arbitrary vector field.
In particular, we generalize an integral formula obtained in [17] in the case where ξ is
conformal to the case of an arbitrary vector field. We also apply the obtained generalized
Minkowski type formulas to deduce interesting results concerning the characterization
of Riemannian and spacelike hypersurfaces in some particular cases, such as the ambient
space being Einstein and admitting an arbitrary (and in particular, a conformal Killing)
vector field, or the hypersurface having a constant mean curvature.
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2. Preliminaries

Let n ≥ 2, and let (M, g) be a connected n -dimensional pseudo-Riemannian manifold.
In this paper, we adopt the opposite convention of that in [22] to define the Riemannian
tensor. That is, the Riemannian tensor is defined here to be the (1, 3) tensor field given by

R(X, Y)Z = [∇X ,∇Y]Z−∇[X,Y]Z,

for all X, Y, Z ∈ X(M).
For every p ∈ M and every orthonormal basis {e1, . . . , en} of Tp M, the Ricci curvature

tensor Ric and the scalar curvature Scal are, respectively, defined to be

Ric(X, Y) = trace(Z 7→ R(Z, X)Y) =
n

∑
i=1

εig(R(X, ei)ei, Y),

for all X, Y ∈ Tp M.

Scal(p) = trace(Ric) =
n

∑
i=1

εiRic(ei, ei),

where εi = g(ei, ei).
Throughout this paper, we assume that (M, g) is Riemannian (i.e., the metric g has

index 0) which is isometrically immersed as a hypersurface into an (n + 1)-dimensional
pseudo-Riemannian manifold

(
M, g

)
that we assume to be Riemannian or Lorentzian (i.e.,

the metric g has index 0 or 1). Let ∇ and ∇ denote the Levi-Civita connections on M and
M, respectively. Let X(M) and X(M) denote, respectively, the sets of all tangent vector
fields on M and M, and let X(M) denote the set of all M vector fields on M. We use the
two notations X · f or X( f ) to denote the value of a vector field X on a function f .

Let ξ ∈ X(M), which we assume to be timelike in the case where M is Lorentzian, and
let θξ denote its dual one-form, that is, the one-form given by θξ(Y) = g

(
ξ, Y

)
, for every

Y ∈ X(M). Let Aξ be the (1, 1)-tensor (viewed as an endomorphism) defined by

Aξ(Y) = ∇Yξ

We write as usual

Lξ g(Y, Z) + dθξ(Y, Z) = 2g
(

Aξ(Y), Z
)

,

for all Y, Z ∈ X(M), where L is the Lie derivative of the metric g with respect to ξ.
Let B and φ be the symmetric and skew-symmetric parts of Aξ . In other words,

we have

Lξ g(Y, Z) = 2g(B(Y), Z) (1)

dθξ(Y, Z) = 2g(φ(Y), Z), (2)

Now, in the case where M is Riemannian, we assume that there exists a globally defined
unit vector field N normal to M. In this case, M is said to be a two-sided hypersurface. In
the case where M is Lorentzian, since M is a spacelike hypersurface in M, and ξ is assumed
to be timelike, then we can choose a (globally defined) timelike unit vector field N normal
to M and in the same time orientation of ξ, that is, we have g

(
ξ, N

)
< 0 on M. In both

cases, if ξ is the restriction of ξ to M, then we denote by θ the smooth function on M, called
the support function, which is defined by θ = g(ξ, N). It is clear that in the case where M
is Lorentzian, we have θ ≤ −

√
−g(ξ, ξ) < 0. If T is the tangential component of ξ to M,

then we have
ξ = T + εθN, (3)
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where ε = g(N, N) = ±1, according to whether M is Riemannian or Lorentzian,
respectively.

Since ξ ∈ X(M), then the operator Aξ : X(M) → X(M) given by Aξ(X) = ∇Xξ is
well defined (see for instance [22], pp. 97–99). Then, we have

Aξ(X) = ψ(X) + εα(X)N, (4)

where ψ(X) =
(
∇Xξ

)>
is the tangential component of ∇Xξ to M, and α is a one-form

on M.
Let η ∈ X(M) be the vector field associated to α. Therefore, for all X ∈ X(M), we have

g(η, X) = α(X)

= g
(

Aξ(X), N
)

= g(φ(X) + B(X), N)

= −g(X, φ(N)) + g(X, B(N))

= −g(X, φ(N)) + g
(

X, B(N)>
)

(5)

Since φ is skew-symmetric, we have g(φ(N), N) = 0, that is, φ(N) ∈ X(M). Therefore,
(5) implies that

η = B(N)> − φ(N) (6)

On the other hand, the Gauss and Weingarten formulae for M as a hypersurface of M
are given by

∇XY = ∇XY + εg(A(X), Y)N

A(X) = −∇X N,

for all X, Y ∈ X(M), where A is the shape operator of M with respect to N.
Therefore, for all X ∈ X(M), we have

∇Xξ = ∇XT − εθA(X) + εg(A(T) +∇θ, X)N (7)

From (4) and (7), we deduce that

∇XT = ψ(X) + εθA(X) (8)

∇θ = η − A(T) (9)

We need to start by revisiting some key definitions. In general, recall that for a
(1, 1)-tensor S, the covariant derivative ∇S of S is defined as follows

∇S(X, Y) = (∇XS)(Y) = ∇X(S(Y))− S(∇XY)

The divergence of a vector field X ∈ X(M) is defined as the function

div(X) =
n

∑
i=1

g(∇ei X, ei), (10)

where {e1, . . . , en} is a local orthonormal frame of vector fields.
The divergence of a (1, 1)-tensor S on M is defined as the vector field

div(S) = trace(∇S) =
n

∑
i=1

(∇S)(ei, ei),

where, as above, {e1, . . . , en} is a local orthonormal frame of vector fields.
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We observe that without loss of generality, we may assume {e1, . . . , en} to be parallel.
In this case, we see that

div(S) =
n

∑
i=1
∇ei (S(ei))

We also recall that the curvature tensor R of M is given in terms of the curvature tensor
R of M and the shape operator by the so-called Gauss equation

R(X, Y)Z =
(

R(X, Y)Z
)>

+ ε(g(A(Y), Z)A(X)− g(A(X), Z)A(Y)), (11)

for all X, Y, Z ∈ X(M).
Recalling that the mean curvature of M is defined to be

H =
ε

n
trace(A), (12)

it follows from (11) that the Ricci curvatures Ric and Ric of M and M are related as follows

Ric(X, Y) = Ric(X, Y)− εg(R(N, X)Y, N) + g(A(X), nHY− εA(Y)), (13)

for all X, Y ∈ X(M).
Moreover, by tracing (13), we see that the scalar curvatures Scal and Scal of M and M

are related as follows

Scal = Scal − 2εRic(N, N) + ε
(

n2H2 − ‖A‖2
)

(14)

3. Some Useful Tensor Formulas

With the notations above, let
(

M, g
)

be an (n + 1)-dimensional either Riemannian or
Lorentzian manifold, and let ξ ∈ X(M) be an arbitrary vector field that we assume to be
timelike in the case where

(
M, g

)
is Lorentzian. Let (M, g) be a connected n -dimensional

Riemannian manifold that is isometrically immersed as a hypersurface into
(

M, g
)
, and let

ξ denote the restriction of ξ to M.
Our main goal in this section is to give a useful expression for the Laplacian ∆θ of

the function θ = g(ξ, N), where ξ is an arbitrary vector field and N is a globally defined
unit vector field normal to M. In the case where

(
M, g

)
is Riemannian and ξ is a Killing

(resp., conformal) vector field, an expression for ∆θ has been given in [23] (resp. [15]) in
terms of the Ricci curvature of

(
M, g

)
and the norm of the shape operator. An analogous

formula has been obtained in [16] in the case where
(

M, g
)

is Lorentzian and ξ̄ is a timelike
conformal vector field. As we have mentioned in the introduction, in [17], a formula for ∆θ
was obtained in a slightly different way as given in [15,16].

Let us denote by B> the restriction of B to TM, and let f = g
(
∇Nξ, N

)
. It is clear that

f is a smooth function on M. In fact, from (1), we see that

f =
1
2

Lξ g(N, N) = g(B(N), N) (15)

To calculate ∆θ, we use (9). Thus, we start by computing the divergences of T
and A(T).

Proposition 1. Let the notation and assumptions be as above. Then, we have

div(T) = (div(ξ)− ε f ) + nHθ (16)

div(A(T)) = g(T, div(A)) + trace
(

A ◦ BT
)
+ εθ‖A‖2 (17)
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Proof. Let {e1, . . . , en} be a local orthonormal frame of vector fields. When e1, . . . , en and
N are extended arbitrarily to vector fields on M, then according to (10), and making use of
(3), we have

div(T) =
n

∑
i=1

g(∇ei T, ei)

= (divξ − ε f ) + nHθ.

Using the same formula (10) and making use of (8) and of the fact that if S is a
self-adjoint operator, then so is ∇XS, we obtain

div(A(T)) =
n

∑
i=1

g(∇ei A(T), ei)

=
n

∑
i=1

g((∇ei A)(T), ei) +
n

∑
i=1

g(A(∇ei T), ei)

= g(T,
n

∑
i=1

(∇ei A)(ei)) +
n

∑
i=1

g(ψ(ei) + εθA(ei), A(ei))

= g(T, div(A)) +
n

∑
i=1

g(Aξ(ei), A(ei)) + εθ‖A‖2

= g(T, div(A)) +
n

∑
i=1

g(B(ei), A(ei)) + εθ‖A‖2,

where we have also used here (at the last step) the fact that since A is self-adjoint and φ is
skew-symmetric, g(φ(ei), A(ei)) = 0 for all i.

In the following proposition, we give an explicit useful formula for div(A(T)) in terms
of the Ricci curvature (compare to formula (14) in [17]).

Proposition 2. Let the notation and assumptions be as above. Then, we have

div(A(T)) = εnT(H) + trace(A ◦ BT) + εθ‖A‖2 − Ric(N, T) (18)

Proof. Let {e1, . . . , en} be a local orthonormal frame of vector fields that we assume to be
parallel. As we have noticed above, when e1, . . . , en and N are extended arbitrarily to vector
fields on M, then, using symmetric properties of the curvature tensor R of M, we have
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Ric(N, T) =
n

∑
i=1

g(R(ei, N)T, ei) + εg(R(N, N)T, N)

=
n

∑
i=1

g(R(ei, T)N, ei)

=
n

∑
i=1

g((∇A)(T, ei)− (∇A)(ei, T), ei)

=
n

∑
i=1

g(∇T(A(ei)), ei)−
n

∑
i=1

g((∇ei A)(T), ei)

=
n

∑
i=1

T · g(A(ei), ei)− g(T,
n

∑
i=1

(∇ei A)(ei))

= T · trace(A)− g(T,
n

∑
i=1

(∇A)(ei, ei))

= εnT(H)− g(T, div(A))

Now, from this last expression and (17), we obtain (18).

We now give an expression for div(∇Nξ)>. For this purpose, we note that

∇Nξ = (∇Nξ)> + ε f N,

from which we have

∇X∇Nξ = ∇X(∇Nξ)> + g
(

A(X), (∇Nξ)>
)

N + εX( f )N + ε f∇X N

= ∇X(∇Nξ)> + g
(

A(X), (∇Nξ)>
)

N + εX( f )N − ε f A(X) (19)

Since ∇Nξ = B(N) + φ(N) and φ(N) ∈ X(M), it follows that

(∇Nξ)> = B(N)> + φ(N) (20)

(∇Nξ)⊥ = B(N)⊥ (21)

Proposition 3. Let the notation and assumptions be as above. Then, we have

div(∇Nξ)> = Ric(N, ξ) + N · (div(ξ)− ε f )− trace
(

A ◦ B>
)
+ n f H (22)

Proof. Let {e1, . . . , en} be a parallel local orthonormal frame of vector fields in X(M). Then,
by using (19), we deduce that

div
(
(∇Nξ)

>)
=

n

∑
i=1

g(∇ei (∇Nξ)>, ei)

=
n

∑
i=1

g(∇ei∇Nξ, ei) +
n

∑
i=1

g(ε f A(ei), ei)

=
n

∑
i=1

g(∇ei∇Nξ, ei) + ε f trace(A)

=
n

∑
i=1

g(∇ei∇Nξ, ei) + n f H (23)
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On the other hand, by extending {e1, . . . , en} so that ∇Nei = 0 for all i = 1, . . . , n,
we have

R(ei, N)ξ = ∇ei∇Nξ −∇N∇ei ξ +∇A(ei)
ξ (24)

By using (24), we see that (23) becomes

div
(
(∇Nξ)

>)
= Ric(N, ξ) +

n

∑
i=1

g(∇N∇ei ξ, ei)−
n

∑
i=1

g(∇A(ei)
ξ, ei) + n f H

= Ric(N, ξ) +
n

∑
i=1

N · g(∇ei ξ, ei)−
n

∑
i=1

g(∇A(ei)
ξ, ei) + n f H

= Ric(N, ξ) + N · (div(ξ)− ε f )− trace
(

A ◦ B>
)
+ n f H,

where we have used the fact that

g(∇A(ei)
ξ, ei) = g(B(A(ei)) + φ(A(ei)), ei) = trace

(
A ◦ B>

)
.

Remark 1. Note that since

N · (div(ξ)− ε f ) = N · trace
(

B>
)
= trace

(
∇N B>

)
and

g(φ(A(ei)), ei) = 0, 1 ≤ i ≤ n,

we can express (22) as follows

div
(
(∇Nξ)

>)
= Ric(N, ξ) + trace

(
∇N B> − A ◦ B>

)
+ n f H (25)

We are now ready to give the desired expression for ∆θ.

Theorem 1. Let (M, g) be a connected n -dimensional Riemannian manifold that is isometrically
immersed as a hypersurface into an (n + 1)-dimensional either Riemannian or Lorentzian manifold(

M, g
)
. Let ξ ∈ X(M) be an arbitrary vector field that we assume to be timelike in the case where

(M, g) is Lorentzian, and let ξ denote the restriction of ξ to M. Let N be a globally defined unit
vector field normal to M, and let the notation used here be as above. Then, the Laplacian ∆θ of the
function θ = g(ξ, N) is given by

∆θ = 2div
(

B(N)>
)
− εθ(Ric(N, N)+ ‖A‖2)−N · (div(ξ)− ε f )− εn(T(H) + ε f H) (26)

Proof. By (6) and (9), we have

∇θ = B(N)> − φ(N)− A(T) (27)

By using (18) and (22), it follows that

∆θ = div(B(N)> − φ(N)− A(T))

= 2div
(

B(N)>
)
− Ric(N, ξ)− N · (div(ξ)− ε f ) + trace(A ◦ B>)− n f H

− εnT(H)− trace(A ◦ BT)− εθ‖A‖2 + Ric(N, T)

= 2div
(

B(N)>
)
− εθ(Ric(N, N) + ‖A‖2)− N · (div(ξ)− ε f )− εn(T(H) + f H),

as desired.
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As a straightforward consequence of Theorem 1, we obtain an interesting expression
for ∆θ in the particular case where ξ is a conformal Killing vector field on M, that is, a
vector field satisfying

Lξ g = 2ψg, (28)

for some smooth function ψ on M, called the conformal factor (or potential function) of ξ.

Corollary 1. Let the notation and assumptions be as in Theorem 1, and assume in addition that
the vector field ξ is conformal. Then, we have

∆θ = −εθ(Ric(N, N) + ‖A‖2)− εn(ψH + εN(ψ) + T(H)) (29)

Proof. From (1) and (28), we deduce that B = ψI, where I is the identity. It follows that
B(N)> = 0 and B(N) = ψN. Consequently, by using (15), we obtain

f =
1
2

Lξ g(N, N) = g(B(N), N) = εψ, (30)

where we have identified here the function ψ with its restriction to M. We also have
div
(
ξ
)
= trace

(
Aξ

)
= trace(B) = (n + 1)ψ, from which we deduce that div(ξ)− ε f = nψ.

Now, by substituting these into (26), we obtain (29).

It would be of some use to express ∆θ in terms of the scalar curvatures of M and M.
This can be done by combining the two formulas (14) and (26), so that we obtain formula
(31) in the following theorem.

Theorem 2. Let the notation and assumptions be as in Theorem 1. Then, we have

∆θ = 2div
(

B(N)>
)
− θ(Scal − Scal − εRic(N, N) + εn2H2)− N · (div(ξ)− ε f )

−εn(T(H) + f H) (31)

Note that (31) is a generalization to the case of an arbitrary vector field on M of
formula (9) in [17], which was given in the case where ξ is a conformal Killing vector field.

Theorem 3 ([17]). Let the notation and assumptions be as in Theorem 1, and assume in addition
that the vector field ξ is conformal. Then, we have

∆θ = −θ(Scal − Scal − εRic(N, N) + εn2H2)− εn(ψH + εN(ψ) + T(H)) (32)

On the other hand, we give an expression for div
(
(∇Nξ)

⊥)
.

Proposition 4. Let the notation and assumptions be as above. Then, we have

div(∇Nξ)⊥ = N · f − εn f H (33)

Proof. Let {e1, . . . , en} be a parallel local orthonormal frame of vector fields. Note first that

∇ei ei = g(A(ei), ei)N (34)
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We also note that since N · g(N, N) = 0, we have ∇N N ∈ X(M). With these in hand,
we can calculate

div
(
(∇Nξ)

⊥)
=

n

∑
i=1

g(∇ei (∇Nξ)⊥, ei) + g(∇N(∇Nξ)⊥, N) (35)

=
n

∑
i=1

(ei · g((∇Nξ)⊥, ei)− g((∇Nξ)⊥, g(A(ei), ei)N) (36)

+ N · g((∇Nξ)⊥, N)− g((∇Nξ)⊥,∇N N) (37)

= −trace(A)g(∇Nξ)⊥, N) + N · g(∇Nξ)⊥, N) (38)

= −εn f H + N · f , (39)

as desired.

Remark 2. By combining the two formulas (22) and (33), we deduce that

div
(
∇Nξ

)
= Ric(N, ξ) + N · div(ξ)− trace

(
A ◦ B>

)
(40)

Note that (40) is similar to the following general formula where ξ is a projective vector field

div
(

AξY
)
= Ric(Y, ξ) + Y · div(ξ) + trace

(
Aξ ◦ AY

)
(41)

To obtain (40), it suffices to take Y = N in (41) and remember that div
(
∇Nξ

)
= div

(
Aξ N

)
and AN = −A.

4. Integral Formulas for Compact Riemannian Hypersurfaces in
Pseudo-Riemannian Manifolds

In this section, we assume that (M, g) is an n-dimensional compact Riemannian
manifold that is isometrically immersed as a hypersurface in an (n + 1)-dimensional either
Riemannian or Lorentzian manifold

(
M, g

)
with all the assumptions stated at the beginning

of the above section. The first integral formula that we can display here results directly
from the integration of the simple formula (16).

Proposition 5. Let (M, g) be as above. Then, we have∫
M
(div(ξ)− ε f + nHθ)dV = 0 (42)

In particular, if ξ is a conformal Killing vector field with conformal factor ψ, then∫
M
(ψ + Hθ)dV = 0 (43)

By using formula (42) of the previous proposition, the following results can be eas-
ily deduced.

Proposition 6. In a Lorentzian manifold with an arbitrary timelike vector field ξ (resp., a conformal
vector field with a potential function ψ), there does not exist any compact spacelike hypersurface for
which the mean curvature function H satisfies the condition (div(ξ) + f )H < 0, where f is the
function defined by (15) (resp., Hψ < 0).

Proof. It is clear that if (div(ξ) + f )H < 0, then either div(ξ) + f < 0 and H > 0 or
div(ξ) + f > 0 and H < 0. Since θ < 0 and H does not change sign, we deduce that either
div(ξ) + f + nHθ < 0 or div(ξ) + f + nHθ > 0. If M is compact, then formula (42) implies
in both cases that div(ξ) + f = 0 and H = 0, which is absurd.
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Proposition 7. With the notations and assumptions previously stated at the beginning of the above
section, assume that (M, g) is either a compact Riemannian manifold that is either minimal or
maximal according to whether

(
M, g

)
is Riemannian or Lorentzian, respectively. Then, there exists

a point p ∈ M such that trace
(

B>p
)
= 0, that is, div(ξ)(p) = g

(
∇Nξ, N

)
p or equivalently

(∇Nξ)⊥p = div(ξ)(p) · Np. In particular, if ξ is affine, then (∇Nξ)⊥p = 0. If ξ is conformal with
conformal factor ψ, then ψ(p) = 0.

As an immediate consequence of Proposition 7, we have the following corollary.

Corollary 2. Given the notations and assumptions outlined earlier in this section, consider that ξ
is a homothetic vector field. Then, when it is Riemannian (resp., Lorentzian),

(
M, g

)
contains no

compact minimal (resp., maximal) Riemannian hypersurface.

A more general result than Proposition 7 is the following proposition.

Proposition 8. With the notations and assumptions stated at the beginning of the above section,
let ξ be an arbitrary vector field, and assume that M is compact with constant mean curvature.
Assume in addition, in the case where

(
M, g

)
is Riemannian, that the function θ is not constant

and does not change sign.

(a) If Hθ > 0, then there exists a point p ∈ M such that div(ξ)(p) < g
(
∇Nξ, N

)
p.

(b) If Hθ < 0, then there exists a point p ∈ M such that div(ξ)(p) > g
(
∇Nξ, N

)
p.

(c) If H = 0, then there exists a point p ∈ M such that div(ξ)(p) = g
(
∇Nξ, N

)
p.

Remark 3. On the other hand, we easily deduce from (43) that if ξ is a Killing vector field (i.e.,
ψ = 0) and M has constant mean curvature, then either θ vanishes somewhere or H = 0 (i.e., M
is minimal in the case where M is Riemannian and maximal in the case where M is Lorentzian).
Conversely, if ξ is a homothetic vector field (i.e., ψ is constant) and H = 0, then ξ is necessarily a
Killing vector field. We also deduce from (43) that if ξ is a homothetic vector field and θ = 0, then ξ
is necessarily a Killing vector field. This is exactly what Theorem 5.3 states in [7].

Our second integral formula involves Ric(N, T) and is as follows.

Theorem 4. Let (M, g) be an n-dimensional compact Riemannian manifold that is isometrically
immersed as a hypersurface in an (n + 1)-dimensional either Riemannian or Lorentzian manifold(

M, g
)
. Then, with the assumptions stated in Theorem 1, we have∫

M

(
ε(n− 1)T(H) + trace

(
(A− εHI) ◦ B>

)
+ εθ

(
‖A‖2 − nH2

)
− Ric(N, T)

)
dV = 0 (44)

In particular, when ξ is a conformal Killing vector field with conformal factor ψ, then∫
M

(
ε(n− 1)T(H) + εθ

(
‖A‖2 − nH2

)
− Ric(N, T)

)
dV = 0 (45)

Proof. Using (16), we obtain

div(HT) = Hdiv(T) + T(H)

= H(div(ξ)− ε f + nHθ) + T(H)

= H(div(ξ)− ε f ) + nH2θ + T(H)
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Using (18), and recalling that div(ξ)− ε f = trace
(

B>
)
, we obtain

div(A(T))− εdiv(HT) = ε(n− 1)T(H) + trace
(

A ◦ B>
)
− εH(div(ξ)− ε f )

+ εθ
(
‖A‖2 − nH2

)
− Ric(N, T)

= ε(n− 1)T(H) + trace
(
(A− εHI) ◦ B>

)
+ εθ

(
‖A‖2 − nH2

)
− Ric(N, T)

Now, by integrating both sides of the above equation, we obtain formula (44). When ξ
is a conformal Killing vector field with conformal factor ψ, we have B> = ψI. Substituting
this into (44), we obtain (45).

Our third integral formula involves the scalar curvatures of both M and M, as well as
Ric(N, N), and is stated as follows.

Theorem 5. Let (M, g) be an n-dimensional compact Riemannian manifold that is isometrically
immersed as a hypersurface in an (n + 1)-dimensional either Riemannian or Lorentzian manifold(

M, g
)

with the assumptions stated in Theorem 1. Then, we have∫
M

θ(Scal − Scal + εRic(N, N))dV =
∫

M
N · (div(ξ)− ε f )dV − εn

∫
M

H(div(ξ)− 2ε f )dV (46)

In particular, when ξ is a conformal Killing vector field with conformal factor ψ, we meet
formula (18) in [17], that is,∫

M
θ(Scal − Scal + εRic(N, N))dV = n

∫
M

N(ψ)dV − εn(n− 1)
∫

M
Hψ dV (47)

Proof. By using (16), we have

T(H) = div(HT)− Hdiv(T)
= div(HT)− H(div(ξ)− ε f + nHθ),

and by substituting this into (31), we obtain (46). To obtain (47), it suffices to substitute the
values f = εψ and div(ξ) = (n + 1)ψ into (46).

Remark 4. We notice that in the above result, formula (47) is nothing but formula (18) in [17], so
that (46) can be considered as a generalization of that formula to the case of a general vector field ξ.

5. Integral Formulas for CMC Compact Riemannian Hypersurfaces in
Pseudo-Riemannian Manifolds

In this section, we focus on the case where M has a constant mean curvature H. The
first result gives an integral formula for a hypersurface with constant mean curvature
without any assumption on the ambient space

(
M, g

)
or on the vector field ξ.

Theorem 6. Under the notations and assumptions stated in Theorem 1, let
(

M, g
)

be an (n + 1)-
dimensional either Riemannian or Lorentzian manifold, and (M, g) a compact Riemannian manifold
that is isometrically immersed as a hypersurface with constant mean curvature H in

(
M, g

)
. Then,

we have∫
M

θ(Ric(N, N) + ‖A‖2 − nH2)dV + ε
∫

M
N · (div(ξ)− ε f )dV − H

∫
M
(div(ξ)− ε(n + 1) f )dV = 0 (48)

In particular, when ξ is a conformal Killing vector field with conformal factor ψ, we have∫
M

θ(Ric(N, N) + ‖A‖2 − nH2)dV + εn
∫

M
N · (ψ)dV = 0, (49)



Mathematics 2023, 11, 4281 13 of 15

and when ξ is homothetic, we have∫
M

θ(Ric(N, N) + ‖A‖2 − nH2)dV = 0 (50)

Proof. First, since we know that

Scal − Scal + εRic(N, N) = −ε(Ric(N, N) + ‖A‖2 − n2H2), (51)

then (46) yields∫
M

θ(Ric(N, N) + ‖A‖2 − n2H2)dV + ε
∫

M
N · (div(ξ)− ε f )dV

−n
∫

M
H(div(ξ)− 2ε f )dV = 0, (52)

or equivalently∫
M

θ(Ric(N, N) + ‖A‖2 − nH2)dV − n(n− 1)
∫

M
H2θdV + ε

∫
M

N · (div(ξ)− ε f )dV

−n
∫

M
H(div(ξ)− 2ε f )dV = 0 (53)

Since H is constant, (42) yields

n(n− 1)
∫

M
H2θdV = (n− 1)H

∫
M

nHθdV

= −(n− 1)H
∫

M
(div(ξ)− ε f )dV (54)

Now, if we substitute (54) into (53), we obtain (48). Formulas (49) and (50) follow
easily from (48) using the facts that f = εψ and div(ξ) = (n + 1)ψ when ξ is a conformal
Killing vector field with conformal factor ψ, and the fact that ψ is constant when ξ is
homothetic, respectively.

Since ‖A‖2 − nH2 ≥ 0, (50) can be used to deduce the following result which general-
izes Theorem 5.1 in [7] to the case of a spacelike hypersurface.

Corollary 3. Let
(

M, g
)

be an (n + 1)-dimensional either Riemannian or Lorentzian manifold
which admits a homothetic vector field ξ, and let (M, g) be an n-dimensional compact Riemannian
manifold that is isometrically immersed in

(
M, g

)
as a hypersurface with constant mean curvature.

Let N and ξ denote, respectively, the normal to M and the restriction of ξ to M. Assume that
Ric(N, N) ≥ 0 on M and assume (in the case where

(
M, g

)
is Riemannian) that the function

θ = g(N, ξ) does not change sign and is not identically zero. Then, (M, g) is totally umbilical and
Ric(N, N) = 0 on M.

The second result is a direct consequence of Theorem 4 under the assumptions that(
M, g

)
is Einstein and M has a constant mean curvature H. This has been proved in [6] in

the case where
(

M, g
)

is Riemannian.

Theorem 7. Let
(

M, g
)

be an (n + 1)-dimensional either Riemannian or Lorentzian Einstein
manifold with a conformal Killing vector field ξ, and let (M, g) be an n-dimensional compact
Riemannian manifold that is isometrically immersed as a hypersurface in

(
M, g

)
, with constant

mean curvature H. With all the notations and assumptions stated at the beginning of the above
section, assume in addition (in the case where

(
M, g

)
is Riemannian) that the function θ does not

change sign and is not identically zero. Then, (M, g) is necessarily totally umbilical.
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Proof. Under the assumptions of the proposition, formula (45) becomes∫
M

θ
(
‖A‖2 − nH2

)
= 0 (55)

Since θ does not change sign and is not identically zero, and since ‖A‖2 − nH2 ≥ 0,
we should obtain from the integral above that ‖A‖2 = nH2. We deduce that A = εHI, that
is, (M, g) is totally umbilical.

6. Conclusions

In conclusion, the study presented in this work has yielded a set of generalized
Minkowski type integral formulas applicable to compact Riemannian and spacelike hyper-
surfaces within Riemannian and Lorentzian manifolds, respectively, especially when an
arbitrary vector field is present, assuming it to be timelike in the Lorentzian case. These
formulas extend and build upon existing results, particularly in scenarios involving confor-
mal and Killing vector fields. Moreover, the practical application of these integral formulas
has yielded valuable insights into the characterizations of such hypersurfaces, especially in
cases where the ambient space is an Einstein manifold and accommodates various vector
field types, including conformal and Killing vector fields, as well as scenarios where the
hypersurfaces exhibit a constant mean curvature. We believe that this research contributes
to a deeper understanding of geometric properties in these specific contexts, providing
valuable tools for further exploration in differential geometry and related fields. These
tools also extend their utility to the study of Ricci solitons [24–29].

Author Contributions: Conceptualization , M.G.; investigation, N.A. and M.G.; writing—original
draft, N.A. and M.G.; writing—review & editing, M.G.; supervision, M.G. All authors have read and
agreed to the published version of the manuscript.

Funding: The second author was supported by Researchers Supporting Project number (RSPD2023R1053),
King Saud University, Riyadh, Saudi Arabia.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Minkowski, H. Volumen und Oberflache. Math. Ann. 1903, 57, 447–495. [CrossRef]
2. Hsiung, C.C. Some integral formulas for closed hypersurfaces. Math. Scand. 1954, 2, 286–294. [CrossRef]
3. Hsiung, C.C. Some integral formulas for closed hypersurfaces in Riemann space. Pac. J. Math. 1956, 6, 291–299. [CrossRef]
4. Hsiung, C.C.; Liu, J.; Mittra, S. Integral formulas for closed submanifolds of a Riemannian manifold. J. Differ. Geom. 1977, 12,

133–151. [CrossRef]
5. Katsurada, Y. Generalised Minkowski formula for closed hypersurfaces in Riemann space. Ann. Mat. Pura Appl. 1962, 57, 283–294.

[CrossRef]
6. Katsurada, Y. On a certain property of closed hypersurfaces in an Einstein space. Comment. Math. Helv. 1964, 38, 165–171.

[CrossRef]
7. Yano, K. Closed hypersurfaces with constant mean curvature in a Riemannian manifold. J. Math. Soc. Jpn. 1965, 17, 330–340.

[CrossRef]
8. Alias, L.J.; Romero, A.; Sanchez, M. Uniqueness of complete spacelike hypersurfaces of constant mean curvature in Generalized

Robertson-Walker spacetimes. Gen. Relativ. Grav. 1995, 27, 71–84. [CrossRef]
9. Alias, L.J.; Romero, A.; Sanchez, M. Spacelike hypersurfaces of constant mean curvature and Calabi-Bernstein type problems.

Tohoku Math J. 1997, 49, 337–345. [CrossRef]
10. Alias, L.J.; Romero, A.; Sanchez, M. Spacelike hypersurfaces of constant mean curvature in certain spacetimes. Nonlinear Anal.

TMA 1997, 30, 655–661. [CrossRef]
11. Montiel, S. Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds. Indiana Univ. Math. J. 1999, 48,

711–748. [CrossRef]
12. Alias, L.J.; Brasil, A.; Colares, A.G. Integral formulae for spacelike hyper-surfaces in conformally stationary spacetimes and

applications. Proc. Edinb. Math. Soc. 2003, 46, 465–488. [CrossRef]
13. Alias, L.J.; García-Martínez, S.C. On the scalar curvature of constant mean curvature hypersurfaces in space forms. J. Math. Anal.

Appl. 2010, 363, 579–587. [CrossRef]

http://doi.org/10.1007/BF01445180
http://dx.doi.org/10.7146/math.scand.a-10415
http://dx.doi.org/10.2140/pjm.1956.6.291
http://dx.doi.org/10.4310/jdg/1214433849
http://dx.doi.org/10.1007/BF02417744
http://dx.doi.org/10.1007/BF02566914
http://dx.doi.org/10.2969/jmsj/01730333
http://dx.doi.org/10.1007/BF02105675
http://dx.doi.org/10.2748/tmj/1178225107
http://dx.doi.org/10.1016/S0362-546X(97)00246-0
http://dx.doi.org/10.1512/iumj.1999.48.1562
http://dx.doi.org/10.1017/S0013091502000500
http://dx.doi.org/10.1016/j.jmaa.2009.09.045


Mathematics 2023, 11, 4281 15 of 15

14. Alias, L.J.; Dajczer, M. Constant mean curvature hypersurfaces in warped product spaces. Proc. Edinb. Math. Soc. 2007, 50,
511–526. [CrossRef]

15. Alias, L.J.; Dajczer, M.; Ripoll, J. A Bernstein-type theorem for Riemannian manifolds with a Killing field. Ann. Glob. Anal. Geom.
2007, 31, 363–373. [CrossRef]

16. Barros, A.; Brasil, A.; Caminha, A. Stability of spacelike hypersurfaces in foliated spacetimes. Differ. Geom. Appl. 2008, 26, 357–365.
[CrossRef]

17. Albujer, A.L.; Aledo, J.A.; Alias, L.J. On the scalar curvature of hypersur-faces in spaces with a Killing field. Adv. Geom. 2010, 10,
487–503. [CrossRef]

18. Alohali, H.; Alodan, H.; Deshmukh, S. Conformal vector fields sub-manifolds of a Euclidean space. Publ. Math. Debr. 2017, 91,
217–233. [CrossRef]

19. Chen, B.Y.; Wei, S.W. Riemannian submanifolds with concircular canonical field. Bull. Korean Math. Soc. 2019, 56, 1525–1537.
20. Evangelista, I.; Viana, E. Conformal gradient vector fields on Riemannian manifolds with boundary. Colloq. Math. 2020, 159,

231–241. [CrossRef]
21. Liu, J.; Xie, X. Complete spacelike hypersurfaces with CMC in Lorentz Einstein mani-folds. Bull. Korean Math. Soc. 2021, 58,

1053–1068.
22. O’Neill, B. Semi-Reimannian Geometry with Applications to Relativity; Academic Press: New York, NY, USA, 1983.
23. Furnari, S.; Ripoll, J. Killing fields, mean curvature, translation maps. Ill. J. Math. 2004, 48, 1385–1403. [CrossRef]
24. Li, Y.; Patra, D.; Alluhaibi, N.; Mofarreh, F.; Ali, A. Geometric classifications of k-almost Ricci solitons admitting paracontact

metrices. Open Math. 2023, 21, 20220610. [CrossRef]
25. Diógenesa, R.; Ribeiro, E., Jr.; Filhoa, J.S. Gradient Ricci solitons admitting a closed conformal Vector field. J. Math. Anal. Appl.

2017, 455, 1975–1983. [CrossRef]
26. Li, Y.; Kumara, H.A.; Siddesha, M.S.; Naik, D.M. Characterization of Ricci Almost Soliton on Lorentzian Manifolds. Symmetry

2023, 15, 1175. [CrossRef]
27. Li, Y.; Srivastava, S.K.; Mofarreh, F.; Kumar, A.; Ali, A. Ricci Soliton of CR-Warped Prod-uct Manifolds and Their Classifications.

Symmetry 2023, 15, 976. [CrossRef]
28. Li, Y.; Gupta, M.K.; Sharma, S.; Chaubey, S.K. On Ricci Curvature of a Homogeneous Gen-eralized Matsumoto Finsler Space.

Mathematics 2023, 11, 3365. [CrossRef]
29. Li, Y.; Bhattacharyya, S.; Azami, S.; Saha, A.; Hui, S.K. Harnack Estimation for Nonlinear, Weighted, Heat-Type Equation along

Geometric Flow and Applications. Mathematics 2023, 11, 2516. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1017/S0013091505001069
http://dx.doi.org/10.1007/s10455-006-9045-5
http://dx.doi.org/10.1016/j.difgeo.2007.11.028
http://dx.doi.org/10.1515/advgeom.2010.017
http://dx.doi.org/10.5486/PMD.2017.7803
http://dx.doi.org/10.4064/cm7638-12-2018
http://dx.doi.org/10.1215/ijm/1258138517
http://dx.doi.org/10.1515/math-2022-0610
http://dx.doi.org/10.1016/j.jmaa.2017.06.071
http://dx.doi.org/10.3390/sym15061175
http://dx.doi.org/10.3390/sym15050976
http://dx.doi.org/10.3390/math11153365
http://dx.doi.org/10.3390/math11112516

	Introduction
	Preliminaries 
	Some Useful Tensor Formulas 
	Integral Formulas for Compact Riemannian Hypersurfaces in Pseudo-Riemannian Manifolds 
	Integral Formulas for CMC Compact Riemannian Hypersurfaces in Pseudo-Riemannian Manifolds
	Conclusions
	References 

