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Abstract: An analytical study is conducted to examine the influence of thermal gradients and
heat sources on the onset of two-component Rayleigh–Bènard (TCRB) convection using the Darcy
model. The study takes into account the effects of local thermal non-equilibrium (LTNE), thermal
profiles, and heat sources. The composite structure is horizontally constrained by adiabatic stiff
boundaries, and the resulting solution to the problem is obtained using the perturbation approach.
The various physical parameters have been thoroughly examined, revealing that the fluid layer
exhibits dominance in the two-layer configuration. It has been observed that the parabolic profile
demonstrates greater stability in comparison to the step function. Conversely, in the setup where the
porous layer dominates, the step function plays a crucial role in maintaining stability. The porous
layer, model (iv), exhibits greater stability in the predominant combined structure, while the linear
configuration is characterized by higher instability.

Keywords: heat source; LTNE; two component; thermal gradients; Rayleigh–Bènard convection;
corrected internal Rayleigh numbers; perturbation approach

MSC: 76R10; 76R50; 80A19

1. Introduction

Double-component convection is very important for studying the evolution of systems
with various causes of density fluctuations. Such systems occur in the sun, the oceans, and
in the mantle of the Earth. Modeling of two-component convection in a composite layer can
be used in many situations, including the storage of nuclear waste, thermal insulation, grain
storage, chemical dispersion through water-saturated soil, and soil pollution. However,
one more crucial use is for modeling the boundary conditions at interfaces. This matter has
garnered significant theoretical interest due to its importance in understanding interface
boundary conditions, as well as its aforementioned practical implications. The role of LTNE
is significant in inflows with pronounced temperature differences between the solid phase
and fluid phase. Wang et al. [1] studied solar air receiver and radiation effects using the
LTNE model. Internal heat, using a local thermal non-equilibrium model, was analyzed
analytically by Altawallbeh et al. [2,3] in a Maxwell fluid-porous layer with and without
a magnetic field. Abidin et al. [4] conducted a study to examine the effects of viscosity
in a binary fluid layer. In a two-component system, the closed form of the solution to
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Marangoni convection with a magnetic field and salinity gradients was studied by Komala
and Sumithra [5]. Kuznetsov and Nield [6] studied the LTNE effects for a nanofluid in the
presence of a porous domain using the Darcy model. Thirupathi Thumma and Mishra [7]
studied nanofluid flow over a stretching sheet in the presence of a heat source/sink using
the domain decomposition method. Heat transmission in a porous medium under LTNE
conditions was studied by Shashi Prabha et al. [8]. Double-component convective flow over
a chemically reactive plate with a heat source/sink was investigated numerically by Kannan
and Pullepu [9]. Using the LTNE model, Astanina et al. [10] studied the heat source effect for
porous cavities. Hema et al. [11] used the LTNE model to investigate how heat flow affects
two-component convection. Pulkit et al. [12] analyzed the phenomenon of double-diffusive
convection in a rotating couple-stress ferromagnetic fluid-porous medium, taking into
consideration the influence of both gravitational and magnetic fields. Shukla and Gupta [13]
studied three-component convection in nanofluids using the LTNE model. Two-component
convection in a combined setup with a heated and salted subsurface was investigated by
Mahajan and Tripathi [14]. Meften and Ali [15] studied two-component convection with
variable viscosity. Capone et al. [16,17] investigated the convection in a rotating, viscous,
anisotropic porous medium in the LTNE regime. Using the Brinkmann–Forchheimer model,
Meften et al. [18] examined the LTNE effects for dual-component convection with rotation.
Safia et al. [19] investigated the impact of magnetic field, temperature, and concentration
on convection in a nanofluid. Double diffusion of a nanofluid was investigated by Tahar
et al. [20], who focused on magneto-natural convection. A stability assessment of Brinkman–
Bènard convection was studied by Siddabasappa et al. [21]. Thermosolutal convection
in an LTNE porous medium was examined by Noon and Haddad [22]. Corcione and
Quintino [23] examined the dual-component effects for water-based nanofluids using
Rayleigh–Bènard convection. Gangadharaih et al. [24] studied the gravity fluctuation and
throughflow for an anisotropic porous layer. Ahmed [25] conducted a numerical study on
convection in a fluid layer within a square-packed bed enclosure using the LTNE model.
Atul and Anand Kumar [26] studied the effects of the solute boundary conditions and the
heat source on two-component convection. Yellamma et al. [27] investigated the third-
component effect for a combined system with a magnetic field, heat source, and thermal
profiles. They obtained the thermal Marangoni number analytically.

Inspired by the aforementioned literature review, the current study examines the
effects of LTNE in a composite layer with six thermal gradients on the onset of SCRB
convection in a two-layer configuration with an incompressible horizontal fluid flow.
The problem has been solved by using the perturbation technique and it is noted that
the parabolic profile demonstrates greater stability in comparison to the step function.
Conversely, in the setup where the porous layer dominates, the step function plays a crucial
role in maintaining stability. This work undoubtedly holds tremendous potential for a
multitude of applications in the fields of pure crystal growth formation, as elucidated by
Rudolph et al. [28].

2. Materials and Methods

Assume a continuous horizontal layer of incompressible fluid with a thickness d f L
and a densely packed region-II dpL of the same fluid that lies behind region-I and is
heated continuously by heat sources Q f L and QpL The area above region-1 is expected
to be affected by surface tension effects and concentration as functions of temperature
and concentration, while the area below region-II is assumed to be stable. The coordinate
system used is Cartesian, with the z-axis pointing upward and the origin located at the
interface between the fluid and porous layers, as shown in Figure 1. Both the solid and
liquid phases are assumed to be in the LTNE, and it is thought that a solid–fluid field model
can characterize the temperature differences between the solid and liquid phases separately
for the porous layer.
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Figure 1. Model of the problem.

For the composite system Darcy model, the basic equations assume the Boussinesq
hypothesis (see Sumithra and Shyamala [29]).

Fluid layer (region-I):
∇ f L ·

→
q f L = 0 (1)

∂
→
q f L

∂t f L
+
(→

q f L ·∇ f L

)→
q f L = −∇ f LPf L

ρ0
+

µ f L
ρ0
∇2

f L
→
q f L

−
[
1− α f L(Tf L − Tf L0) + α f Ls(C f L − C f L0)

]
g k̂

(2)

∂Tf L

∂t
+
(→

q f L·∇ f L

)
Tf L = κ f L∇2

f LTf L + Q f L (3)

∂C f L

∂t
+
(→

q f L · ∇ f L

)
C f L = κ f Ls∇2

f LC f L (4)

The porous layer (region-II) (see Nield and Bejan [30]):

∇pL·
→
q pL = 0 (5)

φ−1 ∂
→
q pL

∂tpL
+ φ−2

(→
q pL·∇pL

)→
q pL = −∇pLPpL

ρ0
+

µpL
K ρ0

→
q pL

−
[
1− α f pL(Tf pL − TpL0)− αspL(TspL − TpL0) + αpL(CpL − CpL0)

]
g k̂

(6)

(
ρcp
)

f pL

[
φ

∂Tf pL

∂tpL
+
(→

q pL · ∇pL

)
Tf pL

]
= φκ f pL∇2

pLTf pL + h(TspL − Tf pL) + QpL (7)

(1− φ)
(
ρcp
)

spL
∂TspL

∂tpL
= (1− φ)κspL∇2

pLTspL − h
(

TspL − Tf pL

)
(8)

φ
∂CpL

∂tpL
+
(→

q pL . ∇pL

)
CpL = κpLs ∇2

pLCpL (9)

For the two regions, the basic state is expressed as follows:[→
q f L, Pf L, Tf L, Ts f L, C f L

]
=
[
0, Pf Lb(z f L), Tf Lb(z f L), Ts f Lb(z f L), C f Lb(z f L)

]
,
−d f L
∆T

dTf Lb
dz f L

= Ff L(z f L)
(10)
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[→
q pL, PpL, Tf pL, TspL, CpL

]
=
[
0, PpLb(zpL), Tf pLb(zpL), TspLb(zpL), CpLb(zpL)

]
,
−dpL
∆T

dTpLb
dzpL

= FpL(zpL)
(11)

The basic state salinity and temperature distributions are, respectively, found to be:

Tf Lb(z f L) =
Q f Lz f L(z f L − d f L)

2κ f L
+

(
TU − T0

d f L

)
Ff L(z f L) + T0 0 ≤ z f L ≤ d f L

Tf pLb(zpL) = TspLb(zpL) =
QpLzpL

(
zpL + dpL

)
2φκpL

+

(
TL − T0

dpL

)
FpL(zpL) + T0 0 ≤ zpL ≤ dpL

C f Lb(z f L) =

(
CU − C0

d f L

)
z f L + C0 0 ≤ z f L ≤ d f L

CpLb(zpL) =

(
CL − C0

dpL

)
zpL + C0 0 ≤ zpL ≤ dpL

Here, T0 =
κ f LdpLTu + κpLd f LTL

κ f LdpL + κpLd f L
+

d f LdpL

(
Q f Ld f L + QpLdpL

)
2
(

κ f LdpL + κpLd f L

)
C0 =

κ f LsCUdpL + κpLsCLd f L

κpLsd f L + κ f LsdpL
.

where the ‘b′ symbolizes the basic state, and Ff L(z f L) and FpL(zpL) are the non-dimensionalized

thermal gradient that fulfils the situation
1∫

0
Ff L(z f L) dz f L =

1∫
0

FpL(zpL) dzpL = 1.

To study the basic solution’s stability, the following mild disturbances are introduced.[
⇀
q f L, Pf L, Tf L, C f L

]
=
[
0, Pf Lb(z f L), Tf Lb(z f L), C f Lb(z f L)

]
+

[
→
q
′
f L,
→
P
′
f L, θ, S

]
(12)

[
⇀
q pL, PpL, Tf pL, TspL, CpL

]
=
[
0, PpLb(zpL), TpLb(zpL), TspLb(zpL), CpLsb(zpL)

]
+

[
→
q
′
pL,
→
P
′
pL, θpL, θspL, SpL

] (13)

The prime symbol represents a perturbation from the corresponding values at equilib-
rium. The physical values in Equations (1)–(9) are now augmented with the introduction
of (12) and (13), and subsequently linearized based on convection. The pressure term is
subsequently eliminated from Equations (2) and (6) through the application of the curl
operation twice, while retaining only the upright factor.

The variables are non-dimensionalized and normal mode study is applied (see Yel-
lamma et al. [31]); the corresponding distinctive quantities are found to be:

In 0 ≤ z f L ≤ 1, (
D2

f L − a2
f L

)2
W f L = R f La2

f Lθ f L − R f Lsa2
f LS f L (14)

(
D2

f L − a2
f L

)2
θ f L +

[
Ff L(z f L) + R∗I

(
2z f L − 1

)]
W f L = 0 (15)

τf Ls

(
D2

f L − a2
f L

)2
S f L + W f L = 0 (16)
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In 0 ≤ zpL ≤ 1,(
D2

pL − a2
pL

)2
WpL = −R f pLβ2a2

pLθ f pL − τspLRspLβ2a2
pLθspL + τpLsRpLsβ2a2

pLSpL (17)

φ
(

D2
pL − a2

pL

)
θ f pL +

[
FpL(zpL) + R∗IM

(
2zpL + 1

)]
wpL = −H

(
θspL − θ f pL

)
(18)

(1− φ)
(

D2
pL − a2

pL

)
θspL = H

(
θspL − θ f pL

)
(19)

τpLs

(
D2

pL − a2
pL

)2
SpL + WpL = 0 (20)

where R f L =
gα f L(T0−TU)d3

f L
ν f Lκ f L

, RpL =
gαpL(TL−T0)d3

pL
νpLκpL

, R f Ls =
gα f Ls(C0−CU)d3

f L
ν f Lκ f Ls

,

RpLs =
gαpLs(CL−C0)d3

pL
νpLκpLs

, RspL =
gαspL(TL−T0)d3

pL
νpLκspL

are, respectively, the thermal, solute, and

solid phase Rayleigh numbers, RI =
Q f Ld2

f L
κ f L

, RIM =
QpLd2

pL
κ f pL

, R∗I = RI
2(T0−TU)

, R∗IM = RIM
2(TL−T0)

,

β2 = K
d2

pL
= Da, H =

hd3
pL

κ f pL
are the internal and corrected Rayleigh numbers, the Darcy

number, and the inter-phase heat transfer coefficient, respectively; α f pL, αspL are the fluid
and solid phase thermal expansion coefficients; κ f pL, κspL are the fluid phase and solid
phase thermal diffusivities; and κ f Ls, κpLs are the fluid and porous layer solute diffusivities
(see nomenclature).

After non-dimensionalization, normal mode expansion is carried out on the proper
boundary conditions.

At z f L = d f L, the situations are

W f L(1) = 0, D f LW f L(1) = 0, D f Lθ f L(1) = 0, D f LS f L(1) = 0

At zpL = dpL, the situations are

WpL(0) = 0, DpLWpL(0) = 0, DpLθ f pL(0) = 0, DpLθspL(0) = 0, DpLSpL(0) = 0

At z f L = 0, zpL = 1, the situations are

T̂W f L(0) = d̂2WpL(1), T̂D f LW f L(0) = d̂µ̂DpLWpL(1),

θ f L(0) = T̂d̂2θ f pL(1), θ f L(0) = T̂d̂2θspL(1),

D f Lθ f L(0) = d̂2DpL θ f pL(1), D f Lθ f L(0) = d̂2DpLθspL(1),

S f L(0) = Ŝ SpL(1), D f LS f L(0) = DpLSpL(1),

T̂d̂β2D3
f LW f L(0) = −DpLWpL(1) + µ̂ β2D3

pLWpL(1),

T̂D2
f LW f L(0) = µ̂D2

pLWpL(1).

where T̂ = (TL−T0)
(T0−TU)

, Ŝ = CL−C0
C0−CU

, d̂ =
dpL
d f L

, and µ̂ =
µpL
µ f L

are the thermal, salinity, depth, and
viscosity ratio, respectively.
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3. Method of Solution

The task at hand involves addressing the eigenvalue problem within the context of
arbitrary boundary conditions related to temperature and concentration. This will be
accomplished by employing the standard perturbation method, with the wave number
a2

f L, a2
pL serving as the perturbation parameter. The results of such a study can be used

to assess the reliability of the method, and they can also be used to justify the method’s
application to the solution of problems involving convective instability in which the critical
stability parameter must be determined analytically.

The powers a2
f L, a2

pL have been added to the dependent variables in both levels, as
seen below: W f L

θ f L
S f L

 =
∞

∑
j=0

a2j
f L

W f Lj
θ f Lj
S f Lj

 and


WpL
θ f pL
θspL
SpL

 =
∞

∑
j=0

a2j
pL


WpLj
θ f pLj
θspLj
SpLj

 (21)

When solving a2
f L, a2

pL using the preceding equation in (14)–(20), we obtain zero-order
expressions (see Appendix A).

The first-order equations for a2
f L, a2

pL are as follows:
For region-I,

D4
f LW f L1 − R f LT̂ + R f LsŜ = 0 (22)

D2
f Lθ f L1 − T̂ +

[
Ff L

(
z f L

)
+ R∗I

(
2z f L − 1

)]
W f L1 = 0 (23)

τf LsD2
f LS f L1 − τf LsŜ + W f L1 = 0 (24)

For region-II,

D2
pLWpL1 + R f pLβ2 + τspLRspLβ2 − τpLsRpLsβ2 = 0 (25)

(
φD2

pL − H
)

θ f pL1 + HθspL1 +
[
FpL(zpL) + R∗IM

(
2zpL + 1

)]
WpL1 − φ = 0 (26)

[
(1− φ)D2

pL − H
]
θspL1 + HθpL1 − (1− φ) = 0 (27)

τpLsD2
pLSpL − τpLs + WpL = 0 (28)

The related boundary conditions are as follows:

W f L1(1) = 0, D f L1W f L1(1) = 0, D f L1θ f L1(1) = 0, D f L1S f L1(1) = 0,

T̂W f L1(0) = d̂2WpL1(1), T̂D f LW f L1(0) = d̂µ̂DpLWpL1(1),

θ f L1(0) = T̂d̂2θpL1(1), θ f L1(0) = T̂d̂2θspL1(1), S f L1(0) = Ŝd̂2SpL1(1),

D f Lθ f L1(0) = d̂2DpLθ f pL1(1),D f Lθ f L1(0) = d̂2DpLθspL1(1), D f LS f L1(0) = d̂2DpLSpL1(1),

T̂d̂β2D3
f LW f L1(0) = −DpLWpL1(1) + µ̂β2D3

pLWpL1(1), T̂D2
f LW f L1(0) = µ̂D2

pLWpL1(1),
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WpL1(0) = 0, DpLWpL1(0) = 0, DpLθ f pL1(0) = 0, DpLθspL1(0) = 0, DpLSpL1(0) = 0.

The solutions of W f L1 and WpL1 are as follows:

W f L1 (z f L) = δ f L1 + δ f L2 z f L + δ f L3 z2
f L + δ f L4 z3

f L +
(R f LT̂ − R f LsŜ)

24
z4

f L (29)

WpL1(zpL) = δpL5 + δpL6 zpL −
β2
(

R f pL + RspL τspL − RpLs τpLs

)
2

z2
pL (30)

where δ f L1, δ f L2, δ f L3, δ f L4, δ f L5, δ f L6 are the constants obtained utilizing velocity boundary
conditions; for the form they are in, see Appendix A.

4. Condition of Solvability

The solvability condition is derived by solving the differential equation with the
necessary boundary conditions concerning heat.

d̂2
(

1 + R∗IM + τf Ls

) 1∫
0

WpL1(zpL) ·FpL(zpL) dzpL + 2d̂2R∗IM

1∫
0

WpL1(zpL)·FpL(zpL) dzpL

+
(
1− R∗I + τpLs

) 1∫
0

W f L1(z f L) · F f L(z f L) dz f L + 2R∗I
1∫

0
W f L1(z f L)·Ff L(z f L) dz f L

=
(

d̂2 + T̂
)
+
(

d̂2 + Ŝ
)

τf LsτpLs

(31)

Computing RC for different profiles can be achieved by substituting expressions
W f L1(z f L) and WpL1(zpL) from Equations (29) and (30) into Equation (31).

5. Thermal Gradients

The following thermal gradients are considered for the present study (refer to Table 1;
see Rudraiah et al. [32], Vasseur and Robillard [33], and Shivakumara [34]).

Table 1. Thermal gradients for fluid and porous layer.

Model Thermal Gradients Fluid Layer (Region-I) Porous Layer (Region-II)

Model (i) Linear Ff L(z f L) = 1 FpL(zpL) = 1

Model (ii) Parabolic Ff L(z f L) = 2z f L FpL(zpL) = 2zpL

Model (iii) Inverted parabolic Ff L(z f L) = 2(1− z f L) FpL(zpL) = 2(1− zpL)

Model (iv) Piecewise linear gradient
heated from below (PLHB) Ff L(z f L) =

{
ε−1

f L , 0 ≤ z f L ≤ ε f L

0, ε f L ≤ z f L ≤ 1
FpL(zpL) =

{
ε−1

pL , 0 ≤ zpL ≤ εpL

0, εpL ≤ zpL ≤ 1

Model (v) Piecewise linear gradient
cooled from above (PLCA) Ff L(z f L) =

{
0, 0 ≤ z f L ≤ (1− ε f L)

ε−1
f L , (1− ε f L) ≤ z f L ≤ 1 FpL(zpL) =

{
0, 0 ≤ zpL ≤ (1− εpL)

ε−1
pL , (1− εpL) ≤ zpL ≤ 1

Model (vi) Step function (SF) Ff L(z f L) = δ
(

z f L − ε f L

)
FpL(zpL) = δ

(
zpL − εpL

)
5.1. Model (i): Linear Thermal Gradient

The RC is attained for the linear model Ff L(z f L) = 1 and FpL(zpL) = 1 by utilizing (31):

RC =

(
d̂2 + T̂

)
+
(

d̂2 + Ŝ
)

τf LsτpLs − d̂4κ2
pLsτpLsΨ1 − RpLs{Φ11 + Φ12}

T̂{Φ13 + Φ14}+
[
α f pL κ2

f pL + αspLκ2
spLτspL

]
d̂4 Ψ1

(32)
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where Ψ1 = Φ1 + Φ2 + Φ3 + Φ4 + Φ5 + Φ6 + Φ7 + Φ8 + Φ9 + Φ10, Φ1 =
d̂2β2(1+R∗IM+τf Ls)

6 ,

Φ2 =
d̂2β2R∗IM

4 , Φ3 =
d̂2β2(1−R∗I +τpLs)

2 , Φ4 =
d̂β

2
µ̂(1−R∗I +τpLs)

2T̂
, Φ5 =

β2µ̂(1−R∗I +τpLs)
6T̂

, Φ6 =

(1−R∗I +τpLs)
24d̂T̂

, Φ7 =
d̂2β2R∗I

2T̂
, Φ8 =

2d̂β2µ̂R∗I
3T̂

, Φ9 =
β2µ̂R∗I

4T̂
, Φ10 =

R∗I
15d̂T̂

, Φ11 =
Ŝ(1−R∗I +τpLs)

120 ,

Φ12 =
2ŜR∗I
144 , Φ13 =

(1−R∗I +τpLs)
120 , Φ14 =

2R∗I
144 .

5.2. Model (ii): Parabolic Thermal Gradient

The RC is attained for the parabolic model Ff L(z f L) = 2z f L, FpL(zpL) = 2zpL by
utilizing (31):

RC =

(
d̂2 + T̂

)
+
(

d̂2 + Ŝ
)

τf LsτpLs − d̂4κ2
pLsτpLsΨ2 − RpLs{N11 + N12}

T̂{N13 + N14}+
[
α f pL κ2

f pL + αspLκ2
spLτspL

]
d̂4 Ψ2

(33)

where Ψ2 = N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9 + N10, N1 =
d̂2β2(1+R∗IM+τf Ls)

4 ,

N2 =
2d̂

2
β2R∗IM
5 , N3 =

d̂2β2(1−R∗I+τpLs)
2T̂

, N4 =
2d̂µ̂β2(1−R∗I+τpLs)

3T̂
, N5 =

β2µ̂(1−R∗I+τpLs)
4T̂

,

N6 =
(1−R∗I+τpLs)

15d̂T̂
, N7 =

3d̂
2
β2R∗I
3T̂

, N8 =
d̂β2µ̂R∗I

T̂
, N9 =

2β2µ̂R∗I
5T̂

, N10 =
R∗I

9d̂T̂
, N11 =

Ŝ(1−R∗I+τpLs)
72 ,

N12 =
ŜR∗I
42 , N13 =

(1−R∗I+τpLs)
72 , N14 =

R∗I
42 .

5.3. Model (iii): Inverted Parabolic Thermal Gradient

The RC is attained for this model Ff L(z f L) = 2(1− z f L) and FpL(zpL) = 2(1− zpL) by
utilizing (31):

RC =

(
d̂2 + T̂

)
+
(

d̂2 + Ŝ
)

τf LsτpLs − d̂4κ2
pLsτpLsΨ3 − RpLs{A11 + A12}

T̂{A13 + A14}+
[
α f pL κ2

f pL + αspLκ2
spLτspL

]
d̂4 Ψ3

(34)

where Ψ3 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10, A1 =
d̂2β2(1+R∗IM+τf Ls)

12 ,

A2 =
d̂2β2R∗IM

10 , A3 =
d̂2β

2
(1−R∗I +τpLs)

2T̂
, A4 =

d̂β
2
µ̂(1−R∗I +τpLs)

3T̂
A5 =

β2µ̂(1−R∗I +τpLs)
12T̂

,

A6 =
(1−R∗I +τpLs)

60d̂T̂
, A7 =

d̂2β2R∗I
3T̂

, A8 =
d̂β2µ̂R∗I

3T̂
, A9 =

β2µ̂R∗I
10T̂

, A10 =
R∗I

45d̂T̂
, A11 =

Ŝ(1−R∗I +τpLs)
360 ,

A12 =
ŜR∗I
252 , A13 =

(1−R∗I +τpLs)
360 , A14 =

R∗I
252 .

5.4. Model (iv): Piecewise Linear Gradient Heated from Below

Ff L(z f L) =

{
ε−1

f L , 0 ≤ z f L ≤ ε f L

0, ε f L ≤ z f L ≤ 1
and FpL(zpL) =

{
ε−1

pL , 0 ≤ zpL ≤ εpL

0, εpL ≤ zpL ≤ 1
(35)

The Rc is attained for this model by utilizing (35) in (31) and is calculated as follows:

RC =

(
d̂2 + T̂

)
+
(

d̂2 + Ŝ
)

τf LsτpLs − d̂4κ2
pLsτpLsΨ4 − RpLs{B11 + B12}

T̂{B13 + B14}+
[
α f pL κ2

f pL + αspLκ2
spLτspL

]
d̂4 Ψ4

(36)

where Ψ4 = B1 + B2 + B3 + B4 + B5 + B6 + B7 + B8 + B9 + B10, B1 =
d̂2β2(1+R∗IM+τf Ls)ε2

pL
6 ,

B2 =
d̂2β2R∗IMε3

pL
4 , B3 =

d̂2β
2
(1−R∗I +τpLs)

2T̂
, B4 =

d̂β
2
µ f L( 1+R∗I +τpLs)ε f L

2T̂
B5 =

β2µ̂
(

1−R∗I +τpLs)ε2
f L

6T̂
,
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B6 =

(
1−R∗I +τpLs)ε3

f L

24d̂T̂
, B7 =

d̂2β2R∗I ε f L

2T̂
, B8 =

2d̂β2µ̂R∗I ε2
f L

3T̂
, B9 =

β2µ̂R∗I ε3
f L

4T̂
, B10 =

R∗I ε4
f L

15d̂T̂
,

B11 =
Ŝ(1−R∗I +τpLs)ε4

f L
120 , B12 =

ŜR∗I ε5
f L

72 , B13 =
(1−R∗I +τpLs)ε4

f L
120 , B14 =

R∗I ε5
f L

72 .

5.5. Model (v): Piecewise Linear Gradient Cooled from Above

Ff L(z f L) =

 0, 0 ≤ z f L ≤
(

1− ε f L

)
ε−1

f L ,
(

1− ε f L

)
≤ z f L ≤ 1

and FpL(zpL) =

{
0, 0 ≤ zpL ≤

(
1− εpL

)
ε−1

pL ,
(
1− εpL

)
≤ zpL ≤ 1 (37)

The Rc is attained for this model by utilizing (37) in (31) and is calculated as follows:

RC =

(
d̂2 + T̂

)
+
(

d̂2 + Ŝ
)

τf LsτpLs − d̂4κ2
pLsτpLsΨ5 − RpLs{R11 +R12}

T̂{R13 +R14}+
[
α f pL κ2

f pL + αspLκ2
spLτspL

]
d̂4 Ψ5

(38)

where Ψ5 = R1 +R2 +R3 +R4 +R5 +R6 +R7 +R8 +R9 +R10, R1 =
d̂2β2(1+R∗IM+τf Ls)

2εpL(
1−(1−ε f L)

3
)

3 , R2 =
d̂2β2R∗IM

εpL

(
1−(1−εpL)

4
)

4 , R3 =
d̂2β2(1−R∗I +τpLs)

2 , R4 =
d̂β2µ̂(1+R∗I + τpLs)

2T̂ε f L
,

R5 =
β2µ̂(1−R∗I +τpLs)

(
1−(1−ε f L)

3)
6T̂ε f L

, R6 =
(1−R∗I +τpLs)

(
1−(1−ε f L)

4)
24d̂T̂ε f L

, R7 =
d̂2β2R∗I

(
1−(1−ε f L)

2)
2ε f L T̂

,

R8 =
2d̂β2µ̂R∗I

(
1−(1−ε f L)

3)
3T̂ε f L

, R9 =
β2µ̂R∗I

(
1−(1−ε f L)

4
)

4T̂ε f L
, R10 =

R∗I
(

1−(1−ε f L)
5
)

15d̂T̂ε f L
,

R11 =
Ŝ(1−R∗I +τpLs)

(
1−(1−ε f L)

5
)

120ε f L
, R12 =

ŜR∗I
(

1−(1−ε f L)
6
)

72ε f L
, R13 =

(1−R∗I +τpLs)
(

1−(1−ε f L)
5
)

120ε f L
,

R14 =
R∗I
(

1−(1−ε f L)
6
)

72ε f L
.

5.6. Model (vi): Step Function

The basic temperature in this profile drops rapidly by a certain amount ∆Tf L at
z f L = ε f L and ∆TpL at zpL = εpL, otherwise it is uniform. Accordingly,

Ff L(z f L) = δ
(

z f L − ε f L

)
and FpL

(
zpL
)
= δ

(
zpL − εpL

)
(39)

The RC is attained for this model by utilizing (39) in (31) and is calculated as follows:

RC =

(
d̂2 + T̂

)
+
(

d̂2 + Ŝ
)

τf LsτpLs − d̂4κ2
pLsτpLsΨ6 − RpLs{R25 +R26}

T̂{R27 +R28}+
[
α f pL κ2

f pL + αspLκ2
spLτspL

]
d̂4 Ψ6

(40)

where Ψ6 =R15+R16+R17+R18+R19+R20+R21+R22+R23+R24, R15 =
d̂2β2(1+R∗IM+τfLs)ε2

pL
2 ,

R16 =
d̂2β2R∗IMε3

pL
4 , R17 =

d̂2β2(1−R∗I+τpLs)
2T̂

, R18 =
d̂β2µ̂(1+R∗I+τpLs)ε fL

T̂
, R19 =

β2µ̂(1−R∗I+τpLs)ε2
fL

2T̂
,

R20 =
(1−R∗I+τpLs)ε3

fL

6d̂T̂
, R21 =

d̂2β2R∗I ε fL

T̂
, R22 =

2d̂β2µ̂R∗I ε2
fL

T̂
, R23 =

β2µ̂R∗I ε3
fL

T̂
, R24 =

R∗I ε4
fL

6d̂T̂
,

R25 =
Ŝ(1−R∗I+τpLs)ε4

fL
24 ,R26 =

ŜR∗I ε5
fL

12 , R27 =
(1−R∗I+τpLs)ε4

fL
24 , R28 =

R∗I ε5
fL

12 .

6. Results and Discussion

The theoretical investigation focuses on the initiation of TCRB convection in a com-
bined structure. This system comprises a region-I positioned above a region-II that is
saturated with the same fluid. The analysis is conducted in accordance with the LTNE
model. The analytical calculations and graphical representations are performed utilizing the
advanced computational software known as MATHEMATICA, version 11. The eigenvalue
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issue is resolved by the utilization of the perturbation method, resulting in the derivation
of an analytical expression for the critical Rayleigh number. This expression is obtained for
six distinct thermal gradients, as indicated in Table 1. The graph depicts the relationship
between the critical Rayleigh number (RC) and the depth ratio (d̂) for all the cases examined
in the current study, specifically in the context of adiabatic rigid boundaries. Also, there is
a noticeable pattern in the profiles’ stability. The range of values under consideration in
the present analysis is as follows: αspL = 2, κ f pL = 0.2, κspL = 0.3, τf Ls = 0.2, τpLs = 0.3,
R f Ls = 10, RpLs = 10, T̂ = 1.0, R∗I = 0.1, R∗IM = 1.0, β = 1, κpLs = 0.5, κ f Ls = 0.3 and
α f pL = 1.

The impact of the thermal expansion ratio α f pL on RC is illustrated in Figure 2. The
curves exhibit divergence when considering the values α f pL = 1, 5, and 10. The figure
clearly demonstrates a positive correlation between α f pL and RC, indicating that an increase
in α f pL results in a corresponding increase in RC. Consequently, the setup can achieve
stability, thereby delaying the onset of TCRB convection. Based on the graph, it can be
observed that the linear profile exhibits greater stability compared to the parabolic profile.
In comparison, PLHB exhibits greater stability, while SF demonstrates a higher degree of
instability. The impact of the parameter is minimal in the parabolic profiles, while it is
more pronounced in the linear profiles. According to the data presented in Figure 3, an
increase in the variable solid phase expansion ratio αspL leads to a corresponding increase
in the RC. Consequently, this adjustment in the setup has the potential to enhance the
stability and delay the onset of TCRB convection. Based on the graph, it can be observed
that the linear profile exhibits the highest level of stability, while the parabolic profile
demonstrates instability. In a similar vein, it can be observed that PLHB exhibits a higher
degree of stability compared to SF, which is relatively less stable. The impact of the
parameter is minimal in parabolic profiles, whereas it is more significant in linear profiles.
It is observed that nearly equivalent outcomes are achieved for the variables α f pL and
αspL. It is evident from Figure 4 that the growth in the porous parameters β leads to a
rise in the RC. Consequently, this allows for the stabilization of the setup, resulting in
a delayed onset of TCRB convection. As a result, the system is postponed. The graphs
indicate that the linear and PLHB models exhibit greater stability, while the parabolic and
SF models demonstrate higher levels of instability. Additionally, the impact of the porous
parameter is significantly more pronounced for the linear and PLHB models, moderately
significant for the inverted parabolic and PLCA models, and detrimental for the parabolic
and SF thermal gradient models. Figures 5 and 6 exhibit the effects of the fluid and solid
phase thermal diffusivity ratios, respectively, κ f pL and κspL. As the ratios increase, RC
increases. As a result, the setup is stable, delaying the onset of TCRB convection. Hence
the system is postponed. The effects of the corrected internal Rayleigh numbers R∗I and
R∗IM are illustrated in Figures 7 and 8. The system experiences destabilization as the R∗I
parameter increases, resulting in the earlier occurrence of TCRB convection for higher
values of this parameter. The TCRB convection effectively regulates smaller values of the
R∗I . It is observed in Figure 8 that there is an inverse response from the porous layer R∗IM.
This enhances the system stability by increasing the value of RC. The observed curves
exhibit a divergence pattern, suggesting that the sensitivity arises when the porous layer
predominates over the composite layer across all thermal gradients. Therefore, the TCRB
convection is delayed. The influence of the solute Rayleigh numbers R f Ls and RpLs over
the RC are depicted in Figure 9 when R f Ls = RpLs = 10, 20, 30, and 30. With the increase
in R f Ls and RpLs, RC decreases, destabilizing the setup. TCRB convection, hence, starts
up quickly. The observed phenomenon could potentially arise from the existence of a
secondary constituent.



Mathematics 2023, 11, 4282 11 of 17

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 20 
 

 

parabolic and SF models demonstrate higher levels of instability. Additionally, the im-
pact of the porous parameter is significantly more pronounced for the linear and PLHB 
models, moderately significant for the inverted parabolic and PLCA models, and detri-
mental for the parabolic and SF thermal gradient models. Figures 5 and 6 exhibit the 
effects of the fluid and solid phase thermal diffusivity ratios, respectively, fpLκ  and spLκ
. As the ratios increase, CR  increases. As a result, the setup is stable, delaying the onset 
of TCRB convection. Hence the system is postponed. The effects of the corrected internal 
Rayleigh numbers IR∗  and IMR∗  are illustrated in Figures 7 and 8. The system experi-
ences destabilization as the IR∗  parameter increases, resulting in the earlier occurrence 
of TCRB convection for higher values of this parameter. The TCRB convection effectively 
regulates smaller values of the IR∗ . It is observed in Figure 8 that there is an inverse re-
sponse from the porous layer IMR∗ . This enhances the system stability by increasing the 
value of CR . The observed curves exhibit a divergence pattern, suggesting that the sensi-
tivity arises when the porous layer predominates over the composite layer across all 
thermal gradients. Therefore, the TCRB convection is delayed. The influence of the solute 
Rayleigh numbers fLsR  and pLsR  over the CR  are depicted in Figure 9 when 

10, 20,30fLs pLsR R= = , and 30 . With the increase in fLsR  and pLsR , CR  decreases, 
destabilizing the setup. TCRB convection, hence, starts up quickly. The observed phe-
nomenon could potentially arise from the existence of a secondary constituent. 

  
(a) (b) 

Figure 2. The effect of the fluid phase thermal expansion ratio 1,5,10fpLα =  on CR . (a) Linear, 
parabolic and inverted parabolic, (b) Heating from below, cooling from above and step function. 

Figure 2. The effect of the fluid phase thermal expansion ratio α f pL = 1, 5, 10 on RC. (a) Linear,
parabolic and inverted parabolic, (b) Heating from below, cooling from above and step function.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 20 
 

 

  

(a) (b) 

Figure 3. Influence of the solid phase thermal expansion ratio 2,6,10spLα =  on CR . (a) Linear, 
parabolic and inverted parabolic, (b) Heating from below, cooling from above and step function. 

  
(a) (b) 

Figure 4. Impact of the porous parameter 0.8,0.9,1.0β =  on CR . (a) Linear, parabolic and in-
verted parabolic, (b) Heating from below, cooling from above and step function. 

Figure 3. Influence of the solid phase thermal expansion ratio αspL = 2, 6, 10 on RC. (a) Linear,
parabolic and inverted parabolic, (b) Heating from below, cooling from above and step function.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 20 
 

 

  

(a) (b) 

Figure 3. Influence of the solid phase thermal expansion ratio 2,6,10spLα =  on CR . (a) Linear, 
parabolic and inverted parabolic, (b) Heating from below, cooling from above and step function. 

  
(a) (b) 

Figure 4. Impact of the porous parameter 0.8,0.9,1.0β =  on CR . (a) Linear, parabolic and in-
verted parabolic, (b) Heating from below, cooling from above and step function. 

Figure 4. Impact of the porous parameter β = 0.8, 0.9, 1.0 on RC. (a) Linear, parabolic and inverted
parabolic, (b) Heating from below, cooling from above and step function.



Mathematics 2023, 11, 4282 12 of 17
Mathematics 2023, 11, x FOR PEER REVIEW 14 of 20 
 

 

  

(a) (b) 

Figure 5. The effect of the fluid phase thermal diffusivity 0.2,0.4,0.5fpLκ = , on CR . (a) Linear, 
parabolic and inverted parabolic, (b) Heating from below, cooling from above and step function. 

  
(a) (b) 

Figure 6. The effect of the variation of the solid phase thermal diffusivity ratio 0.3,0.5,0.7spLκ = , 
on CR . (a) Linear, parabolic and inverted parabolic, (b) Heating from below, cooling from above 
and step function. 

Figure 5. The effect of the fluid phase thermal diffusivity κ f pL = 0.2, 0.4, 0.5, on RC. (a) Linear,
parabolic and inverted parabolic, (b) Heating from below, cooling from above and step function.

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 20 
 

 

  

(a) (b) 

Figure 5. The effect of the fluid phase thermal diffusivity 0.2,0.4,0.5fpLκ = , on CR . (a) Linear, 
parabolic and inverted parabolic, (b) Heating from below, cooling from above and step function. 

  
(a) (b) 

Figure 6. The effect of the variation of the solid phase thermal diffusivity ratio 0.3,0.5,0.7spLκ = , 
on CR . (a) Linear, parabolic and inverted parabolic, (b) Heating from below, cooling from above 
and step function. 

Figure 6. The effect of the variation of the solid phase thermal diffusivity ratio κspL = 0.3, 0.5, 0.7, on
RC. (a) Linear, parabolic and inverted parabolic, (b) Heating from below, cooling from above and
step function.

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 20 
 

 

  

(a) (b) 

Figure 7. Influence of corrected internal Rayleigh number in region-I * 0.1,0.5,1.0IR =  on CR . (a) 
Linear, parabolic and inverted parabolic, (b) Heating from below, cooling from above and step 
function. 

  

(a) (b) 

Figure 8. The influence of corrected internal Rayleigh number in region-II * 0.1,0.5,1.0IMR =  on 
CR . (a) Linear, parabolic and inverted parabolic, (b) Heating from below, cooling from above and 

step function. 

Figure 7. Influence of corrected internal Rayleigh number in region-I R∗I = 0.1, 0.5, 1.0 on RC. (a) Linear,
parabolic and inverted parabolic, (b) Heating from below, cooling from above and step function.



Mathematics 2023, 11, 4282 13 of 17

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 20 
 

 

  

(a) (b) 

Figure 7. Influence of corrected internal Rayleigh number in region-I * 0.1,0.5,1.0IR =  on CR . (a) 
Linear, parabolic and inverted parabolic, (b) Heating from below, cooling from above and step 
function. 

  

(a) (b) 

Figure 8. The influence of corrected internal Rayleigh number in region-II * 0.1,0.5,1.0IMR =  on 
CR . (a) Linear, parabolic and inverted parabolic, (b) Heating from below, cooling from above and 

step function. 

Figure 8. The influence of corrected internal Rayleigh number in region-II R∗IM = 0.1, 0.5, 1.0 on
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Figure 9. Impacts of solute Rayleigh numbers R f Ls = RpLs = 10, 20, 30 on RC. (a) Linear, parabolic
and inverted parabolic, (b) Heating from below, cooling from above and step function.

7. Conclusions

The primary focus of this theoretical investigation is the initiation of the two-component
Rayleigh–Bènard (TCRB) convection in a combined structure. The system consists of a
region-I situated above a region-II that is fully saturated with the same fluid. The analysis is
performed following the LTNE model. The present endeavor necessitates the examination
of the situation within the framework of arbitrary boundary conditions for salinity and
temperature. The eigenvalue problem is solved using the perturbation method, which
leads to the derivation of an analytical expression for the critical Rayleigh number. The
aforementioned expression is derived from six unique thermal gradients, as outlined in
Table 1. The present study has yielded the following outcomes.
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(i) The onset of TCRB convection is supported by a corrected internal Rayleigh number
in region-I and the solute Rayleigh number. By increasing the system’s instability, the
six profiles speed up the beginning of TCRB convection with the corrected internal
Rayleigh number in region-I and the solute Rayleigh number.

(ii) When applied to each of the six profiles, the thermal ratio, the thermal diffusivity
ratio, the porous parameter, and the corrected internal Rayleigh number all work
together to postpone the onset of TCRB convection.

(iii) In a combined structure arrangement with region-I on top, the parabolic profile is
more stable than the step function, but in a setup with region-II on top, the step
function takes the lead.

(iv) The PLHB structure exhibits the highest stability among the combined structures in
region-II, whereas the linear structure demonstrates the lowest stability.

(v) The commencement of TCRB convection in a composite fluid and porous layer system
may be efficiently controlled by selecting the proper parameters.
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Nomenclature

English Letters Greek Letters

a f L, apL Wave numbers ρ0 Reference density, kg/m3

C f L, CpL Concentrations, mol/m3 ρ f L, ρpL Fluid and porous layer density, kg/m3

C0 Reference concentration, mol/m3 µ f L, µpL Fluid viscosity and porous viscosity, kg/ms

Cp Specific heat capacity, J/kg·K ∆T Temperature difference, K

D f L, DpL D f L = d
dz f L

, DpL = d
dzpL

∆C Concentrate difference, mol/m3

Da Darcy number κ f L, κpL
Thermal diffusivities in fluid and porous
layer, m2/s

d f L, dpL Thickness, m κ f Ls, κpLs Solute diffusivity ratio

d̂ Depth ratio κpL, κspL
Thermal diffusivity of fluid and solid phase
in porous layer, m2/s

g Gravity, m/s2 α f L, αpL
Thermal expansion coefficients in fluid
and porous layer, 1/K

H
Scaled interface heat transfer coefficient,
W/mK

α f pL, αspL
Thermal expansion coefficients in fluid and
solid phase in porous layer, 1/K

h Inter-phase heat transfer, W/m2/K α f Ls, αpLs
Solute thermal expansion coefficients in fluid
and porous layer, 1/K

K Permeability, H/m τspL Inter-phase thermal diffusivity ratio, m2/s
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English Letters Greek Letters

k̂ (0, 0, 1) τf L, τpL Thermal diffusivity ratio, m2/s

Pf L, PpL Pressure, kg m−1s−2 τf Ls, τpLs Solute thermal diffusivity ratios, m2/s
→
q f L,

→
q pL Velocity vectors, m/s θ f L, θpL Amplitude of perturbed temperature, K

RC Critical Rayleigh number β Porous parameter

R f Ls, RspL Solute Rayleigh numbers φ Porosity

R f L,RpL Rayleigh numbers µ̂ Viscosity ratio

RI , RIM Internal Rayleigh numbers Subscripts

R∗I , R∗IM Corrected internal Rayleigh numbers b Basic state

Ŝ Solute ratio f L Fluid layer

S f L, SpL Amplitude of perturbed concentration pL Porous layer

Tf L, TpL, TspL Temperatures, K f pL Fluid phase porous layer

T0 Interface temperature, K spL Solid phase porous layer

T̂ Thermal ratio f Ls Fluid layer salinity

W f L, WpL Dimensionless vertical velocities pLs Porous layer salinity

Ff L(z f L),
FpL(zpL)

Fluid and porous layer temperature gradient

Appendix A

The zero-order expressions are as follows:
For region-I,

D4
f LW f L0 = 0

D2
f Lθ f L0 +

[
Ff L(z f L) + R∗I

(
2z f L − 1

)]
W f L0 = 0

τf LsD2
f LS f L0 + W f L0 = 0

For region-II,
D2

pLWpL0 = 0

φD2
pLθ f pL0 +

[
FpL(zpL) + R∗IM

(
2zpL + 1

)]
wpL0 + H

(
θspL0 − θ f pL0

)
= 0

(1− φ)D2
pLθspL0 + H

(
θspL0 − θpL0

)
= 0

τpLsD2
pLSpL0 + WpL0 = 0

The zero-order boundary conditions are as follows:

W f L0(1) = 0,D f LW f L0(1) = 0,D f Lθ f L0(1) = 0, D f LS f L0(1) = 0,T̂W f L0(0) = WpL0(1),

T̂d̂D f LW f L0(0) = µ̂ WpL0(1),θ f L0(0) = T̂θ f pL0(1),θ f L0(0) = T̂θspL0(1),S f L0(0) = ŜSpL0(1),

D f LS f L0(0) = DpLSpL0(1),D f Lθ f L0(0) = DpLθpL0(1),D f Lθ f L0(0) = DpLθspL0(1),

T̂d̂2D2
f LW f L0(0) = µ̂D2

pLWpL0(1),T̂d̂3β2D3
f LW f L0(0) = DpLW f L0(1) + µ̂β2D3

pLWpL0(1),
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WpL0(0) = 0, DpLWpL0(0) = 0,DpLθ f pL0(0) = 0,DpLθspL0(0) = 0, DpLSpL0(0) = 0.

The zeroth-order equations have solutions which are given by

W f L0(z) = 0,θ f L0(z) = T̂,WpL0(zpL) = 0,θ f pL0(zpL) = 1,θspL0(zpL) = 1.

δ f L1 =
−d̂2β2

(
R f pL + RspL τspL − RpLs τpLs

)
2T̂

,δ f L2 =
−µ̂d̂β2

(
R f pL + RspL τspL − RpLs τpLs

)
T̂

,

δ f L3 =
−µ̂β2

(
R f pL + RspL τspL − RpLs τpLs

)
2T̂

,δ f L4 =
−
(

R f pL + RspL τspL − RpLs τpLs

)
2T̂

,

δpL5 = 0, δpL6 = 0.
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