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Abstract: The arrival interval at high-speed railway stations is one of the key factors that restrict
the improvement of the train following intervals. In the process of practical railway operation,
sudden conflicts occur sometimes. Especially when the conflict arises at the station, because the home
signal cannot be opened in time, the emergency may affect the adjustment of the train operation
under the scheduled timetable, resulting in a longer train following interval or even delay. With the
development of artificial intelligence and the deep integration of big data, the architecture of train
operation control and dispatch integration is gradually improving from the theoretical point. Based
on this and inspired by the Green Wave policy, we propose an integrated operation method that
reduces the arrival interval by avoiding unnecessary stops in front of the home signal and increasing
the running speed of trains through the throat area. It is a two-step optimization method combining
both intelligent optimization and mathematical–theoretical analysis algorithms. In the first step, the
recommended approaching speed and position are obtained by analytical calculation. In the second
step, the speed profile from the current position to the position corresponding to the recommended
approaching speed is optimized by intelligent optimization algorithms. Finally, the integrated method
is verified through the analysis of two distinct case studies. The first case study utilizes data from
the Beijing–Shanghai high-speed railway line, while the second one is based on the field test. The
numerical result shows that the proposed method could save the entry running time effectively,
compared with the normal strategy given by the train driver. The method can mitigate controllable
conflict events occurring at the station and provides theoretical support for practical operation.

Keywords: integrated optimization; train operation; intelligent optimization algorithm

MSC: 37M05; 49M05; 65-04; 68T07; 93-05

1. Introduction

In recent years, the high-speed railway has developed rapidly and become an impor-
tant mode of transportation for people. However, under the influence of rain, storms, and
other emergencies, track occupancy conflicts often occur when trains enter the station. The
following train drivers are not aware of such conflicts in advance and are forced to stop,
resulting in longer train following intervals and schedule instability [1]. This inevitably
leads to significant delays. Thus, how to adjust the train operation strategy to compress the
arrival interval in case of station conflicts is an urgent problem to be solved.

At the station, one of the main reasons for single train delays caused by disturbances
is that the preceding train cannot complete the operation plan according to the scheduled
timetable, resulting in the entering station conflict, which leads to the influence of the
moving authority of the succeeding train [2]. The succeeding train has to stop before the
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home signal, awaiting clearance for entry. This leads to extended train arrival intervals and
potential avoidable delays. Albrecht [3] proposed early the concept of proactively slowing
down trains to prevent unplanned stops due to conflicts that could lead to delay events.
However, this concept was limited by the automation capabilities of train scheduling at
that time. Following this concept, Yun et al. further highlighted the methods for train
control in such conflict scenarios but provided limited elaboration and application of the
algorithms [4]. Moreover, researching train arrival route conflicts and applying the principle
of approach unlocking at high-speed railway stations contributes to the compression of train
arrival intervals. Diverse speed limits are employed across different railway segments and
junctions to compress train arrival intervals and ensure safe distances between trains [5].
In addition, the management of real-time disruptions to the railway is often addressed by
the real-time rescheduling of timetables to recover from a disrupted situation to a viable
situation [6,7].

However, the optimization effect of these studies reaches a bottleneck in the existing
system architecture. The current dispatching system and operation control belong to two
levels of the system, which makes it difficult for dispatchers to control the running state of
trains in the railway network in time. Meanwhile, drivers are also unable to obtain timely
dispatch orders and are judged by their driving experience [8]. Specifically, in the event
of an emergency, the dispatcher only has a macro understanding of part of the railway
network. It is difficult for them to grasp the overall operation status of the system in real
time, and they are often unable to communicate with drivers in time. At the same time,
when the driver executes the dispatching command, he or she often judges the running
condition based on driving experience, and the control effect on the train is not balanced.

With the improvement of the train scheduling automation capability, many research
studies show that the collaborative optimization of train operation control and rescheduling
allows rapid response to emergency events and enables further compression of train arrival
intervals [9,10]. Under the integrated architecture, the dispatching system is able to accu-
rately predict the train operating status and timetable, realizing real-time train scheduling
and facilitating the quick response of the operation control system in planning the train
trajectory [11]. Therefore, the time of the occupied train ahead to clear the platform is
known based on the prediction of the train status of the real-time dispatching system. Based
on the prediction of the opening time of the home signal, how to optimize the trajectory
of the succeeding train to further compress the train arrival interval is the focus of our
work. In order to quickly optimize the train trajectory within the restricted adjustment time,
this paper adopts two popular types of computationally faster optimization algorithms
to compute: one is meta-heuristic algorithms improved according to the habits of biologi-
cal populations in nature [12–14], and the other is reinforcement learning (RL), which is
developing rapidly in the field of artificial intelligence [15,16].

Based on the above mentioned, an integrated method of train operation and route
setting is designed to reduce the train arrival interval. The method focuses more on
the opening time of the home signal and the rapid optimization of the train trajectory.
Moreover, the integrated method of reducing the arrival interval proposed in this paper is
less restrictive for the station where the siding track is occupied, so it is generally feasible
for entry conflict scenarios. The main contributions of this paper are as follows.

1. We construct an integrated operation method to compress the arrival interval for the
entry conflict scenario. This approach improves the passing speed by analyzing three
entry strategies to avoid unnecessary stops in the throat area.

2. The two-step method consists of mathematical analysis and optimization algorithms,
with the former used to determine the entry operation strategy and the latter for
calculating the optimal adjustment trajectory.

3. The improved intelligent optimization algorithm can solve the recommended tra-
jectory in a short period of time after obtaining the adjustment time. In addition,
the validity and feasibility of the method are verified by simulation experiment and
field test.
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The main objective is to verify the feasibility of the integrated method through simula-
tion and field test. The improved algorithms can realize the fast calculation of speed profiles
and will potentially provide real-time adjustment of the trains. The remainder of this paper
is organized as follows. Section 2 introduces the related work. The problem description is
formulated by modeling the spacetime scenario in Section 3. In Section 4, we propose an
integrated method of operation control and rescheduling for reducing the arrival interval.
Section 5 gives two case studies to verify the method from different perspectives. Finally,
conclusions are given in Section 6.

2. Related Work

In this section, we discuss the most relevant work on the ways to integrate real-time
rescheduling solutions and the popular algorithms used for solving.

When there are no emergencies, the timetable can be executed according to the original
plan. However, unexpected effects of weather and other factors are unavoidable during
train operation. The time periods in the timetable are generally based on the processing
time of each phase, such as headway time, dwell time and running time, plus extra buffer
time [6]. Extended stage processing time due to emergency events often increases the train
arrival interval and even causes train delays.

Therefore, a real-time rescheduling system is needed to be able to predict the future
development of rail traffic accurately and to resolve potential route conflicts. D’Ariano et
al. took into account the accurate monitoring of train positions and speeds, predicting in
advance and resolving potential collision routes in real time [17,18]. The automated dis-
patching support system can provide effective assistance to dispatchers to effectively reduce
delay propagation and minimize arrival delays at station and dispatch area boundaries.
The system can be considered as part of a decision support system to assist dispatchers
in controlling train traffic. Galapitage et al. developed a system that combines real-time
driving recommendation calculations with real-time interchange rescheduling to reduce
delays in the throat area [19]. The system detects a potential conflict 20 min before it occurs
and calculates a new target time in the throat area to resolve the conflict. The connected
driving advice system responds to the modified arrival time by calculating a new optimal
speed profile. The delay prediction of the dispatching system [20] and the timely response
of the operation control system to the train operation can further alleviate the serious
consequences caused by the train delay.

To solve the problem of real-time train scheduling, the scholars improve the rapid
response of the emergency not only from the system prediction perspective but also from
the perspective of the model and method. The methods involved in train-rescheduling
problems are divided into mathematical optimization, artificial intelligence, meta-heuristic
algorithms and other methods generally. Each method has its inherent characteristics,
advantages, and shortcomings in solving train-rescheduling problems.

The mathematical optimization algorithm is a kind of algorithm with a strictly the-
oretical basis. Some researchers establish mathematical optimization models for train-
rescheduling problems, mostly integer linear programming (ILP) models, mixed-integer
linear programming (MILP) models, and design optimization algorithms to solve the prob-
lem [21,22]. Wang et al. proposed two methods for solving the multi-train optimal control
problem for different signaling systems, both of which are transformed into mixed-integer
linear programming problems for solving [23]. And then, for the train-scheduling problem
in which the subway line is completely blocked, Wang et al. considered multiple practical
operational constraints and established a complex multi-objective mixed-integer linear pro-
gramming model. To improve the solution accuracy, a two-stage method combined with a
heuristic method is proposed to solve the problem [24]. Xu et al. developed a mixed-integer
linear programming model to solve the rescheduling problem under micro-disturbances
from a microscopic point of view, considering the train speed hierarchy in the quasi-moving
block [25].
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Since the model problem is strongly NP-hard, in practice, many scholars compute high-
quality solutions in a shorter computation time with the help of intelligent optimization
algorithms, such as meta-heuristic algorithms, as well as the RL algorithm.

The meta-heuristic algorithm is a way to overcome the weaknesses of pure mathemat-
ical planning for solving complex problems with nonlinearities. And it can simulate the
characteristics of intelligent systems to design relevant computational methods [26,27]. The
meta-heuristic algorithms are fast to compute and usually produce a feasible solution in a
short time. Sama et al. combined meta-heuristic algorithms to solve the train-rescheduling
problem, starting with a good initial solution of the fixed train route problem, obtained by
a truncated branch and bound algorithm. Then a variable neighborhood search or label
search algorithm was applied to improve the solution by relocating some sequences [28].
Krasemann used a greedy algorithm to generate better solutions in a short period of time
as a way to reschedule due to railway emergencies [29]. For the delayed online reschedul-
ing of high-speed trains, Yu et al. established a mathematical model and proposed a
dynamic weighted particle swarm optimization algorithm to solve the problem [30]. But it
does not further explain the effect of response measures and dynamic rescheduling time
in emergencies.

Meta-heuristic algorithms and RL are both iterative optimization algorithms that are
often used to solve problems, such as path planning and optimal control. Meta-heuristic
algorithms use a defined objective function to guide the search process for a optimal
solution, while RL utilizes the desired convergence approximation of the Markov chain
process. It is a kind of learning strategy based on the principle of reward and punishment,
which originates from the development and application of behavioral psychology [31]. The
Q-learning algorithm is a typical model-free algorithm in RL. Semrov et al. proposed a
train rescheduling method based on RL and applied the Q-learning principle. The principle
consists of learning agents and their actions, environments, states, and rewards. Finally,
the effectiveness of the Q-learning algorithm is evaluated in a real scenario [32]. In order to
improve the efficiency of managing subway lines after disturbances, Su et al. researched
the train-rescheduling problem and constructed a multi-objective optimization model. The
paper divides the train operation process based on the classical spacetime network, and
proposes a Q-learning-based solution approach to improve the solution efficiency [33].

These algorithms have a short computation time and often give a feasible solution in a
short time, which is also the main reason why this paper adopts the above algorithms to
solve the operation adjustment trajectory.

3. Problem Formulation

Considering the importance of the moment when the home signal allows trains to
enter the station, in this paper, we use the terms open and close uniformly to emphasize
the status of the home signal. In order to clearly describe the succeeding train operation
adjustment problem caused by the entering station conflict, a three-dimensional problem
model is constructed, and the normal operation scenario and the optimal operation scenario
are replicated on a distance–time–speed spatial rectangular coordinate system as shown in
Figure 1. In this section, Train 1 represents the preceding train, and Train 2 represents the
succeeding train.

Static speed limit protection is shown as the red block area, with the red line rep-
resenting the automatic train protection (ATP) profile at the moment of signal opening,
which changes in real time depending on the opening time of the home signal. The two-
dimensional plane of the speed–distance is shown in the grey area. The gold area represents
the entry running time saved for optimization. According to Figure 1, the normal entering
operation scenario and the optimal scenario are illustrated as follows.
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Figure 1. Distance–time–speed stereoscopic spatial scenes.

3.1. Normal Operation Scenario

Due to an unplanned event, Train 1 could not complete the operation plan as sched-
uled resulting in conflict with Train 2 at the station. Train 2 is turned to brake when the
home signal closes. At this moment, the initial condition is recorded as (D1, T1, VL). Train 2
reaches the home signal (Dx, Tx, 0) after the running time Tr. As the home signal closes,
Train 2 stops in front of the home signal for the required waiting time Tw to await dispatch-
ing instructions. When the home signal opens, Train 2 restarts and accelerates. Finally, it
enters the station at the specified limit speed to stop at the side of station (Dz, Tt2, 0).

The process of the succeeding train restarting at the home signal takes more time.
In this case, the succeeding train may not be able to enter the station on time and even
cause delays.

3.2. Optimal Operation Scenario

This paper only discusses two trains in this scenario to simplify the model. When
the home signal opens, we consider the succeeding train not stopping and driving into
the station at the recommended speed. This means that Train 2 reaches the adjustment
point (Dopt, Ts, Vopt) after a total adjustment time at the moment the home signal opens.
The adjustment point of optimization is the recommended approach speed and the corre-
sponding position. It is worth mentioning that in order to satisfy the optimization effect,
the adjustment time should be greater than or equal to the sum of the braking and stopping
time of the preceding train. This paper sets the adjustment time uniformly as Tr + Tw.
Then the train runs by the best entry strategy and stops at the same position in the station
(Dz, Topt, 0).

By comparing the train-running curves before and after optimization, the saving time
for optimization can be observed in Figure 2. The blue and green lines are correspond to the
normal and optimal trajectories of the succeeding train, while the black line indicates the
trajectory of the preceding train. The external operating conditions and internal disturbance
factors affecting the train operation are complex and difficult to model accurately. Thus, the
method in this paper treats Train 1 and Train 2 as independent single mass point models.
The predicted opening time of the home signal is used as the bridge between the two
models. The succeeding train is adjusted for operation optimization based on the opening
time of the home signal to save the entry running time.
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Figure 2. Time–distance graphical optimization.

4. An Integrated Operation Method for Reducing Arrival Interval of Trains

The process of optimizing the operation control considering the opening time of the
home signal is divided into two stages as shown in Figure 3. Firstly, the adjustment point
is obtained by the analysis of the entry operation strategy. And then the train trajectory
before the adjustment point is designed by using the meta-heuristic algorithm.

Start

Entry strategy selection

（xb,vb）

Step I

Step II

Stage II

Stage I

End

Optimization algorithm for train trajectory

Adjustment time Train parameter Line parameter

Expected adjustment point

The recommended 

approaching speed curve

Figure 3. Integrated operation method for reducing arrival interval of trains.

4.1. Analysis of the Entry Operation Strategy

In the first step, we use numerical analysis to find the optimal adjustment point in
stage II. To facilitate the theoretical analysis of the entry station pattern in this section,
a two-dimensional speed–distance entry operation scenario is drawn based on Figure 1,
and a right-angle coordinate system is established, with the horizontal axis representing
the distance and the vertical axis representing the current speed of the train. Thus, the
coordinate points indicate the train location and speed status. Furthermore, the ATP is the
updated speed limit protection curve after the home signal opens.

According to Pontryagin’s maximum principle, the optimal operating curve is com-
posed of four conditions: maximum acceleration, cruise, maximum braking and coasting.
As the model mainly focuses on the succeeding train caused by the entry conflict, the coast-
ing condition is not considered [34]. The optimized entry trajectory can be planned only
after the home signal opens and the ATP limit is updated, so either operation condition can
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be selected from the adjustment point. Combined with the entry station scenarios described
in the previous section, three entry operation strategies can be inferred, which are maximum
acceleration–cruise–maximum braking (MA-CR-MB), maximum acceleration–maximum
braking (MA-MB), and maximum acceleration (MA). The initial point (xb, vb) that allows
the most time saved is on the normal speed profile. The parameters are described uniformly
in Table 1.

Table 1. Parameter description.

Items Symbol Unit

Position of signal xx m
Position of entry station xj m

Length of line xz m
The current location xb m
The current speed vb m/s
Station speed limit vz m/s

Line speed limit vL m/s
Speed of intersection point in MA-MB vj m/s

Train traction acceleration at m/s2

Train braking deceleration ab m/s2

Entry running time of Pattern i Ti (i = 1, 2, 3) s
Time saved of Pattern i ∆Ti (i = 1, 2, 3) s

Original entry running time To (i = 1, 2, 3) s
All parameters used in this paper are in absolute values except ∆Ti .

The theoretical analysis of the method is based on the following assumptions:

1. The acceleration and deceleration process is an ideal uniform variable speed process.
2. The endpoint of the planned entry running curve is at position (xz, 0) in Figure 4.
3. The platform length allows the train to reach the speed limit in the throat area and

cruise in either pattern.
4. To simplify the train speed profile optimization model, there are no other temporary

speed limits between stations, and the line speed limit is uniformly vL.
5. The introduction of the strategy of an operation mainly ignores the interlocking

mechanism in the throat area, assuming that the receiving path is locked and released
as a single entity.

MA-CR-MB

MA-MB

MA
1

3

(Xx,0) (Xj,0) (Xz,0)

Distance(m)

Velocity(m/s)

Line velocity 

limit  VL

Station velocity 

limit Vz Train 2

Train 1

V=0

(Xb1,Vb1)

(Xb2,Vb2)

(Xb3,Vb3)

Normal trajectory

ATP

2

1

2

3

Figure 4. Entry operation strategy.

According to Table 1, To is the time for the original entry running before optimization:

To =
xz − xx − v2

z
2at
− v2

z
2ab

vz
+

vz

ab
+

vz

at
(1)
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The train entry running time saved by each entry operation pattern ∆Ti = Ti − To
(i = 1, 2, 3), so ∆Ti is negative. It is important to note that each entry operation pattern has
a different range of initial speed depending on the operating conditions.

4.1.1. Pattern of MA-CR-MB

The entry operation pattern contains three conditions of acceleration, cruise and
braking as shown in curve 1© in Figure 4.

The initial state (xb, vb) is far from the station. The train receives information about
the open timing of the home signal ahead, accelerates to the static speed limit of the line vL
first, and then cruises at the static speed limit. When the speed reaches the ATP profile, the
working condition is switched to maximum braking and the train decelerates to the state
(xj, vz) for entering the station.

The equation for the time saved ∆T1 as a function of vb is as follows:

∆T1 =

(
1

2ab × vL
− 1

2at × vL

)
× vb

2 − vb
at

+

vL − 2vz

2at
+

xj − xx

vL
+

vL − vz

ab
+

xx − xj +
v2

z
2at

vz

 (2)

4.1.2. Pattern of MA-MB

The entry operation pattern contains two conditions of acceleration and braking, as
shown in curve 2© in Figure 4. The pattern is special for solving, which has an intersection
with a switching mode.

The initial state (xb, vb) is at a moderate distance from the platform. The train is
given permission to enter the station, accelerates to the static speed limit first, switches the
working condition to the maximum brake, and then the train decelerates to the state (xj, vz)
into the station.

The equation for the time saved ∆T2 as a function of vb is as follows:

∆T2 =

{
1
at
(vj − vb) +

vj

ab

}
− vz

at
− vz

ab
+

xx − xj +
v2

z
2at

vz
(3)

where vj is represented by the line parameter constants as follows:

vj =

√
2at × ab × (xj − xx) + v2

z × at

at + ab
+ vb

2 (4)

4.1.3. Pattern of MA

The entry operation pattern includes only the acceleration condition as shown in curve
3© in Figure 4.

The pattern is more special, as the length of the throat area has to satisfy the condition
(xj − xx) ≤ v2

z × 2at; otherwise, the train traction acceleration in the MA pattern will be
adjusted to be less than the maximum traction.

The equation for the time saved ∆T3 as a function of vb is as follows:

∆T3 =

( 1
2at

+ 1
2ab

vz

)
× v2

b −
vb
at

(5)

Based on the above calculation, it is found that ∆Ti (i = 1, 2, 3) is a quadratic function
of vb in three patterns. That means if the entry operation condition includes the applicable
entry length and speed limit, the quadratic equation can be solved, and the adjustment
point in the best entry strategy can be calculated.
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4.2. Analysis of the Optimal Adjustment Trajectory

In the next step, we apply the meta-heuristic algorithm and Q-learning algorithm to
solve the optimal adjustment trajectory based on the strategy calculation in the first step
at the stage I. The train operation trajectory is the movement from the initial state to the
target state after a certain running time, where the running time is predicted by the train
dispatching system. Specifically, the optimal trajectory should satisfy the condition that
the train reaches the adjustment point (xb, vb) in time, during the total adjustment time
Tr + Tw, at which time the home signal opens.

4.2.1. The Improved Meta-Heuristic Algorithm

The meta-heuristic algorithm is one of the important directions in the development
of artificial intelligence today, and it embodies characteristics that are different from the
traditional intelligent optimization algorithms of the past [35]. The algorithm is a valuable
optimization strategy that solves complex optimization problems by simulating the search
behavior of nature with a core of swarm intelligence algorithms. It contains a variety of
algorithms, such as classical particle swarm optimization (PSO) and the genetic algorithm
(GA). In recent years, a variety of new algorithms have emerged, such as grey wolf optimizer
(GWO). In this section, the classic PSO algorithm of heuristic algorithms and the popular
GWO algorithm are used to solve the problem.

(1) PSO Algorithm

The basic principle of the particle swarm algorithm can be summarized by a flock of
birds allowing other birds to discover the location of the food source by passing information
about their own location to each other throughout the search process. The other birds
constantly update their flying speed and direction, and eventually the whole flock can
gather around the food source, that is, the optimal solution has been found.

Each particle continuously updates its position and speed through the fitness value
determined by the objective function to find the optimal solution of the problem. The
objective function set by the algorithm is an error function. The closer the particle is to the
target state point, the smaller the value of the objective function. That is consistent with
how birds forage for food.

Assuming that the dimension of the search space is d and the coordinates of each
particle are Xi = (xi1, xi2, ..., xid), the speed of flight of each particle is Vi = (vi1, vi2, ..., vid).
For the first i particles, the best historical position through which it passes is denoted
as pbesti = (pi1, pi2, ..., pid). The best position of all particles found so far in the whole
population is noted as gbesti = (gi1, gi2, ..., gid). The particle constantly updates its speed
and position according to the changes in these two best positions:

vij(k + 1) = wvij(k) + r1c1(pij − xij(k)) + r2c2(gij − xij(k)) (6)

xij(k + 1) = xij + vij(k + 1) (7)

where w (w > 0), c1 and c2 are the learning factors, and r1 and r2 are random numbers
between [0, 1]. Usually the range of the position change is limited to [Xmin xd, Xmax xd], and
the range of speed change is limited to [Vmin xd, Vmax xd]:

(2) GWO Algorithm

The grey wolf optimizer algorithm was proposed by Mirjalili et al. based on the
cooperative predatory behavior of grey wolf packs [36]. The leader of the wolf pack is
at the top of the population pyramid. The α has the highest decision-making power and
is responsible for matters in the pack, such as hunting and roosting. The second layer is
the intelligent group β of the wolf group, which mainly assists the α in making decisions
and conveying instructions downward. The β will take over the position of α if the leader
position is missing. The third layer δ wolves obey the leadership of β and α wolves and
are mainly responsible for such matters as sentry watching and scouting. The bottom
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layer of the pyramid is ω wolves, who obey the leadership of the superior and are mainly
responsible for the balance of the internal relationship of the middle group. Each grey
wolf represents a potential solution, and the objective function value indicates the degree
of merit of each solution. During the iteration of the algorithm, the goal is to gradually
bring the grey wolf population closer to the global optimal solution, which means that
the objective function value gradually decreases. The grey wolves with lower objective
function values are considered to be closer to the solution of the optimization problem, and
thus they play a role similar to that of prey in the grey wolf population, a target for other
grey wolves to find.

The hunting behavior of the grey wolf population is mainly divided into three steps:

• Tracking, chasing and approaching the prey;
• Chasing and encircling the prey and harassing until it stops moving;
• Attacking the prey.

After the leader of the wolves α determines the location of the target prey, it will give
the command for the wolf to surround the prey and update the location of the search in
each iteration of the calculation, defining the behavior of the wolf pack in surrounding the
prey by the succeeding equation:

−→
D = |−→C · −→Xp(t)−

−→
X (t)| (8)

−→
X (t + 1) =

−→
Xp(t)−

−→
A · −→D (9)

where
−→
D is the distance between individual wolves and their prey, and t represents number

of algorithm iterations.
−→
Xp(t) is the position vector of the prey in t iterations.

−→
X (t) is the

position vector of the wolf in t iterations.
−→
A ,
−→
C are coefficient vectors expressed by the

succeeding equation:
−→
A = 2−→a · −→r1 −−→a (10)

−→
C = 2−→r2 (11)

where −→a is convergence factor that decreases linearly from 2 to 0 with the number of
iterations. r1 and r2 are random numbers between [0, 1]. With the help of the coefficient
vector |−→A | > 1 indicating that the wolves explore outward and |−→A | < 1 indicating that the
wolves explore inward and converge toward the prey, the convergence factor −→a ensures
convergence to the optimal value in the global search.

The standard GWO and PSO algorithms have position updates in the continuous
domain, which are only suitable for solving continuous optimization problems and cannot
directly solve problems in the discrete domain. Therefore, we improve the metaheuristic
algorithm by using a coding transformation method that converts continuous spaces to
discrete spaces and real numbers to integers based on the idea of mathematical mapping.
The whole train operation process is discretized, and the algorithm searches in the dis-
cretized space for feasible solutions and converges to the optimal solution. After each
iteration is completed, an integer conversion of the condition sequence code is required.
Assuming that the train operation curve optimization process contains N discrete substage,
the condition code corresponding to each discrete substage process is Ni ∈ [0, 6]. Each
substage corresponds to a different rate of speed change, which is an.

The fitness function of the improved meta-heuristic algorithm (Algorithm 1) is cal-
culated for each particle or grey wolf during each iteration. In the iterative process of the
algorithm, the optimal fitness is obtained by comparison. The goal is to keep approaching
the target optimal adjustment point:

F = |
n

∑
i=1

xi − xb|+ |vL +
n

∑
i=1

ai × ∆t− vb| (12)



Mathematics 2023, 11, 4287 11 of 20

Algorithm 1 The improved meta-heuristic algorithms

Input: Niter: The maximum iteration; M: The population quantity; ∆t: Train control circle;
Tr + Tw: The total adjustment time; (xb, vb): The target state

Output: The near optimal working condition solution; The fitness function;
1: Calculate the substage numbers N, N = (Tr + Tw)/∆t
2: Initialize the population X = (xij)N×M, 0 ≤ xij ≤ 6 and algorithm parameters
3: while k ≤ Niter do
4: while m ≤ M do
5: Update the position of Xi by fitness
6: Operated by the heuristic algorithm structure
7: m = m + 1
8: end while
9: Calculate the fitness F by (12)

10: Record the fitness of each optimal state
11: k = k + 1
12: end while

4.2.2. The Improved Q-Learning Algorithm (Algorithm 2)

Q-learning is a classic value-based reinforcement learning algorithm, and the Q value
represents the expected cumulative reward in a given state and action:

Q : S× A→ R (13)

where S denotes the state space explored by Q-learning and A is the action space. The
reward is an evaluation of the changes in the state of the environment caused by the
action taken, which is an important guidance for the training process. It is divided into
active reward and negative reward, and the merit of the reward function design directly
determines the effect of reinforcement learning. The reward function is shown in (14), in
which r is a set reward constant:

Q(st+1|st, at)


10 ∗ r, if at is active action
r, else
−10 ∗ r, if at is negative action

(14)

The algorithm is initialized with an initial value Q of 0. At the moment of t, the state
of the environment is defined as st, the intelligent agent selects an action at, and receives
the reward rt. Specifically, the deviation from the target state is calculated for the current
state during training, and the action is decided to be positive or negative based on the size
of the error. And then, the environment changes its state to a new state st+1 as the result of
the agent’s action. The main idea of the algorithm is to construct a Q-table of states and
actions to store the Q-values, and then based on the Q-values to select the action that can
obtain the maximum benefit. The specific form of Bellman’s equation used to update the
Q-values is as follows:

Qnew(st, at)← (1− α) ·Q(st, at) + α · (rt + γ ·max
a

Q(st+1, a)) (15)

where rt denotes the reward value obtained from state st to state st+1. α is the learning factor
(0 < α ≤ 1), which defines the weight that an old Q-value will learn from a new Q-value,
with a value of 0 meaning that the agent will not learn anything (the old information is
important), and a value of 1 meaning that the newly discovered information is the only
information that matters. γ is the discount factor (0 ≤ γ ≤ 1), which defines the importance
of future rewards. A value of 0 means that only short-term rewards are considered, where
a value of 1 gives more importance to long-term rewards.

The Q-table built by the algorithm is discrete and contains only a limited number
of states and actions, corresponding to the way that the train state space discretized in



Mathematics 2023, 11, 4287 12 of 20

the previous section. Each row in the Q-table represents the state of the train’s operating
position, and each column represents the value of the working condition taken. We refer to
each exploration of the agent as an episode. In each episode, an episode ends when the
agent reaches the target state from the initial state, and then proceeds to another episode.
In order to avoid the exploration process falling into a locally optimal solution, a dynamic
ε− greedy optimization strategy is used for exploration during the training process. When
the train position is at st, the action is randomly selected with probability of ε, that is, the
operating condition is shown in Table 2. And the action corresponding to the maximum
value in row st of states in Q-table is selected with probability 1− ε. Initially, a larger ε is
used to achieve higher exploration efficiency, and the epsilon decay factor is set to reduce
the value of ε with state migration.

Table 2. Working condition coding.

Coding of Ni Working Condition

0 100% Braking
1 80% Braking
2 60% Braking
3 100% Tracking
4 80% Tracking
5 60% Tracking
6 Cruising

Algorithm 2 The improved Q-learning algorithm

Input: α: The learning factor; γ: the discount factor; ε: The initial epsilon; epsilon decay
factor; episode maximum; the Q-table size; ∆t: Train control circle; Tr + Tw: The total
adjustment time; (xb, vb): The target state

Output: The near optimal working condition solution; The reward function;
1: for Episode = 1, 2, ... do
2: Initialize the initial state
3: Dynamically update ε using epsilon decay factor
4: repeat
5: at is selected based on Q-table using ε− greedy strategy
6: Perform at, observe the reward rt by (14) and the next state st+1
7: Update Q-table by (15)
8: st ← st+1
9: reward = reward + rt;

10: until st reaches the terminal state
11: Record the reward of each episode
12: end for

5. Experimental Results

Two case studies are presented in this section. The first case validates the integrated
operation method for reducing the arrival interval. The data are selected from a typical
high-speed railway station on the Beijing–Shanghai line. The second case verifies the
method on a field test and proves that the stopping time does not affect the saving time.
The results show that the optimal strategy could save the entry running time by 10–30%,
compared with the normal strategy given by driver. When the entry station conflict causes
delay, reducing the entry running time can greatly alleviate delay. The proposed method is
implemented in MatlabR2021a on a computer with an Intel Core i7–8700 CPU @ 3.20 Ghz
and 16 GB RAM running Windows 10 x64 Edition. It is assumed that the preceding train
leaves the station platform and the home signal opens within the same time error in the
simulation line.
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5.1. Case Study 1: The Train Speed Profile Optimization Model Based with Simulation Line for
Succeeding Train

The verification of the three entry operation strategies using the analysis algorithm
relies on MatlabR2021a, which requires setting the line parameters as known quantities of
input, and the output is the saving time for the entry operation strategy. With reference
to the general railway line in the Beijing–Shanghai line, we set a simulation scenario.
The parameters used in the simulation are described in Table 3. The line speed limit is
300 km/h, and the speed limit in the station is 80 km/h. The starting adjustment point for
the succeeding train is set to (0 m, 83 m/s), that is, the beginning position of the operation
optimization is set to the start of the simulation line. This is designed to highlight the whole
section of the entry optimization. Additionally, according to the previous model analysis,
it is known that the length of the throat area is also required, which affects the traction
acceleration of the MA pattern. The home signal is an indication of entry trains into or
through the railway station signal, mainly for the protection of the station. The home signal
is generally located in the outermost turnout from the railway station tip of the rail not less
than 50 m not more than 400 m location, to meet the conditions of the existence of each
entry operation pattern. To emphasize the effect of the adjustment of the entry station, the
length of the throat area is set at 400 m.

Table 3. The Main Parameters of Simulation.

Category Items Symbol Value Unit

Line parameters

Station speed limit vz 22 m/s
Line speed limit vL 83 m/s

Train traction acceleration at 0.5 m/s2

Train braking deceleration ab 0.6 m/s2

Length of line xz 9594 m
Length of throat area xj − xx 400 m

Length of station xz − xx 1450 m
Initial train position x0 0 m
The adjustment time Tr + Tw 170 s

PSO

The population quantity Mpso 40 /
The maximum iteration Niter(pso) 100 /

The inertia weight of PSO w 0.5 /
The learning factors of PSO c1, c2 0.4 /

GWO The population quantity Mpso 40 /
The maximum iteration Niter(gwo) 100 /

Q-learning

The learning factor α 0.2 /
The discount factor γ 0.9 /
The initial epsilon ε 1 /

The epsilon decay factor ε−decay 0.82 /
The episode maximum episode 100 /

Comparing the time saved by the three entry operation patterns, it is found that
the MA-MB pattern is the best entry strategy under this simulation. The MA-MB entry
operation pattern significantly saves the entry running time by up to 12.5 s. According
to the line, the original entry running time is calculated as 106.2 s. This means a 11.7%
reduction in entry running time. The speed of the optimal adjustment point is set as
13.6 m/s according to Figure 5. To satisfy the entry adjustment distance of the succeeding
train, the following equation needs to be satisfied.
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Figure 5. Three entry operation patterns of ∆T-vb.

xb = xx − v2
b/2ab (16)

This is calculated by the line assumes that the train operates by the maximum speed.
Based on the above equation and the line data, the position of the adjustment point can be
determined by solving for the speed of the optimal adjustment point. When the succeeding
train arrives at the adjustment point, the home signal opens. Then the train drives to the
station with maximum traction acceleration and stops the siding of the target station finally.
The improved optimization algorithm is used to calculate the train operation optimization
curve before the adjustment point. The parameter settings of the improved intelligent
optimization algorithms (PSO, GWO and Q-learning) are shown in Table 3. According to
the simulation line parameters, the adjustment time for the succeeding train is set as 170 s
as a result of the dispatch prediction.

Combined with the entry operation strategy, the results of the optimal operation
curves of intelligent optimization algorithms are shown in Figure 6. It should be noted that
the fitness function of the improved meta-heuristic algorithm keeps converging, while the
reward function of the improved Q-learning algorithm grows to level off with the increase
in episodes. In addition, we created a statistical graph (Figure 7) that shows the deviation
of each algorithm’s results from the target point throughout 100 iterations. The graph
demonstrates that all three improved algorithms converge to a stable and acceptable range
within 100 iterations. In the simulation environment of the MatlabR2021a, the computation
time of the improved GWO algorithm is about 19 s, and the computation time of the
improved PSO algorithm is about 16 s. In contrast, Q-learning training is short, with a total
episodic duration of roughly 900 ms.

Due to a certain degree of randomness in the solution process of the above intelligent
optimization algorithms, it is difficult to achieve consistent results each time. Thus, the
relevant evaluation indexes should be obtained by the average value of several repeated
tests. The number of tests is set at 10, and the effectiveness of the operating curve is judged
on the basis of whether the train runs within the adjustment time. There are three main
error evaluation indicators, all of which are negative indicators, and the greater the value,
the worse the effect.
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Figure 6. Optimal trajectory by improved meta−heuristic algorithm. (a) PSO operating curve.
(b) PSO fitness curve. (c) GWO operating curve. (d) GWO fitness curve. (e) Q-learning operating
curve. (f) Q−learning reward curve.
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Figure 7. Iterative error statistical graph.

1. Average running time error (Runtime_error_avg): It computes the average absolute de-
viation of the running time from the target value of 170 s, but only for valid solutions.

2. Average target speed error (Speed_error_avg): It calculates the average absolute
deviation of the speed from the target value for valid solutions.

3. Average target location error (Location_error_avg): It calculates the average absolute
deviation of the place from the target value for valid solutions.

Table 4 shows the mean absolute error (MAE) for the three algorithms to calculate
each indicator. And the MAE is calculated as follows:

MAE =
1
n

n

∑
i=1
|xi − x̂i| (17)

According to the MAE data in Table 4, the three algorithms all calculate the results
within an acceptable margin of error, and the improved GWO algorithm has the best
calculation accuracy compared to the other two algorithms, generally.

Table 4. Data of MAE.

Algorithm
MAE

Location_error_avg Speed_error_avg Runtime_error_avg

PSO 0.174 1.151 0.032
GWO 0.773 0.386 0.054

Q-learning 4.055 2.470 1.003

Since the train traction acceleration at and train braking acceleration ab are critical
variables, we further explore the relationship between ∆T and these two in Figure 8.

Other parameters remain the same: as the maximum traction acceleration at increases,
the running saving time decreases. As the maximum braking deceleration ab increases,
the running saving time increases. It can be seen that the train traction acceleration at has
a greater influence on the adjustment point. Even if the train braking acceleration ab is
close to the maximum value of 1 m/s2 for emergency braking, the time saved is only 15.2 s.
When adjusting at with ab to a suitable value, the train arrival interval can be reduced to
the maximum, saving nearly 30% of the entry running time at the station.
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Figure 8. Further simulations of line parameter change. (a) Relation of ∆T-at. (b) Relation of ∆T-ab.

5.2. Case Study 2: Exploration of the Integrated Method for Succeeding Train Based on Field Test

To further explore the integrated method, we conducted tests on trains at a railway
test track in Beijing. The case study will take into account the different stopping times of
the delayed train, exclude the influence of the line and train parameters on the optimization
model, and finally observe the change in entry running time saved.

The total length of line is 6254 m, and the station length is about 1140 m. The train
runs at the line speed limit (approximately 80 km/h), and the speed limit for crossing the
junction is 60 km/h. Based on several tests with the driver’s normal strategy of running
at the line speed limit, the running time is about 400 s to complete the whole line without
the stopping time. When the home signal opens, it takes approximately 98 s to enter the
station. Depending on the site condition, the field tests are carried out by a human driver.
Therefore, we designed a train track interface to guide the driver, as shown in Figure 9, and
arranged for a driver guide on the train to conduct the operation.

The field test is divided into two sessions, each with a different train-stopping time,
and three operations are required each time. Firstly, the train needs to cruise around the
route to ensure that the line and vehicle are fault-free. The second test represents the
existing operation, where the driver uses a normal strategy to control the train. At last,
the optimal operation is implemented to evaluate the optimization results. We assumed
that there were entry conflict delays at the arrival station, resulting in the succeeding train
stopping outside the station for 15 s or 30 s. Based on the above line parameters, the optimal
train trajectory is produced using the integrated method. All the train operation data are
captured by the extra data collection equipment. Figure 9 shows the optimal comparison
of the train stopping time of 15 s and the response time of 1 s. The time series of the two
trajectories are pre-processed in the figure. The starting point of the two-time series is set
to the same point in time to facilitate comparison. Before the optimization for entering
the station, train arrival time is 11:35:09. Optimal entry operation strategy with the train
arrival time of 11:34:55. It can be found that the time saved by the train entering the station
is about 14.2%. It is basically consistent with the result of the method calculation.
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Figure 9. Exploration of the integrated method based on the field test. (a) Time–distance graphical.
(b) The optimization effect of varying stopping times. (c) The map of field test. (d) The operational
interface for field test.

Changing the stopping time of the train after the home signal opened, we found
that the optimized time saved remained almost the same; what changed is the optimized
adjustment time before the train enters the station. Figure 9b shows the results of two tests.
The stopping time of the first normal test is 15 s and the second normal test stopped for
30 s. The time savings are almost the same for both tests. This validates the integrated
optimization method. This is because the adjustment time of the succeeding train is
determined by delay. The longer the train stops outside the station, the longer the train
adjustment time is required. The time saved by train trajectory optimization is relative to
the entry running time, which runs after the home signal opens. Thus, the optimization
effect is ∆Ti/(To + Tz), where Tz is the response time after the home signal opens.

6. Conclusions and Future Work

In this paper, an integrated solution is proposed to solve the problem of train operation
adjustment in the throat area, where entry conflicts occur. We propose a two-step method
that combines mathematical analysis and intelligent optimization algorithm solution. In
contrast to other studies, this method differs from other optimization methods by aiming
to achieve shorter train arrival intervals, with a special focus on conflict scenarios and the
opening time of the home signal.

Firstly, the optimal adjustment state of the succeeding train is analyzed based on the
line. The three entry strategies are proposed based on Pontryagin’s maximum principle,
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which improves the study of train entry strategies in related conflict scenarios. Then, based
on the constraints and objectives, the currently popular meta-heuristic algorithm and the
Q-learning algorithm in reinforcement learning are improved to solve for the optimal
trajectory of the succeeding train. The effectiveness of the integrated method is verified by
taking a typical section on the Beijing–Shanghai line as a case study. In addition, we also
conducted a field test relying on a railway test track in Beijing, and it can be found that the
train entry time is effectively reduced by 14.2%.

In the future, our research will focus on considering the specific analysis of other entry
operation strategies, which is due to the fact that train-driving strategies need to be adjusted
accordingly under different line conditions. At the same time, the optimization algorithm
index for calculating the recommended speed profile needs to be further concretized.
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