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Abstract: In this study, we expand a 2D sine map via adding the discrete memristor to introduce a new
3D fractional-order sine-based memristor map. Under commensurate and incommensurate orders,
we conduct an extensive exploration and analysis of its nonlinear dynamic behaviors, employing
diverse numerical techniques, such as analyzing Lyapunov exponents, visualizing phase portraits,
and plotting bifurcation diagrams. The results emphasize the sine-based memristor map’s sensitivity
to fractional-order parameters, resulting in the emergence of distinct and diverse dynamic patterns.
In addition, we employ the sample entropy (SampEn) method and C0 complexity to quantitatively
measure complexity, and we also utilize the 0–1 test to validate the presence of chaos in the proposed
fractional-order sine-based memristor map. Finally, MATLAB simulations are be executed to confirm
the results provided.

Keywords: chaos; sine memristor map; discrete fractional calculus; complexity

MSC: 37M20

1. Introduction

A memory resistor, commonly known as a “memristor”, has been widely recognized as
a fourth fundamental circuit element that serves as a link between charge and magnetic flux.
The theoretical concept of the memristor was initially forwarded by Chua in 1971 [1]. For an
extended period, Memristor research remained primarily theoretical until the first physical
implementation of a memristor was achieved by HP laboratories in 2008. They successfully
developed the first practical memristor using nanomaterials [2]. It has since become an
essential component in various applications due to its unique properties and potential to
revolutionize memory and computing technologies. Memristors have garnered significant
attention and research interest, contributing to advancements in various fields, including
electronics [3], computing [4], nonvolatile memory [5], and neuromorphic systems [6].

Chaos theory (Devaney 1989) is the concept that a slight now might lead to a significant
change later. It is a mathematical branch with applications in physics, economics, engineer-
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ing, and biology [7–14]. The presence of randomness and unpredictability in chaotic sys-
tems and the sensitivity to initial conditions allow for the generation of pseudo-random se-
quences and enhanced data encryption. These inherent merits of chaotic behaviors have con-
tributed to significant progress in various fields, including secure communications, image
and signal processing, data encryption, and optimization algorithms, among others [15–18].
The rich dynamics of chaotic systems continue to inspire novel research and applications,
making chaos theory an essential area of study with broad interdisciplinary impact.

Fractional chaotic behaviors are extensively seen in both social and natural sciences, at-
tracting considerable interest from various domains. In recent years, discrete-time fractional
calculus has attracted much interest due to its significance in real-world challenges [19–26].
These studies have reflected that the system’s behavior is highly dependent on the chosen
fractional order, showcasing its non-linear and complex nature, which makes it a fascinating
subject of study in the field of fractional dynamics.

In general, discrete-time memristive maps have not been extensively discussed com-
pared to the continuous-time domain. In practice, discrete chaotic systems offer the ad-
vantage of avoiding parameter sensitivity issues present in continuous systems, making
them easier to implement using digital hardware circuits [27]. Consequently, the study of
discrete fractional memristors remains inadequate, with relatively few studies dedicated to
exploring their behavior and characteristics. For example, the investigation of the chaotic
behaviors in the Caputo fractional memristive map has been studied in [28]. The devel-
opment of a 2D discrete memristor map by incorporating a memristor into a 1D Rulkov
neuron map has been presented in [29]. The multistability and synchronization of fractional
maps resulting from the coupling of Rulkov neurons with locally active discrete memris-
tors have been conducted by Ma et al. in [30]. The hidden attractors and multistability
in a fractional non-fixed-point discrete-memristor-based map have been investigated by
Shatnawi et al. [31]. Peng et al. [32] have studied the fractional-memristor-based discrete
chaotic map using the Grunwald–Letnikov operator. Furthermore, Khennaoui et al. [33]
developed the Lozi map to introduce the fractional memristor Lozi map and discussed
their hidden chaotic dynamics. Most of these studies have predominantly focused on
commensurate-order models in discrete-memristor-based maps. However, there appears
to be a noticeable gap in the literature concerning the effect of the incommensurate-order
case on the dynamics of such maps. This indicates an underexplored area in the field of
discrete memristors, particularly in the context of incommensurate fractional memristors.
Understanding the behavior and properties of incommensurate fractional memristors could
lead to valuable insights and potential applications in various domains. Therefore, further
investigation and research in this area are essential to uncovering the unique characteristics
and potential benefits of incommensurate fractional memristors.

Inspired by the preceding discussion, our objectives in this work are summarized
as follows:

1. A new 3D fractional-order sine-based memristor map is presented by establishing a
connection between the 2D sine map and the discrete memristor.

2. The dynamical properties are comprehensively explored, and some basic dynam-
ical characteristics demonstrated by this map, such as phase portraits, bifurcation
diagrams, and the maximum Lyapunov exponent, are investigated using a range of
fractional values, encompassing both commensurate and incommensurate cases.

3. To quantitatively measure complexity and validate the presence of chaos within the
proposed sine-based memristor map, we give the C0 complexity, sample entropy test
(SampEn), and 0–1 test results.

The rest of this manuscript is structured as follows: In Section 2, we give some
essential preliminary concepts of fractional discrete calculus. In Section 3, we introduce
the mathematical model of the 3D fractional sine-based memristor map. In Section 4, we
delve into an analysis of the dynamic characteristics of the fractional sine-based memristor
map, focusing on both commensurate and incommensurate scenarios. This exploration is
facilitated through Lyapunov exponent analysis, bifurcation diagrams, and phase attractor
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visualization. In Section 5, we use the C0 complexity, sample entropy test, (SampEn), and
0–1 test to quantitatively measure complexity and validate the presence of chaos within
the map. Finally, we conclude the paper by summarizing the most noteworthy findings
obtained throughout the study.

2. Preliminaries

To elucidate our memristor framework, we first provide a specific overview within
the domain of discrete fractional calculus.

Definition 1 ([34]). The β-th fractional sum for a function Y can be expressed as:

∆−β
b Y(υ) =

1
Γ(β)

b−β

∑
l=b

(b− 1− l)(β−1)Y(l), (1)

where υ ∈ Nb+β, β > 0 and Nb = {b, b + 1, b + 2, · · · }.

Definition 2 ([35]). The Caputo-like difference operator for a function Y(υ) can be stated as:

C∆β
υY(b) = ∆−(m−β)

b ∆mX(υ) = 1
Γ(m−β) ∑

υ−(m−β)
l=b (υ− l − 1)(m−β−1)∆mY(l), (2)

where υ ∈ Nb+m−β, β 6∈ N and m = dβe+ 1. ∆mY(υ) and (υ− l − 1)(m−β−1) are the m-th
integer difference operator and the falling factorial function, respectively, which are written as

∆mY(υ) = ∆(∆m−1Y(υ)) =
m

∑
k=0

(
m
k

)
(−1)m−kY(υ + k), υ ∈ Nb, (3)

and

(υ− 1− l)(m−β−1) =
Γ(υ− l)

Γ(υ + 1− l −m + β)
, (4)

Remark 1. For m = 1, we can define the Caputo-like operator by

C∆β
b Y(υ) = ∆−(1−β)

b ∆Y(υ) = 1
β(1−β) ∑

υ−(1−β)
l=b (υ− 1− l)(−β)∆Y(l), υ ∈ Nb−β+1 (5)

Theorem 1 ([19]). The solution to the following fractional difference system{
C∆β

b Z(υ) = Y(υ + β− 1, Z(υ + β− 1))
∆jZ(υ) = Zj, m = dβe+ 1,

(6)

is expressed by

Z(υ) = Z0(υ) +
1

Γ(β)

υ−β

∑
l=m−β

(υ + 1− l)(β−1)Y(l − 1 + β, Z(l − 1 + β)), υ ∈ Nb+m, (7)

where

Z0(υ) =
m−1

∑
j=0

(υ− b)j

Γ(j + 1)
∆jZ(0). (8)

3. Fractional-Order Sine-Based Memristor Map

The original work of Bao et al. [36] introduced the 2D sine map, which is written as:{
y1(r + 1) = y1(r) + α1 sin (y2(r)),
y2(r + 1) = y2(r) + α2 sin (y1(r)) sin (y2(r)),

(9)
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where α1 and α2 are adjustable parameters.
A memristor is a two-terminal nonlinear device that displays a pinched hysteresis

in response to the application of any periodic voltage or current stimulation. Diverse
memristors with discrete memristance values have been suggested through the use of
differential modeling theory [37]. As per the concept presented in reference [38], the
discrete memristor can be defined by:{

vr = M(qr)ir,
qr+1 = qr + k ir,

(10)

where vr represents the output voltage, ir is the input current, and qr represents the internal
state of the discrete memristor at step r. M(qr) denotes the value of the discrete memristance
function, which is equal, in this study, to

M(qr) = sin qr.

Thus, the mathematical model for the discrete memristor (10) is formulated by{
vr = sin (qr)ir,
qr+1 = qr + k ir.

(11)

To expand the dimension of the proposed sine map, we incorporate the discrete
memristor model (11) into the map (9) by adding the voltage vr of the memristor to the y1
variable. Furthermore, the variables y2 and y3 correspond to the current ir and the internal
state rr of Equation (11). Thus, the dimension of the sine map is increased, yielding the
following 3D sine-based memristor map:

y1(r + 1) = y1(r) + α1 sin
(
(y2(r)) + µy2(r) sin (y3(r))

)
,

y2(r + 1) = y2(r) + α2 sin (y1(r)) sin (y2(r)),
y3(r + 1) = y3(r) + ky2(r),

(12)

where µ is the controller parameter and k is the step size. Figure 1 illustrates a bifurcation
diagram and Lyapunov exponent, as well as the phase attractor of the 3D sine-based
memristor map while varying α2 from 1 to 4. The initial conditions are chosen as y1(0) = −2
y2(0) = 1, and y3(0) = 0.1, and the parameters are chosen as α1 = 1.5, µ = 0.1, and k = 0.01.
The evidence presented in Figure 1 provides that the model demonstrates chaotic dynamics
for a significant range of values of α1 and α2, specifically within the interval α2 ∈ (3.23, 4).

In this investigation, we extend the integer-order sine-based memristor map to gen-
erate the fractional-order sine-based memristor map by employing the Caputo difference
operator. The formula representing the first-order difference in the sine-based memristor
map is as follows: 

∆y1(r) = α1 sin
(
(y2(r)) + µy2(r) sin (y3(r))

)
,

∆y2(r) = α2 sin (y1(r)) sin (y2(r)),
∆y3(r) = ky2(r),

(13)

where ∆y(r) = y(r + 1)− y(r) is the standard difference operator. In the aforementioned
system, if we substitute ∆ with the Caputo-like operator c∆β

b and replace r with $ =
υ + β− 1, the resulting system becomes a fractional-order difference system.

c∆β
b y1(υ) = α1 sin

(
(y2($)) + µy2($) sin (y3($))

)
,

c∆β
b y2(υ) = α2 sin (y1($)) sin (y2($)),

c∆β
b y3(υ) = ky2($),

(14)
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where υ ∈ Nb+1−β, b is the initial point and 0 < β ≤ 1 represents the fractional order.

(a) (b) (c)

Figure 1. (a) Bifurcation diagram for α2 ranging from 1 to 4. (b) The corresponding Lyapunov
exponents. (c) Phase attractor of sine-based memristor map (12).

4. Nonlinear Dynamics of the Fractional-Order Sine-Based Memristor Map

In this section, we will conduct an analysis of the behaviors of the 3D fractional-order
sine-based memristor map (14). The analysis will be carried out across commensurate and
incommensurate orders. We will employ a range of numerical tools, such as visualizing
phase portraits, illustrating bifurcations, and estimating the maximum Lyapunov exponent
(LEmax).

4.1. Commensurate-Order Fractional Sine-Based Memristor Map

In this part, our focus is on elaborating on the different characteristics of the
commensurate-order 3D fractional sine-based memristor map. It is important to rec-
ognize that a commensurate-order fractional system is comprised of equations that possess
identical orders. To this end, we will now supply the numerical formula, which will be
presented in the following manner and is derived from Theorem 1:

y1(r) = y1(0) +
r−1
∑

j=0

Γ(r−j−1+β)
Γ(β)Γ(r−j)

(
α1 sin

(
(y2(j)) + µy2(j) sin (y3(j))

)
),

y2(r) = y2(0) +
r
∑

j=0

Γ(r−j−1+β)
Γ(β)Γ(r−j)

(
α2 sin (y1(j)) sin (y2(j))

)
,

y3(r) = y3(0) +
r
∑

j=0

Γ(r−j−1+β)
Γ(β)Γ(r−j)

(
ky2(j)

)
.

(15)

Set y1(0) = −2, y2(0) = 1, and y3(0) = 0.1 and the parameters to α1 = 1.5, α2 = 3.8,
µ = 0.1, and k = 0.01. Figure 2 displays the discrete-time evolution of the states y1, y2,
and y3 in the suggested commensurate 3D fractional sine-based memristor map (14) for
β = 0.25. Additionally, Figure 3 illustrates the phase portraits for various values of the
commensurate order β (β = 0.05, β = 0.1, β = 0.3, β = 0.35, β = 0.9, β = 0.91, β = 0.95,
and β = 1). From the figures, it can be observed that the observed trajectories in the
proposed commensurate map switch between hidden chaotic oscillations and periodic
behaviors as the commensurate order β varies. Here, we plot three bifurcations of (14)
associated with α2 ∈ [0, 1], as shown in Figure 4, which correspond to the commensurate
orders β = 0.1, β = 0.3, and β = 0.95. It is clear from the diagrams that there are distinct
differences in the dynamics of the proposed map, underscoring the impact of both the
system’s parameters and the commensurate order on the states of the fractional sine-based
memristor map (14). Certainly, it is evident that the dynamics of the system’s states
undergo a transition from periodic to chaotic behavior as the parameter α2 increases, often
accompanied by the emergence of periodic doubling bifurcation. For instance, when the
commensurate order of β is set to 0.1, the map exhibits chaotic behavior within the range
of α2 between 1.9 and 4. Similarly, for β = 0.3, the chaotic region occurs for α2 within the
interval of [3.8, 4]. Furthermore, when β = 0.9, chaos is present when α2 ∈ [3.3, 3.9]. This
delineation of chaotic regions across different parameter values provides valuable insights
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into the intricate behavior of the commensurate-order fractional sine-based memristor
map (14).

Figure 2. Time evolution of the commensurate 3D fractional sine-based memristor map (14) for
β = 0.25.

Figure 3. Phase portraits of (14) for different values of β: β = 0.05, 0.1, 0.25, 0.3, 0.35, 0.9, 0.91, 0.95
and 1.

In order to achieve a comprehensive understanding of the influence of the commen-
surate order, a bifurcation diagram is used to depict the variations in the behaviors of
the commensurate sine-based memristor map (14) as the order β is varied from 0 to 1
with a step size of 0.001. Figure 5 depicts the bifurcation and the LEmax. We can see that
upon changing the commensurate order, a rich set of dynamic characteristics, ranging
from chaotic to regular, of the 3D fractional map are investigated with regard to the com-
mensurate order β. Notably, when β ∈ (0.02, 0.06), the bifurcation diagram unveils the
presence of 7-period orbits, underscoring the periodic nature of the trajectories. In addition,
when β ∈ (0.35, 0.91), the trajectories exhibit regular patterns, characterized by 8-, 4-, and
2-period orbits. Furthermore, regions of chaos can be distinguished when β falls within
the ranges (0, 0.02), (0.06, 0.35), and (0.91, 1). During these ranges, the Lyapunov expo-
nent (LEmax) also fluctuates between positive and negative values, indicating transitions
between chaotic and non-chaotic behaviors in the system, providing additional evidence
for the system’s complex and diverse behavior and confirming the sensitivity of the sine-
based memristor map to changes in the commensurate-order parameter β. Furthermore,
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based on observing the maximum Lyapunov exponent, it can be concluded that when the
maximum Lyapunov exponent is not positive, the commensurate sine-based memristor
map exhibits regular oscillations. Conversely, the presence of chaotic oscillations is inferred
when the exponent is positive. These results both emphasize the sensitivity of the system
to changes in β and demonstrate the richness and complexity of the dynamical properties
in the commensurate-order 3D fractional sine-based memristor map (14).

(a) (b)

(c)

Figure 4. (a) Three Bifurcation diagrams of commensurate 3D fractional sine-based memristor map
(14) with α2 ∈ [1, 4], for (a) β = 0.1, (b) β = 0.3, and (c) β = 0.9.

(a) (b)

Figure 5. (a) Bifurcation of commensurate 3D fractional sine-based memristor map (14) for β ∈ (0, 1).
(b) The corresponding LEmax.

4.2. Incommensurate-Order Fractional Sine-Based Memristor Map

In this section, we delve into the dynamics of the incommensurate-order 3D fractional
sine-based memristor map. The concept of incommensurate order entails utilizing dif-
ferent fractional orders for each equation within the system. The representation of the
incommensurate-order fractional sine-based memristor map is as follows:
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c∆β1

b y1(υ) = α1 sin
(
(y2($)) + µy2($) sin (y3($))

)
,

c∆β2
b y2(υ) = α2 sin (y1($)) sin (y2($)),

c∆β3
b y3(υ) = ky2($),

(16)

By utilizing Theorem 1, we can express the numerical representation of the incommen-
surate fractional 3D sine-based memristor map (16) as follows:

y1(r) = y1(0) +
r−1
∑

j=0

Γ(r−j−1+β1)
Γ(β1)Γ(r−j)

(
α1 sin

(
(y2(j)) + µy2(j) sin (y3(j))

))
,

y2(r) = y2(0) +
r
∑

j=0

Γ(r−j−1+β2)
Γ(β2)Γ(r−j)

(
α2 sin (y1(j)) sin (y2(j))

)
,

y3(r) = y3(0) +
r
∑

j=0

Γ(r−j−1+β3)
Γ(β3)Γ(r−j)

(
ky2(j)

)
,

(17)

We analyze the dynamics and characteristics of this map to understand its unique
behavior and explore the implications of employing distinct fractional orders in the sys-
tem’s equations. Consider the same parameters and initial states shown previously.
Figures 6 and 7 show the phase portraits and the time evolution of the states of the pro-
posed incommensurate fractional 3D sine-based memristor map (16), respectively. One
can observe that there is a difference between the phase portraits of the commensurate
order and incommensurate order sine-based memristor maps, but it stays the same shape.
Now, in Figure 8, an exploration of bifurcation behavior and their corresponding maximum
Lyapunov exponent (LEmax) is conducted for the incommensurate-order 3D fractional sine-
based memristor map (16). This investigation involves varying the orders β1 (as depicted
in Figure 8a), β2 (as depicted in Figure 8b), and β3 (as depicted in Figure 8c) from 0 to 1
with a step size of 0.001. From Figure 8a, it is evident that the state of the incommensu-
rate sine-based memristor map (16) exhibits chaotic behavior across most values of β1, as
indicated by the presence of positive Lyapunov exponents, except for a relatively small
region [0.69, 0.71] in which the trajectories exhibit regular behavior. On the other hand,
from Figure 8b, it can be observed that as the incommensurate order β2 is altered, the
trajectories undergo a transition state and oscillate between chaotic and periodic states. As
β2 drops and approaches 0, or when it increases close to 1, the states of the incommensurate
fractional sine-based memristor map display chaotic attractors, where the LEmax displays
their highest values. For the rest of the interval, especially when β2 ∈ [0.234, 0.505], the
trajectories are totally regular. This dynamic underscores the sensitivity of the system
to even minor changes in the incommensurate order β2. Furthermore, the bifurcation
chart and its corresponding largest Lyapunov exponent (LEmax), where the parameter
β3 is varied within the range (0, 1), are presented in Figure 8c. Here, we maintain the
incommensurate orders as β1 = β2 = 1. Figure 8c reveals a distinct behavior compared to
the previous cases. The most prominent observation is the expansion of the chaotic region
of the states of the incommensurate-order 3D fractional sine-based memristor map (16)
across all values of β3 within the interval of (0, 1), which is evident from the positive values
of LEmax. The observed changes in the dynamic patterns of the proposed incommensu-
rate fractional sine-based memristor map (16) illustrate the sensitivity to variations in the
incommensurate orders β1, β2, and β3, highlighting the complexity and versatility of the
incommensurate-order 3D fractional sine-based memristor map.
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Figure 6. Time evolution of the incommensurate 3D fractional sine-based memristor map (16) for
β1 = 0.9, β2 = 1, and β3 = 1 .

(a) (b) (c)

(d) (e) (f)

Figure 7. Phase portraits of (16) for different values of incommensurate orders β1, β2, and β3

(a) (β1, β2, β3) = (0.6, 1, 1), (b) (β1, β2, β3) = (0.7, 1, 1), (c) (β1, β2, β3) = (0.9, 1, 1), (d) (β1, β2, β3) =

(1, 0.6, 1), (e) (β1, β2, β3) = (1, 0.9, 1), (f) (β1, β2, β3) = (1, 1, 0.6).

(a)

Figure 8. Cont.
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(b)

(c)

Figure 8. Bifurcation diagrams and their LEmax of incommensurate 3D fractional sine-based memris-
tor map (16) for (a) β2 = β2 = 1, (b) β1 = 0.4, β3 = 1, and (c) β1 = β2 = 1.

To provide a more detailed illustration of the influence of incommensurate orders on
the behaviors of the fractional sine-based memristor map (16), further investigation was
carried out. These investigations offer a deeper understanding of how the fractional orders
impact the system dynamics and underscore the importance of considering incommensu-
rate orders in the analysis of the model’s behavior. The three bifurcation diagrams presented
in Figure 9 demonstrate the behaviors of the incommensurate fractional sine-based mem-
ristor map (16) as the parameter α2 varies within the range [1, 4]. The simulations were
conducted with parameter values of α1 = 1.5, ρ = 0.1, and k = 0.01 and the initial condi-
tions (y1(0), y2(0), y3(0)) = (0− 2, 1, 0.1). It is evident that these diagrams exhibit distinct
patterns, indicating that the change in fractional orders (β1, β2, β3) significantly impacts
the states of the incommensurate-order 3D fractional sine-based memristor map (16). For
instance, when (β1, β2, β3) = (0.4, 1, 1), the system’s states evolve from periodic to chaotic
behavior with periodic doubling bifurcation as the parameter ρ increases. On the other
hand, when (β1, β2, β3) = (1, 0.6, 1), oscillatory motion is observed, with trajectories re-
maining stable for small values of α2 and becoming chaotic for large values of α2, while,
as (β1, β2, β3) = (0.4, 0.6, 1), chaos is present when α2 ∈ [3.6, 4]. These results emphasize
the sensitivity of the incommensurate 3D fractional sine-based memristor map (16) to
changes in the parameter α2 and the incommensurate orders β1, β2, and β3, resulting in a
diverse range of nonlinear dynamic behaviors, including chaotic and periodic motion. This
highlights the intricate and diverse nature of the incommensurate 3D fractional sine-based
memristor map and the significance of the choice of incommensurate fractional orders in
modeling and shaping its dynamics.
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(a) (b)

(c)

Figure 9. Bifurcations of (16) versus the parameter system α2 for (a) (β1, β2, β3) = (0.4, 1, 1),
(b) (β1, β2, β3) = (1, 0.6, 1), (c) (β1, β2, β3) = (0.4, 0.6, 1).

5. 0–1 Test and Complexity of Fractional Sine-Based Memristor Map

In the following, we examine the complexity of the proposed fractional sine-based
memristor map with commensurate and incommensurate orders to assess its dynamical
characteristics. A greater measure of complexity within a system is often indicative of a
heightened degree of chaos. To this end, we employ both the sample entropy (SampEn)
method and the C0 complexity algorithm. Additionally, we utilize the 0–1 test to validate
the presence of chaos within the fractional sine-based memristor map.

6. The Sample Entropy Test (SampEn)

In this study, we employ the sample entropy (SampEn) method to assess the com-
plexity of both the commensurate-order fractional sine-based memristor map (14) and
the incommensurate-order fractional sine-based memristor map (16). Unlike approximate
entropy (ApEn), SampEn can effectively measure the irregularity of time series regardless
of the embedding dimension (m) and the similarity coefficient (r). Consequently, SampEn
provides a more consistent and unbiased measure compared to ApEn [39]. The SampEn
values indicate the complexity level of the time series, with higher values corresponding to
higher complexity [40]. The calculation of SampEn is performed as follows:

SampEn = − log
Ψj+1(r)

Ψj(r)
, (18)

where Ψj(r) is expressed as

Ψj(r) =
1

m− j + 1

m−j+1

∑
i=1

log Cj
i (r). (19)

and r = 0.2std(C) is the tolerance defined and std(C) represents the standard deviation.
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The sample entropy results for the commensurate-order fractional sine-based memris-
tor map (14) and the incommensurate-order fractional sine-based memristor map (16) are
presented in Figure 10, with the initial conditions set as (y1(0), y2(0), y3(0)) = (−2, 1.0, 1)
and the parameters set as α1 = 1.5, α2 = 3.8, µ = 0.1, and k = 0.01. The obtained SampEn
values indicate the complexity levels of the time series, with larger values corresponding to
higher complexity. The results demonstrate that both the commensurate and incommensu-
rate fractional sine-based memristor maps exhibit higher complexity, as indicated by their
larger SampEn values. These findings align with the results obtained from the maximum
Lyapunov exponent analysis, further confirming the chaotic nature of the dynamics in
the proposed fractional system. The higher complexity and chaotic behavior support the
significance of fractional orders in capturing the rich dynamics of the proposed fractional
sine-based memristor map.

(a) (b)

Figure 10. The sample entropy results of the fractional sine-based memristor map versus the parame-
ter α2 for (a) β = 0.9, (b) (β1, β2, β3) = (1, 0.6, 1).

6.1. The C0 Complexity

To explore the influence of the fractional order on the dynamical characteristics of both
the commensurate-order fractional sine-based memristor map (14) and the incommensurate-
order fractional sine-based memristor map (16), the complexity analysis is measured using
the C0 complexity algorithm [41,42]. The inverse Fourier transform is used to calculate the
C0 complexity.

For a sequence {σ(0), . . . , σ(D− 1)}, we present the algorithm of the C0 complexity
as follows:

• The discrete Fourier transform of the sequence {σ(0), . . . , σ(D− 1)} is determined:

ΘM(d) =
D−1

∑
s=0

σ(s) exp−2πi(sd/D), d = 0, . . . , D− 1. (20)

• The mean square value is calculated as:

GD =
1
D

D−1

∑
d=0
|ΘD(d)|2. (21)

• We set:

Θ̄D(d) =
{

ΘD(d) i f |ΘD(d)|2 > rGD,
0 i f |ΘD(d)|2 ≤ rGD.

(22)

• The inverse Fourier transform of Θ̄D is given as follows:
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σ̄(d) =
1
D

D−1

∑
s=0

Θ̄(s) exp2πi(ds/D), d = 0, . . . , D− 1. (23)

Finally, we evaluate the formula of the C0 complexity by:

C0 =

D−1
∑

s=0
|σ(s)− σ̄(s)|2

D−1
∑

s=0
|σ(s)|2

. (24)

Setting the initial condition y1(0) = −2, y2(0) = 1, and y3(0) = 0.1 and the parameters
to α1 = 1.5, α2 = 3.8, µ = 0.1, and k = 0.01, the C0 complexity of the commensurate-order
fractional sine-based memristor map (14) and the incommensurate-order fractional sine-
based memristor map (16) is described in Figure 11. These findings are consistent with the
above results, indicating that the fractional sine-based memristor map has higher complex-
ity. This indicates that the fractional-order sine-based memristor map with commensurate
and incommensurate orders may generate chaotic attractors.

Figure 11. The C0 complexity of the fractional sine-based memristor map versus commensurate and
incommensurate orders.

The 0–1 Test for Chaos

Here, in order to establish the presence of chaos in both the commensurate-order
fractional sine-based memristor map (14) and the incommensurate-order fractional sine-
based memristor map (16), we utilize the 0–1 test method [43] for chaos. To represent this
method, let {h(d), d = 1, 2, . . . ..D} be a set of states, and let the translation components p
and q be given as:

p(d) =
d

∑
ı=1

h(ı)cos(ıc), (25)

q(d) =
d

∑
ı=1

h(ı)sin(ıc), (26)
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where d ∈ {1, 2, . . . .D} and c ∈ (0, π). The (p− q) graph serves as a tool for discerning
the presence or absence of chaos within the proposed fractional sine-based memristor
map. By examining the trajectories of both p and q variables, important insights can be
gained about the nature of the system’s dynamics. When the trajectories of p and q remain
bounded, it suggests that the map’s dynamical behaviors are regular. Conversely, if these
trajectories exhibit Brownian-like behaviors, it is indicative of chaotic dynamics within the
map. Here, by employing p and q, the following formula is used to calculate the mean
square displacement:

Mc =
1
D

D

∑
ı=1

((p(ı + d)− p(ı))2 + (q(ı + d)− q(ı))2), d <
D
10

. (27)

We calculate the asymptotic growth rate as follows:

Kc = lim
d→∞

log Mc

log d
. (28)

and
K = median(Kc). (29)

Thus, when K approaches 1, the system has a chaotic behavior, and when K approaches
0, the map is periodic. Figures 12 and 13 show the 0–1 test of the commensurate-order
fractional sine-based memristor map (14) and the incommensurate-order fractional sine-
based memristor map (16). Figures 12b and 13a clearly display bounded trajectories,
proving that the system is periodic. Figures 12a,c and 13b,c corroborate the existence of
chaotic movements on both the commensurate map and the incommensurate map by
showing Brownian-like behaviors, which proves the presence of chaos. The findings of the
0–1 test are compatible with the maximum Lyapunov exponents (LEmax), sample entropy
(SampEn) method, and C0 complexity.

(a) (b) (c)

Figure 12. The (p − q) plots of the commensurate fractional sine-based memristor map (14) for
(a) β = 0.25, (b) β = 0.91, (c) β = 0.95.

(a) (b) (c)

Figure 13. The (p− q) plots of the incommensurate fractional sine-based memristor map (14) for
(a) (β1, β2, β3) = (0.7, 1, 1), (b) (β1, β2, β3) = (1, 0.6, 1), (c) (β1, β2, β3) = (1, 1, 0.9).
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7. Conclusions

By establishing a connection between the 2D sine map and the discrete memristor,
the presented work introduced a novel 3D fractional-order sine-based memristor map
based on the fractional Caputo-like difference operator. The dynamical properties of this
map were thoroughly investigated under commensurate and incommensurate fractional
orders. Through employing different methodologies of analysis involving Lyapunov
exponent calculations, bifurcations, and phase portraits, the distinct behaviors of the
proposed fractional sine-based memristor map were thoroughly explored across various
scenarios. Furthermore, the complexity of the map was quantified using the sample entropy
algorithm and C0 complexity method, and the 0–1 test was used to validate the presence
of chaos within the map. Through the numerical simulations conducted, the results
underscored the strong influence exerted by the system parameters, the commensurate
fractional order, and the incommensurate fractional orders on the states of the fractional
sine-based memristor map, revealing numerous intriguing and diverse chaotic behaviors.
The values of these parameters play a pivotal role in shaping the dynamics and behavior
of the system, leading to variations in trajectories and responses in the state space of the
suggested fractional sine-based memristor map. These findings hold significant value in
elucidating the implications of fractional memristive maps, further enriching the field of
chaotic dynamics and nonlinear systems.
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