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Abstract: Cellular automata are mathematical models that represent systems with complex behavior
through simple interactions between their individual elements. These models can be used to study
unconventional computational systems and complexity. One notable aspect of cellular automata is
their ability to create structures known as gliders, which move in a regular pattern to represent the
manipulation of information. This paper introduces the modification of mean-field theory applied to
cellular automata, using random perturbations based on the system’s evolution rule. The original
aspect of this approach is that the perturbation factor is tailored to the nature of the rule, altering
the behavior of the mean-field polynomials. By combining the properties of both the original and
perturbed polynomials, it is possible to detect when a cellular automaton is more likely to generate
gliders without having to run evolutions of the system. This methodology is a useful approach to
finding more examples of cellular automata that exhibit complex behavior. We start by examining
elementary cellular automata, then move on to examples of automata that can generate gliders with
more states. To illustrate the results of this methodology, we provide evolution examples of the
detected automata.

Keywords: cellular automata; mean-field theory; gliders detection; complexity; random amplification

MSC: 68Q80; 37B15

1. Introduction

The study of self-reproducing systems capable of self-repairing and carrying out
computational processes without the need for a central control unit led to the emergence of
cellular automata (CAs). This work was pioneered by John von Neumann and Stanislaw
Ulam, and later edited and completed by Arthur W. Burks in [1].

After its inception, cellular automata studies have had numerous facets, primarily
benefiting from their easy computational implementation and simple mathematical spec-
ifications. This has enabled their modification, adaptation, and application in exploring
theoretical concepts like new computational paradigms [2], system reversibility [3], and
comprehending how complexity arises from homogeneous elements’ local interaction in a
system [4]. These are just a few of the many applications of cellular automata.

The study of cellular automata has experienced significant growth, particularly in
the creation of self-reproducing systems from von Neumann’s original 29-state model.
The LIFE cellular automaton [5,6] has sparked further investigation into the interaction of
structures moving in a fixed background and the creation of complex systems using only a

Mathematics 2023, 11, 4319. https:/ /doi.org/10.3390/math11204319

https://www.mdpi.com/journal /mathematics


https://doi.org/10.3390/math11204319
https://doi.org/10.3390/math11204319
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3678-1120
https://orcid.org/0000-0003-0937-8707
https://orcid.org/0000-0001-9942-306X
https://orcid.org/0000-0003-2601-4876
https://doi.org/10.3390/math11204319
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11204319?type=check_update&version=1

Mathematics 2023, 11, 4319

20f13

two-state automaton in two dimensions. Additionally, the analysis of elementary cellular
automata (ECAs) has been a breakthrough in complexity analysis.

Despite having the simplest computational implementation, they are capable of generating
complex behaviors, as noted in [7,8]. ECAs’ computational capabilities are studied in detail
in [9], and in [10] it is shown that ECA rule 110 can implement a universal computing system.

Various works have tackled the issue of detecting gliders in cellular automata (CAs).
One such method is presented in [11], which automatically filters CA spatiotemporal
patterns to identify gliders and related emergent configurations. Another study [12]
comprehensively analyzes gliders in ECA rule 54. In [13], a rigorous upper bound on
the number of distinct products that gliders can generate is established, particularly for
ECA rule 54. Meanwhile, Ref. [14] presents a method that uses genetic programming
to search for new cellular automata that can perform computational tasks using gliders.
Two variants of particle kinetic models based on CAs and describing two glider species
are discussed in [15]. In [16], Ameyalli’s rule, a new two-dimensional CA, is described,
featuring an emergent glider gun used to construct logic gates for logical universality. A
new system mixing a CA and a genetic algorithm, showing interesting behaviors and
glider production, is presented in [17]. Isotropic CAs capable of producing glider-gun and
eater dynamics are explained in [18]. In [19], a new approach to duplicating information
flows in two-dimensional CAs based on glider-specific collisions capable of simulating
logic gates is proposed. In [20], a simple triangular partitioned CA with triangular cells,
each divided into three parts, and which is capable of producing gliders, is studied. New
tools are introduced in [21] to study self-organization in a family of CAs containing gliders
and coalescence properties according to some initial shift-ergodic measures using a limit
measure to describe the asymptotic behavior of the CA. Finally, Ref. [22] investigates the use
of ECAs and shifting spatiotemporal dynamics of automata-enriching cells with memory
to produce complex behaviors.

Research in the detection of cellular automata with complex behaviors is a thriving area of
study. The focus is mainly on ECAs, particular cases, and extended models of CAs. However,
most of these works use an a posteriori point of view, which means they take a sample of CA
evolutions to determine if it can generate gliders in a fixed or periodic background.

Our study uses classical mean-field theory tools and random perturbations to analyze
a cellular automaton’s ability to generate gliders in a periodic background without the
need for observing multiple evolutions. The proposed method offers specific advantages
by eliminating the necessity for running system evolutions to detect glider generation. The
evolutions presented in the study only serve to validate the complex dynamics identified
by the methodology outlined in this research.

The original aspect of this study involves combining the traditional mean-field approx-
imation method with a new approach that incorporates randomized perturbations into the
mean-field polynomials. These perturbations are determined based on the behavior of the
CA evolution rule, with a focus on identifying if certain types of neighborhoods occur more
frequently than others. The goal is not to enhance the classical mean-field approximation
technique, but rather to use it in tandem with a new set of perturbed polynomials in order
to identify important criteria for detecting CA rules that can generate gliders.

Several papers have used the mean-field approximation to characterize CAs with
gliders, but only for specific cases [23-26], in conjunction with other analysis tools [11] or
limited to ECAs [27,28]. This paper aims to enrich the mean-field approach by identifying
CAs with gliders in ECAs and automata with a larger number of states, making it a first
attempt of its kind.

Random perturbation of signals has been an active field of research in several mathe-
matics and computer science areas, for example, for the linear tracking of signals [29], for
global optimization metaheuristics [30,31], for neural network synchronization [32], for
optimal control of a stochastic dynamical system [33], for analyzing the transient dynamics
of a predator—prey system [34], for the asymptotic covariance estimation [35], and for the
study of the numerical approximation of partial differential equations [36], to mention
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some representative works. However, to our knowledge, this type of analysis has yet to be
applied to detect complex dynamics in CAs.

The density of a CA state can be estimated using classical and perturbed mean-field
polynomials, which can then be used to identify high and low classes of densities linked to
every state. If the classes identified by the classical polynomials differ from those identified
by the perturbed polynomials, it suggests a critical behavior in the CA dynamics. This
means that the automaton can have relevant changes in its density of states during its
evolution, with the high classes representing a periodic background and the low classes
identifying moving structures (or “gliders”) within that background.

This study involves simulating ECAs and one-dimensional CAs with a neighborhood
size of two cells, which extends the findings of the study. By utilizing this broad approach,
the suggested methodology can be utilized for other CAs with a wider range of states.

The contribution of this study lies in proposing a new methodology capable of de-
tecting mobile structures in a periodic background of a CA with a neighborhood size of 2.
The methodology does not require calculating the CA evolutions in advance. This method-
ology is first applied for the case of ECAs simulated with four-state CAs and two-cell
neighborhoods, then applied to CAs with up to nine states.

The paper is structured as follows: In Section 2, a one-dimensional CA, an ECA, and
the simulation of all CA using neighborhoods of only two cells are formally described.
Section 3 defines mean-field polynomials for CA with a neighborhood size of 2 and applies
these polynomials to predict the dynamic behavior of the densities of states for the ECA
rule 110. Section 4 explains how a random perturbation is applied to the mean-field
polynomials, depending on the evolution rule’s tendency to favor the formation of one
neighborhood over others. With this, a methodology is specified to detect CAs forming
gliders in a periodic background, based on the analysis of the evolution rule using the
classical and perturbed mean-field polynomials. In Section 5, the methodology is applied
to CAs, presenting evolutions of CAs capable of generating gliders. Section 6 applies this
methodology to CAs with a larger number of states, showing examples of CAs capable of
producing complex behaviors. Finally, Section 7 provides the conclusions of this work.

2. Preliminaries of Cellular Automata

This paper will focus on the study of cellular automata in one dimension. A cellular
automaton (CA) is defined by three main components: a set of states S, a neighborhood
radius r, and an evolution rule, denoted as ¢ : §2r+1 _y G The CA takes an initial
configuration or condition c” : Z,, — S, where c” is a one-dimensional array consisting of
m cells, with each cell assigned a state from S. The cell at position i is represented by c!.

To understand the dynamics of cellular automata (CA), a block of states is defined as
wi={c? ...c ', .}, which consists of 7 neighboring cells both to the left and right of each
c). Using this information, the new state c! is determined through ¢(w;). To ensure that
the number of cells in c! is m, periodic boundary conditions are applied. The evolution
rule ¢ creates a global mapping ® : ¢/ — ¢/*! between configurations, which defines the
overall dynamics of the CA. An elementary cellular automaton (ECA) is the simplest type
of CA capable of generating complex behaviors. In this case, |S| =2 and r = 1.

ECAs are widely studied due to their simplicity and the variety of dynamics they can
produce. These dynamics can range from fixed or periodic global states to chaotic and
complex behaviors. Various classifications have been proposed to categorize the dynamics
of ECAs. The most well-known classification is the one by Wolfram, which defines four
classes based on the observed dynamics of ECAs. These classes include Class I, which
generates a fixed global state, Class II, which produces a periodic global state, Class III,
which exhibits chaotic behavior, and Class IV, which results in complex evolutions [37].
To illustrate each class, Figure 1 displays an example of each class using m = 300 and
300 evolutions.
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ECA rule 40, Class | ECA rule 29, Class Il

ECA rule 18, Class IlI ECA rule 110, Class IV

Figure 1. ECAs exhibit dynamic behavior in four classes: Class I with fixed point evolution, Class II with
periodic evolution, Class III with complex behavior, and Class IV producing gliders.

Complexity in cellular automata (CAs) is a blend of order and chaos. The automaton’s
evolution creates a stable or repeating background with moving structures called gliders.
These gliders interact with one another, either cancelling each other out, creating a different
type of glider, or remaining preserved. Complex cellular automata (CAs) rely on a delicate
balance between two defining characteristics: periodicity and chaos. This balance ensures
that neither characteristic becomes dominant. Gliders can represent information in these
CAs, and logical operators can be implemented through their interactions to enforce a
computing process. One-dimensional CAs have a unique property where any CA can be
simulated using another CA with a neighborhood size of 2, even if it requires a significant
increase in the number of states.

For a CA with a neighborhood radius of , |S| states and ¢ : S?*! — S evolution rule,
extending the action of ¢ on S” produces sequences in S~ for n > 2r. By extending the
definition of ¢, one can map ¢ : S?+2" — S Therefore, we can use a new set of states W
with |S?’| states, and ¢ : W2 — W to simulate a CA with |S| states and a neighborhood
size of 2r + 1. It is customary that the evolution of each neighborhood is centered on the
following configuration for the new automaton.

While this process has an exponential growth rate that depends on r in the num-
ber of new set states, it is advantageous because the results obtained using CAs with a
neighborhood size of 2 can be generalized to all other cases.

To simulate ECAs, we can use four state CAs. We will use the example of ECA rule
110 shown in Figure 2. In Figure 2A, the neighborhoods with three cells are on the left,
and the evolution of the center cell in the next generation is on the right. In Figure 2B, we
observe the sequences of four states and their evolutions using ¢. In Figure 2C, sequences
of two states are renamed as follows: 00 — 0,01 — 1,10 — 2, and 11 — 3; this results in a
new state set W = {0,...,3}. Finally, in (D), we reordered the new evolution rule in matrix
form, where the row and column indices are the states of W, and each entry (wq, w,) shows
the evolution of each sequence wjw, € W2. Figure 3 shows an evolution of the CA that
simulates the ECA rule 110.
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ECA 110 Sequences of 4 states and their evolutions
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Figure 2. Simulation of ECA rule 110 using a different CA with four states. In (B), sequences of
four states and their evolutions are shown based on the original rule (A). In (C), sequences of two
states are renamed using the state set W = {0, ...,3}. Using these state designations, a new rule for
simulating ECA rule 110 with four states is presented in (D).

Figure 3. The four-state CA evolves to simulate the ECA rule 110 from a random initial configuration.

3. Mean-Field Analysis

One method of studying the dynamic behavior of a CA is by using mean-field theory.
This involves utilizing polynomials that describe how the densities of CA states change
based on previous densities, in an iterative manner [38,39]. This approach is advantageous
due to its ease of implementation, as the polynomials only require initial values to calculate
subsequent densities. However, a disadvantage is that the polynomials tend to quickly
converge to an average density, losing the small fluctuations that can occur in the CA
evolutions and may indicate complex dynamics.

Here is an example of how to define mean-field polynomials for a CA with a neighbor-
hood size of 2 and |S| = 4. To define the polynomial for each density state, we will start by
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looking at the set X = S2 of all possible neighborhoods such as {00, 01,02,03,..., 33}. For
s € S, let d? be the initial density of state s in c’, which can be found experimentally as:

moa(cl,s)
0 = Zi=14Gs) 1)
m
where 0
1 iffc; =s
Q pu— l
a(ci,s) { 0 in other cases @

Using the neighborhoods in X, we will have four mean-field polynomials; one for
each state, whose general definition is:

p(dsthy = Y B(x,s)dk (3)
xeX
with )
|1 iffe(x)=s
Plx,s) = { 0 in other cases @)

where k > 0 denotes the iteration step of the polynomial and dX is the estimated density
of the neighborhood x in the c* configuration. If we start by defining ¢ randomly, we can
assume that each state in c” occurs independently. This is because the process approximates
a Bernoulli distribution. Therefore, for any x = s;s;, we can calculate d9 as dgl_ dg]., where
0 <1i,j <3,and s; € S. We can repeat this assumption for all subsequent values of k which
makes calculations simpler using mean-field approximation.

The mean-field polynomials satisfy that Y. p(d¥) = 1, Vk > 0. It is important to
note that the independence of state occurrences in a configuration is justified when it is
randomly defined. Polynomials are useful for calculating a decent approximation of density
behavior, especially when configurations have a larger number of cells. However, this
definition of polynomials may not fully capture the behavior of densities, especially in
complex CA.

For instance, consider the CA of four states presented in Figure 2 that emulates the ECA
rule 110. In Figure 4A, we can observe the experimental density of the CA when m = 300
and 300 evolutions. Additionally, Figure 4B shows the corresponding approximation
calculated by the mean-field polynomials.
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Figure 4. Density of states experimentally calculated for ECA rule 110, starting from a random
configuration (A) and using mean-field polynomials (B).
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We can observe from Figure 4 that while the mean-field polynomials defined in
Equation (3) provide a good approximation of the mean density, they quickly reach a fixed
value. In Figure 4B, the highest estimated density belongs to the 3 state, followed by the
density of the O state, while the other states have lower estimated densities. However,
experimentally, the densities of the states 0 to 2 are similar.

This reveals that mean-field polynomials can provide initial information to identify
a complex CA. States with higher densities work to create periodic backgrounds, while
the remaining states form gliders. Thus, a first filter to determine if a CA is complex is
to check its estimated densities. If the densities are not very high (less than 0.5) and are
heterogeneous, meaning they have two distinct classes of states, with one having higher
densities and the other having slight but not negligible densities (greater than 0.1), then the
CA may be able to yield complex behaviors.

4. Random Perturbation of Mean-Field Analysis

In the previous section, it was noted that the estimation of mean-field polynomials
needs to be more accurate for determining the densities of states in complex CAs. Although
the estimation yields two states with higher density, the experimental part shows a dom-
inant density and others with a similar, lower density. To complement this analysis and
identify whether a CA can generate complex behaviors, random perturbations are applied
to the mean-field polynomials. This is performed to test the robustness of the polynomials
in maintaining their high- and low-density classes. If the density estimations remain stable
when small random perturbations are applied, it would indicate that the polynomials
define very stable dynamics.

However, if small random perturbations cause a significant change in the polynomial
estimation, such as the high-density classes being different in the original polynomials than
in the perturbed polynomials, then the density dynamics are sensitive to these perturbations.
This is when we can detect CAs with complex behavior.

The mean-field polynomials with random perturbations will be defined as follows:

ditt = q(df) = ) vg(x)ds )
xeX
where g(x) is a factor representing the tendency the evolution rule ¢ has to produce the
neighborhood x in a CA, and v is a random number between 0 and ymax.
The factor g¢(x) depends directly on ¢ and is calculated as follows:

1.  For each element x in the set X, count the number of ancestral sequences I,. Here, I
refers to the number of sequences w in S such that ¢(w) = x.

2. Foreach x € X, the average number of ancestors can be calculated as |S|3/|S|? = |S|.
If I, > |S|, it is assumed that the ¢ evolution rule promotes the emergence of the

x-neighborhood, while if I, < |S|, it is said to discourage it.
Ly—|S|

for
S|

3. We define a tendency matrix M of order [S| x [S| such that each entry m; ; =
alli,j € Sand x =ij.
4. Finally g(x) = m; ; for x = ij.

Finally, the random value 7 is a weighting factor for applying g(x) to each density in
Equation (5); in this study, we take v = 0.75.

The concept behind g(x) is to assign a value of zero to the neighborhood x if it has
an average number of ancestors. However, if the evolution rule favors or does not favor
its formation based on the average value, g(x) will have a positive or negative value. The
purpose of incorporating an extra step in the computation of I, is to enhance the accuracy in
the neighborhoods that the evolution rule tends to generate. This step helps in determining
the random perturbations in the density of neighborhoods which are used as the foundation
for calculating the mean-field approximation.

To apply g(x) to each density in Equation (5), a random value called «y is used as a
weighting factor. In this study, we have chosen to use ¢ = 0.75.
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In order to maintain that Y q(dX) = 1, Vk > 0 after applying the perturbations
vg(x), we take the difference

_ 1 - Yaesq(dl)

©= ) ©)

We update df = dX + ¢, Vs € S. After perturbing and normalizing the polynomials,
we can recalculate the densities ds through an iterative process. This results in two sets of
densities: the first set obtained using the classical polynomials (refer to Equation (3)), and
the second set estimated using Equations (5) and (6).

We will be utilizing both types of polynomials to detect CAs that have gliders in
a periodic background. To do this, we will classify the states as either belonging to a
high-estimated density class or a low-estimated density class.

e  Foreach s € S we compute the average densities d after m iterations.

e The highest density dy,y defines the first state s in the high-density Chigh class.

*  For 0 = dyuy — € the remaining densities d; >= J define the remaining states in Chigh-
e The rest of the states define the class C;,,, with low densities.

In this work, we will set € to 0.15 for differences between Cj;gj, and Cjyy- Using classical

and perturbed polynomials, we obtain two pairs of classes: Cj; ah and Cj  from classical

polynomials, and C,f igh and C{;w from perturbed polynomials. These classes will determine
the parameters needed to identify potential CAs yielding gliders.

1. The maximum densities in C}; ah and C E igh must not exceed 0.5.

2. |Cignl # [Chignl-
3. |c¢ | >0and|C |>0.

low low

5. Experiments with ECAs

To test the methodology explained in the previous section, we first took all ECAs from
rule 0 to rule 255. Each ECA is first simulated with a CA of 4 states and 2 neighborhood
size, and on this rule, the mean-field polynomials, both classical and randomly perturbed,
were applied depending on the rule trends.

For the case of the 110 rule, the 64 sequences of 3 states and their evolutions were
taken. Let us use L1 as the matrix showing the number of ancestor sequences of each x
neighborhood where each entry (i, j) in Lqjg is equal to I, for x = ij.

In order to test the methodology described in the previous section, we examined all
ECAs from rule 0 to rule 255. Each ECA was simulated using a CA with 4 states and a
neighborhood size of 2. Mean-field polynomials, both classical and randomly perturbed,
were then applied based on the trends of each rule.

For the specific case of rule 110, we analyzed the 64 sequences of 3 states and their
corresponding evolutions. We used a matrix called Lj1g to represent the number of ancestor
sequences for each x neighborhood, where each entry (i, ) in L110 is equal to I for x = ij.

012 3
0[3 3 1 5

Lip= 1|1 1 4 6 @)
213 31 5
55 6

(O8]
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Taking L1719, the matrix Mjjg is obtained by taking L112_4.
0 1 2 3
0| —0.0156 —0.0156 —0.0469 0.0156
Lijg= 1| —0.0469 —0.0469 0 0.0312 (8)
2| —0.0156 —0.0156 —0.0469 0.0156
3 0.0156  0.0156  0.0312 0.1250

Using the elements of matrix Mj19, we apply random perturbations to mean-field
polynomials in Equation (5) and normalize them with Equation (6). Figure 5 illustrates the

behavior of estimated densities under this scheme.
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Figure 5. Estimated densities for ECA rule 110 by randomly perturbed mean-field polynomials
according to Equations (5) and (6).

Referring to Figures 4B and 5, and following the class detection method explained in
Section 4, we can determine that Cj, ., = {3}, ¢, = {0,1,2}, Chlgh ={0,3}yC} ={12}.
These classes indicate that mean-field polynomials display critical behavior when subjected
to random perturbations, suggesting their ability to generate gliders during their evolution.

Figure 6 illustrates the ECAs identified as capable of generating gliders in a periodic
background. This was determined by simulating them as 4-state CAs and using the criteria
specified in the final part of Section 4, which involves classical and randomly perturbed
mean-field polynomials.

A S BE L T // e R > \ .

Rule 137 Rule 142 Rule 145 Rule 193 Rule 212

Figure 6. ECAs capable of producing gliders detected using mean-field aproximation and random
perturbation in tandem. Colors represent states of the cells in each CA.



Mathematics 2023, 11, 4319

10 0f 13

6. Experiments with a Higher Number of States

We then modified the method to identify CAs that can generate gliders with 4 to
9 states and a neighborhood size 2. Figure 7 displays two examples for each case, including
4 states (A), 5 states (B), and 6 states (C). The matrix form of the evolution rule is also
provided for each case.

01 2 3 01 2 3
o(1(2|0]0 0(2(3|0]|1
1/0|1|3]|0 1/1/0|2|0
2/o0lo|1]0 2(1[2]1]2
3/2(3|2]0 3(1/0[|0)|2
012 3 4 012 3 4
o[4]3]4]3]2 o[4]3]2]2]a
1[3]o]1]0]2 1[1]1]4]3]2
2[2]3]3]1]0 2[1]2]o]0]3
3[4[1]0]1]3 3[1][1]2]o0]0
alalol3]4]2 al2]3]1]3]a
012345 012345
o[4][5]0[4]0]2 o[4][5]2]4]2]1
1(2(4(3[1]83]|2 1(1[4[5|4|1]0
2[1]5[1]2]3]2 2[2[5[5[5[1]5
3(5]/3/3[5]4]3 3[5[/3[4[3][1]2
4[3]alolal1]1 4lo][1]o]2]4]4
5[2[2]0[1]5][1 5[5]3[4]2[5]0

Figure 7. CAs capable of generating gliders with 4 to 6 states detected using the methodology in
Section 4. Colors represent states of the cells in each CA.

Figure 8 shows examples for 7, 8, and 9 states ((A), (B), and (C), respectively), including
their associated evolution rules.



Mathematics 2023, 11, 4319

110f13

0123456 0123456
0/2/4[(1]0/4|3]|3 0/6/3[5/0/4|1]|0
114|3|1[3|0]|0|4 1]6/1/6(0[|1]4]6
2(2]1]2(0]4[1]|4 2(3|6[/0[0|0[1]4
3(6/4[4(3|3[6|3 3(3|6(3[3|0[0]0
4(1]1]2[4]2|0|6 4|14|3|2]2|0|5]|2
5(6/6[(3[0[6|1]|0 5|5/4[/0(5[5|5|6
6(2/0[1[1]2[3]1 6[(2/1/0[5/4[3]|1
0 34567 0 234567
01 4 4]0]0 0[2 7]/0l0[5[4]2
1[5 5/0]1 13 4/2|3|5|6
2 711]7 2/0 414/4[3]0
3 32 3]0 4]0[4]0
4 4 4[5 414 5/7[3]3
5 4 414[4]4 56 715
6(5/0[(4[7]|7[0]2 6(0/4 417
7(7]4]5[4]1[1]3]0 7[0]2 6[4 3[7
0 2 45678 012 4 6 7 8
o[7]e[o[5][0[0]4][1]0 0[0]4]4 0 2 6
1 6 3148 1101 0 0/5(3
24 7 0[5(7 2(1]1 4 4[4]0
3 1[2]6[0]|5 3|2 6[4
4(5[4]5 38 4[417 0[0
5(5[2]5 4 4 5 5 4
6 5144 6 0 7
7 6/7[0]/3]5 7 2(4(5 4 2
8 3|7(8 7 8 0 810[4 1

Figure 8. CAs with 7 to 9 states and a neighborhood size of 2 that can generate gliders within a
periodic background. Colors represent states of the cells in each CA.

7. Conclusions

In this paper, a straightforward approach to detecting CAs that can produce gliders in a
periodic background using mean-field classical polynomials and randomly perturbed poly-
nomials has been presented. The trends of the evolution rule to produce each neighborhood
have been considered.

The significant contribution of this work is the detection of CAs capable of generating
gliders without the need to observe the automaton’s evolutions but by analyzing its evolu-
tion rule. The methodology has been applied to simulated ECAs with four-state CAs and
then extended to CAs with from four to nine states, revealing some fascinating specimens
that can generate gliders in a periodic background.

This is an initial effort to incorporate random perturbations in addition to the tradi-
tional mean-field approximation to identify CAs with gliders. As a result, several param-
eters in the methodology were fine-tuned through computational experimentation. One
potential future work could be to automatically adjust the parameters that define the use
of random perturbations. Moreover, this methodology needs further refinement to detect
CAs with more complex behavior accurately, for instance, for CAs with a quasi-periodic
background, as in the case of the ECA rule 54.

Future work that may arise from this research includes the application of other ways of
extending mean-field polynomials to account for a more significant number of densities. It
would be worth comparing all proposals that use mean-field approximation to detect gliders
and other interesting dynamics in CAs, with the aim of highlighting the benefits, limitations,
and research trends of this tool, or working on the state independence assumption in a
different way, such as using Bayesian probability. To calculate the tendency matrix for
a given evolution rule, we use additive scaling to avoid changes when a neighborhood
has the same number of ancestors as the expected average. In future research, it may be
worth exploring other forms of normalization, such as multiplicative ones, to improve the
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modeling of the evolution rule tendency in generating neighborhoods. The use of deep
learning computational tools that better model the production of states and sequences of a
CA is another possibility to continue this research.
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