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Abstract: Optimizing large-scale numerical problems is a significant challenge with numerous real-
world applications. The optimization process is complex due to the multi-dimensional search spaces and
possesses several locally optimal regions. In response to this issue, various metaheuristic algorithms and
variations have been developed, including evolutionary and swarm intelligence algorithms and hybrids
of different artificial intelligence techniques. Previous studies have shown that swarm intelligence algo-
rithms like PSO perform poorly in high-dimensional spaces, even with algorithms focused on reducing
the search space. However, we propose a modified version of the PSO algorithm called Dynamical
Sphere Regrouping PSO (DSRegPSO) to avoid stagnation in local optimal regions. DSRegPSO is based
on the PSO algorithm and modifies inertial behavior with a regrouping dynamical sphere mechanism
and a momentum conservation physics effect. These behaviors maintain the swarm’s diversity and
regulate the exploration and exploitation of the search space while avoiding stagnation in optimal local
regions. The DSRegPSO mechanisms mimic the behavior of birds, moving particles similar to birds when
they look for a new food source. Additionally, the momentum conservation effect mimics how birds react
to collisions with the boundaries in their search space or when they are looking for food. We evaluated
DSRegPSO by testing 15 optimizing functions with up to 1000 dimensions of the CEC’13 benchmark, a
standard for evaluating Large-Scale Global Optimization used in Congress on Evolutionary Computa-
tion, and several journals. Our proposal improves the behavior of all variants of PSO registered in the
toolkit of comparison for CEC’13 and obtains the best result in the non-separable functions against all
the algorithms.

Keywords: PSO; regrouping PSO; large-scale optimization; swarm optimization

MSC: 68T20

1. Introduction

Complex real-world problems with several numerical parameters and incomplete or
noisy data require global optimization in multi-dimensional search spaces. Epigenesis, Phy-
logeny, and Ontogeny are three optimization approaches commonly used in artificial intelli-
gence, each with its unique characteristics and applications. Artificial neural networks utilize
tentative learning in Epigenesis, while evolutionary algorithms rely on competition and sur-
vival of the fittest in Phylogeny. Swarm intelligence algorithms adopt cooperative learning in
their environment in Ontogeny [1–3]. In complex search spaces, locating the global optimum
or a suitable solution can prove to be a formidable task, as the likelihood of encountering local
optimal regions tends to increase with higher dimensions [4]. Advancements in technology
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have made solving Large-Scale Global Optimization (LSGO) more feasible, resulting in the
creation of specialized algorithms. However, a standard evaluation method for comparison is
necessary [5]. The IEEE Congress on Evolutionary Computation (CEC) tool is a widely used
benchmark for LSGO problems. It includes optimization functions that simulate real-world
problems and has been used to evaluate algorithms in [5–19]. Several metaheuristics have
been applied to address the challenges associated with solving Large-Scale Global Optimiza-
tion (LSGO) problems. These metaheuristics include Genetic Algorithms (GAs), Evolutionary
Strategies (ES), Evolutionary Programming (EP), Memetic Algorithms (MAs), and Differen-
tial Evolution (DE), among others [1,5,6,20]. In the field of numerical optimization, swarm
intelligence (SI) is considered a strong competitor to evolutionary algorithms (EAs) due to its
relatively lower complexity and smaller input parameter sizes. However, in the context of
Large-Scale Global Optimization (LSGO), SI algorithms tend to experience stagnation due to
the presence of multiple local optimal regions [5]. Particle Swarm Optimization (PSO), Ant
Colony Optimization (ACO), and Artificial Bee Colony (ABC) are among the widely used
SI algorithms. Some other alternatives that have shown good results in various applications
are the Wolf Algorithm (WA), Butterfly Algorithm (BA), Krill Algorithm (KA), and Moth
Search Algorithm (MSA) [1,5,6]. The Particle Swarm Optimization (PSO) algorithm, proposed
by Kennedy and Eberhart in 1995, is widely used for numerical optimization. It is based on
the behavior of flocks of birds [21]. While the Particle Swarm Optimization (PSO) algorithm
produces commendable outcomes in uncomplicated search spaces, it faces challenges when
it comes to optimization in the presence of multiple local optimal regions [19,22–28]. Many
researchers have put forth different versions of the PSO algorithm to tackle LSGO. One such
variation is the GPSO, introduced in 1998 by Yuhui Shi and Russell Eberhart. The GPSO
incorporates an inertial parameter that facilitates quick convergence and enhances the algo-
rithm’s ability to resist local optima by promoting exploration. However, all the particles
continue to share the best position, which can potentially result in being stuck around the
global best position [24,29]. GEPSO is a PSO variant that uses three inertial weights and a new
speed equation with two parameters to improve swarm convergence. It has been successfully
tested in 50-dimensional optimization problems [1]. In the work presented by [16], Parti-
cle Swarm Optimization (PSO) is designed to circumvent stagnation by iteratively shifting
particles toward the boundaries of the search space. Regrouping PSO (RegPSO) overcomes
stagnation by resetting the position of particles and redefining the search space after detecting
minimal separation between all positions within the swarm. This approach offers an effective
means of addressing the issue of stagnation in PSO algorithms [30]. Canonical Deterministic
PSO (CD-PSO) detects stagnation in iterations and re-energizes the swarm for better search
space exploration [31]. IAPSO is an accelerated version of the PSO that uses entropy analysis
to detect stagnation [32]. Intrinsic Dimension and Concise PSO use time steps to detect
stagnation [33]. Multiple-strategy learning PSO (MSL-PSO) uses memorization to balance ex-
ploration and exploitation during learning [27]. PSO also incorporates the concept of memory
forgetting observed in biological systems. This allows the algorithm to efficiently explore the
search space and improve the quality of the solutions obtained [15]. Utilizing cooperative
and competitive mechanisms, as detailed in [25], presents feasible alternatives for preventing
stagnation. Multi-swarm PSO (MSPSO) utilizes multiple groups of particles to search and
exploit the space with variations in topology, communication, and movement to adapt to an
optimization problem [34–36]. The MSPSO algorithm divides a swarm into sub-swarms for
exploring and exploiting multiple locations in search space. Dynamical topology and gradual
reduction in particles per sub-swarm produce varied results [22]. There are also multi-swarm
alternatives that even consider the problem of stagnation in PSO, including stagnation de-
tection mechanisms like those in [36]. Although the particles in a swarm algorithm continue
to update their position based on the best global position, they may still converge in local
optimal regions. Subdividing the swarm can prevent stagnation but requires more function
evaluations, which increases the algorithm’s running time [22,34,37,38]. PSO also hybridizes
with other algorithms to improve its results similar to Multi-gradient PSO in [24], Fuzzy
Self-Tuning PSO in [19], PSO with artificial neural networks in [39], Global Genetic Learning
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PSO in [21], Multi-swarm PSO with evolutionary algorithms [40], Multi-chaotic PSO with
deterministic chaos and evolutionary computation techniques [18], and PSO with reinforced
learning and a multi-swarm approach [17].

The enhancement of the Particle Swarm Optimization (PSO) algorithm for solving
Large-Scale Global Optimization (LSGO) problems with lower computational complexity,
without compromising its parallel structure, can have a significant impact on the field of
multi-dimensional optimization.

This paper proposes a new method called DSRegPSO, which is a variation of PSO. It
uses dynamic sphere regrouping and momentum conservation to prevent position stagnation,
regulate exploration and exploitation of the search space, and maximize exploration when
particles travel outside the position limits. The proposed method maintains the parallel
structure of PSO and could have significant implications for multi-dimensional optimization.

Contribution

DSRegPSO is a novel optimization algorithm that makes use of a regrouping dynamical
sphere mechanism and momentum conservation effect to deal with LSGO problems. These
mechanisms are designed to prevent the swarm from getting stuck in local optima by
continuously rejuvenating the swarm and balancing the trade-off between exploration and
exploitation of the search space. The dynamical sphere mechanism mimics the foraging
behavior of birds when looking for food, while the momentum mechanism emulates how
birds interact with their surroundings.

To evaluate the effectiveness of the DSRegPSO algorithm, we used the CEC’13 benchmark
functions, which are widely used in similar works like those in [41–47] as a standard test suite
for LSGO problems. The CEC’13 test is composed of 15 optimization functions, including
the Sphere Function, Elliptic Function, Rastrigin’s Function, Ackley’s Function, Schwefel’s
Problem 1.2 Function, Rosenbrock’s Function, and their variants [44]. These functions are
designed to challenge algorithms in solving complex LSGO problems. The CEC’13 test is
also used by several well-recognized journals and is the same benchmark used in the annual
Special Session and Competition on Large-Scale Global Optimization (SSCLSGO), organized
by the IEEE World Congress on Computational Intelligence (WCCI) [16].

2. Materials and Methods

In this section, we will discuss the biological inspiration behind the PSO algorithm. We
will also cover the most commonly used variant of PSO, the GPSO, as well as the techniques
used to tackle local optima in PSO. Additionally, we will introduce the original RegPSO algo-
rithm, which is the variant that most closely resembles our proposed DSRegPSO algorithm.

2.1. Biological Inspiration

PSO is inspired by bird flocking or fish schooling. In this algorithm, birds search for
a single food source in a defined area. PSO particles represent birds that seek the global
optimum or the position of the food in the search space. During the search, birds adjust
their position by following the current optimum or the one nearest to the food. Birds also
adjust their speed depending on the distance between themselves and the best position of
the swarm or its best-known position [48].

2.2. GPSO

GPSO is a Particle Swarm Optimization technique that leverages the behavior of n particles.

The position of every i particle is defined by a vector,
→
Xi, which consists of D dimensions. The

initial position of each particle is determined by a random array,
→
ψi, within the position bounds

of a lower limit (Ll) and an upper limit (Lu). The velocity of every particle, represented by
→
Vi,

is used to update the position of each particle during the entire run. The cost of each particle, Ci,

is determined by evaluating the cost function f
(→

Xi

)
for each

→
Xi. The positions that yield the
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best cost are identified as the global best position
(→

PG

)
, which is the position of the particle

with the best cost, and the best position of each particle
(→

Pi

)
, which is the position where the

best cost was obtained for each particle.
During each iteration, the speed of every particle is updated using Equation (1),

ensuring that it stays within the lower and upper speed limits [LSl , LSu] [21].
→
Vi = w ·

→
Vi + c1 ·

→
R1 ·

(→
PG −

→
Xi

)
+ c2 ·

→
R2 ·

(→
Pi −

→
Xi

)
(1)

The parameter w is an inertial coefficient that ranges between 0.9 and 1.2, as proposed
in the original algorithm in [29]. The parameters c1 and c2 represent personal and social
coefficients, respectively, and their values are either user-defined or typically set to their

upper limit of 2. Additionally, the arrays
→
R1 and

→
R2 are random arrays with a size of

1× D and values in the range of [0, 1]. The position of particles is updated every iteration
using Equation (2) while being constrained within the minimum and maximum position
limits [Ll , Lu]. →

Xi =
→
Xi +

→
Vi (2)

The particles’ positions
→
Xi are updated using Equation (2) in each iteration of the GPSO

algorithm until it meets either the specified cost value (Cd) or the maximum number of iterations

(kmax) [27]. The objective function f
(→

Xi

)
is used to determine Ci and the positions of

→
PG and

→
Pi.

The velocity
→
Vi is determined using Equation (1) in each iteration, and then Equation (2) updates

the position
→
Xi. The GPSO algorithm continues to calculate new global best positions

→
PG and

→
Pi

in every iteration. Algorithm 1 provides a complete description of the GPSO for each k iteration.
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Algorithm 1 GPSO 
Data: 𝐷, 𝑛, 𝑓൫𝑋పሬሬሬ⃗ ൯, 𝐿௟, 𝐿௨, 𝐿𝑆௟, 𝐿𝑆௨, 𝑐ଵ, 𝑐ଶ 
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while 𝑘 < 𝑘௠௔௫ or 𝐺஻ ≤ 𝐶ௗ do 𝑉పሬሬ⃗ = 𝑤 ⋅ 𝑉పሬሬ⃗ + 𝑐ଵ ⋅ 𝑅ଵሬሬሬሬ⃗ ⋅ ൫𝑃ሬሬሬሬ⃗ − 𝑋పሬሬሬ⃗ ൯ + 𝑐ଶ ⋅ 𝑅ଶሬሬሬሬ⃗ ⋅ ൫𝑃పሬሬ⃗ − 𝑋పሬሬሬ⃗ ൯; 𝑉పሬሬ⃗ = 𝑉పሬሬ⃗ ∈ ሾ𝐿𝑆௟, 𝐿𝑆௨ሿ; 𝑋పሬሬሬ⃗ = 𝑋పሬሬሬ⃗ + 𝑉పሬሬ⃗ ; 𝑋పሬሬሬ⃗ = 𝑋పሬሬሬ⃗ ∈ ሾ𝐿௟, 𝐿௨ሿ; 𝐶௜ = 𝑓൫𝑋పሬሬሬ⃗ ൯; 

for 𝑖 ← 1 to 𝑛 do 
if 𝐺௉,௜ < 𝐶௜ then 𝐺௉,௜ = 𝐶௜; 𝑃పሬሬ⃗ = 𝑋పሬሬሬ⃗ ; 
end 

end 𝐺஻ = 𝑚𝑖𝑛൫𝐺௉,௜൯; 𝑃ሬሬሬሬ⃗ = 𝑎𝑟𝑔𝑚𝑖𝑛 ቀ𝑓൫𝑃పሬሬ⃗ ൯ቁ; 
end 

2.3. Dealing with Local Optimums in PSO 
One of the key issues with the basic formulation of PSO is that it’s possible for all 

particles to be attracted to a local optimum, which can lead to stagnation. For instance, in 
the context of biology, birds tend to fly toward the nearest food source, even if it is not the 
best one, which can cause stagnation [30]. 

There are several alternatives explored when PSO gets stuck in optimal local regions, 
including [30]: 
• Stop the search and accept the result. 
• Continue the search while hoping to find a better solution. 
• Restart the swarm from new locations and search again. 
• Mark the areas in the search space that lead to a local optimum and avoid them. 
• Reinvigorate the swarm to maintain diversity. 

2.4. Regrouping PSO 
Stagnation in a PSO algorithm happens when particles’ positions have converged 

prematurely to a local optimum, keeping them in a nearby area in the search space [30]. 
To avoid stagnation in the swarm, RegPSO, a variation of PSO, measures the maxi-

mum Euclidean distance between each particle and the global best position for each iter-
ation 𝑘 using Equation (3) [30]. δሺ𝑘ሻ = max|𝑋పሬሬሬ⃗ − 𝑃ሬሬሬሬ⃗ |  (3)

Stagnation is confirmed when the distance between particles and 𝑃ሬሬሬሬ⃗  around the di-
ameter of the search space diamሺΩሻ is below the user-selected ϵ stagnation threshold. 
Ref. [30] suggests using ϵ = 1.1 × 10ିସ for its regrouping mechanism in Equation (4). 
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2.3. Dealing with Local Optimums in PSO

One of the key issues with the basic formulation of PSO is that it’s possible for all
particles to be attracted to a local optimum, which can lead to stagnation. For instance, in
the context of biology, birds tend to fly toward the nearest food source, even if it is not the
best one, which can cause stagnation [30].

There are several alternatives explored when PSO gets stuck in optimal local regions,
including [30]:

• Stop the search and accept the result.
• Continue the search while hoping to find a better solution.
• Restart the swarm from new locations and search again.
• Mark the areas in the search space that lead to a local optimum and avoid them.
• Reinvigorate the swarm to maintain diversity.

2.4. Regrouping PSO

Stagnation in a PSO algorithm happens when particles’ positions have converged
prematurely to a local optimum, keeping them in a nearby area in the search space [30].

To avoid stagnation in the swarm, RegPSO, a variation of PSO, measures the maximum
Euclidean distance between each particle and the global best position for each iteration k
using Equation (3) [30].

δ(k) = max
∣∣∣∣→Xi −

→
PG

∣∣∣∣ (3)

Stagnation is confirmed when the distance between particles and
→
PG around the

diameter of the search space diam(Ω) is below the user-selected ε stagnation threshold.
Ref. [30] suggests using ε = 1.1× 10−4 for its regrouping mechanism in Equation (4).

δnorm = δ(k)
diam < ε (4)

RegPSO reorganizes the swarm around the global best in case of stagnation or when a
maximum number (k) of evaluations per grouping (maxe) is reached. This reorganization
takes place between the minimum of the original range of the search space in dimension j
and the product of a regrouping factor ρ times the maximum distance along dimension j of

any particle compared with the global best position
(→

PG

)
, as shown in Equation (5).

rangej(Ωr) = min
(

rangej

(
Ω0
)

, ρ ·max
∣∣∣∣→Xi −

→
PG

∣∣∣∣) (5)

where the regrouping factor proposed in [30] is ρ = 6
5ε .

The position regrouping re-initializes the position of particles using Equation (6).
→
Xi =

→
PG +

→
R ◦ range(Ωr)− 1

2 range(Ωr) (6)

With its respective lower and upper bounds, r is the regrouping index starting at 0
and increasing by one with each regrouping.

According to this new range obtained, the algorithm sets a new maximum velocity
with each regrouping, i.e., there are j upper limits determined depending on the search
space dimension, as in Equation (7).

LSu,j = λ · range(Ωr) (7)

where λ is a percentage that maintains speed under its limits [LSl , LSu].
The algorithm’s loop continues until it meets a stop criterion, such as achieving the

desired cost value (Cd) or completing a specific number of iterations (kmax) [30]. Figure 1

presents an example of the effects of regrouping in
(→

PG

)
throughout iterations.
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Figure 1. Regrouping behavior of cost value across iterations with the RegPSO algorithm [30].

Algorithm 2 contains a comprehensive explanation of RegPSO.
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end 
for 𝑖 ← 1 to 𝑛 do 𝑋పሬሬሬ⃗ = ψపሬሬሬሬ⃗ ∈ ሾ𝐿௟, 𝐿௨ሿ; 𝑃పሬሬ⃗ = 𝑋పሬሬሬ⃗ ; 
end 
if 𝑟 = 0 then 𝐺஻ = 𝑚𝑖𝑛൫𝐺௉,௜൯; 𝑃ሬሬሬሬ⃗ = 𝑎𝑟𝑔𝑚𝑖𝑛 ቀ𝑓൫𝑋పሬሬሬ⃗ ൯ቁ; 
end 𝑘 = 1; 
while 𝑘 < 𝑘௠௔௫ or 𝐺஻ ≤ 𝐶ௗ do 𝑉పሬሬ⃗ = 𝑤 ⋅ 𝑉పሬሬ⃗ + 𝑐ଵ ⋅ 𝑅ଵሬሬሬሬ⃗ ⋅ ൫𝑃ሬሬሬሬ⃗ − 𝑋పሬሬሬ⃗ ൯ + 𝑐ଶ ⋅ 𝑅ଶሬሬሬሬ⃗ ⋅ ൫𝑃పሬሬ⃗ − 𝑋పሬሬሬ⃗ ൯; 𝑉పሬሬ⃗ = 𝑉పሬሬ⃗ ∈ ሾ𝐿𝑆௟, 𝐿𝑆௨ሿ; 𝑋పሬሬሬ⃗ = 𝑋పሬሬሬ⃗ + 𝑉పሬሬ⃗ ; 𝑋పሬሬሬ⃗ = 𝑋పሬሬሬ⃗ ∈ ሾ𝐿௟, 𝐿௨ሿ; 𝐶௜ = 𝑓൫𝑋పሬሬሬ⃗ ൯; 

for 𝑖 ← 1 to 𝑛 do 
if 𝐺௉,௜ < 𝐶௜ then 𝐺௉,௜ = 𝐶௜; 𝑃పሬሬ⃗ = 𝑋పሬሬሬ⃗ ; 
end 

end 𝐺஻ = 𝑚𝑖𝑛൫𝐺௉,௜൯; 𝑃ሬሬሬሬ⃗ = 𝑎𝑟𝑔𝑚𝑖𝑛 ቀ𝑓൫𝑋పሬሬሬ⃗ ൯ቁ; δሺ𝑘ሻ = max|𝑋పሬሬሬ⃗ − 𝑃ሬሬሬሬ⃗ |; 𝑘 = 𝑘 + 1; 
if ஔሺ௞ሻ

diam
< or 𝑘 = 𝑚𝑎𝑥௘ then 𝑟𝑎𝑛𝑔𝑒௝ሺΩ௥ሻ = 𝑚𝑖𝑛൫𝑟𝑎𝑛𝑔𝑒௝ሺΩ଴ሻ, ρ ⋅ 𝑚𝑎𝑥ห𝑋పሬሬሬ⃗ − 𝑃ሬሬሬሬ⃗ ห൯; 𝑋పሬሬሬ⃗ = 𝑃ሬሬሬሬ⃗ + 𝑅ሬ⃗ ∘ 𝑟𝑎𝑛𝑔𝑒ሺΩ௥ሻ − ଵଶ 𝑟𝑎𝑛𝑔𝑒ሺΩ௥ሻ; 𝐿𝑆௨,௝ = λ ⋅ 𝑟𝑎𝑛𝑔𝑒ሺΩ௥ሻ; 

end 
end 
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2.5. Dynamical Sphere Regrouping PSO (DSRegPSO)

In this section, we will explore the inspirations behind the proposed DSRegPSO algo-
rithm, as well as the algorithm itself. We aim to provide a comprehensive understanding of
the development and implementation of DSRegPSO.

2.5.1. DSRegPSO Inspiration

Similar to other heuristics, PSO strives to enhance a cost function that is depicted
as a mathematical expression. Achieving this objective involves multiple assessments
that adjust the numerical parameters optimized either using Algorithm 1, Algorithm 2,
the novel algorithm presented in this research, Algorithm 3, or alternative optimization
methodologies.

The PSO algorithm involves birds or particles that continuously move toward the position

with the best cost evaluation, denoted as
→
PG, or the position closest to 0 in a minimizing

problem. The algorithm tests i trajectories every iteration, with i particles searching for the
optimal point where the cost function converges to 0, as shown in Equation (8).

lim
(
→
X)→(

→
Xi)

f
(→

X
)
= 0 (8)

To establish the validity of the limit, it is necessary to demonstrate its existence using
the epsilon–delta definition, which has been adapted from reference [49]. This can be

achieved by defining the particle’s position as
→
X, the cost function as f

(→
X
)

, the global

best cost as GB, and the best global position as
→
PG, as outlined in Definition 1.

Definition 1. Let f
(→

X
)

be a function defined on an open interval around
→
Xi. The limit of f

(→
X
)

as
→
X approaches

→
PG is GB , i.e., lim

(
→
X)→(

→
PG)

f
(→

X
)

= GB. If for every ε > 0, there exists a δ > 0

such that for all
→
X, Equation (9) is satisfied.

0 <

∣∣∣∣→X − →PG

∣∣∣∣ < δ⇒
∣∣∣∣ f(→X)− GB

∣∣∣∣ < ε (9)

Definition 1 considers a hyper-sphere delimited by diameter δ that approximates the

difference
∣∣∣∣ f(→X)− GB

∣∣∣∣ to a value ε when δ > 0, i.e., 0 <

∣∣∣∣→X − →PG

∣∣∣∣ < δ, but if δ = 0,

then
∣∣∣∣→X − →PG

∣∣∣∣ = 0 and ε = 0; therefore,
∣∣∣∣ f(→X)− GB

∣∣∣∣ = 0. In other words, if δ = 0, then

→
X =

→
PG and f

(→
X
)
= GB, which support that stagnation problems occur when all particles

remain in approximately the same position, with almost the same cost.
Based on Definition 1, an alternative approach for revitalizing the swarm is to adjust

the position of particles within a hypersphere that has an acceptable diameter of δ. This
adjustment limits the approximation of vector Xi to vector PG. Particles under this δ
diameter can be repositioned to enhance the possibility of discovering a new cost Ci that
may be superior to GB with the new approximation trajectories. The swarm can avoid a
local optimal region in the green function that has multiple possible local optimums by
repositioning particles inside the hypersphere in red, as illustrated in Figure 2.
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According to [49], it is possible that trajectories may lead to a different value of Ci in

f
(→

X
)

when the dimension of position D is greater than 1. Therefore, it is recommended

to establish a boundary or the maximum diameter for approximation to determine when to
relocate a particle in the search space to preserve the diversity of the swarm.

In a biological context, δ represents the situation when birds have visited and ex-
hausted several locations with less food than the position with the most food (PG). In this
case, the birds could return to eat at PG while there is enough food for them (their position
is outside the diameter δ). If the food is exhausted, the remaining birds without food
continue flying from their current location to a different one or the algorithm repositions
the particles outside δ.

The new position updating uses a random speed array ψi, generated when the δi
distance between the position of particle i and PG is under the desired δ diameter. This
change in position means that particles too near to PG do not spend time exploiting this
search space region. Allowing δ to be a dynamic parameter that increases and decreases
the hyper-sphere diameter changes the swarm behavior for exploring or exploiting during
the entire run.

When δ is greater, particles explore a more extensive region, and when it is smaller,
particles exploit a smaller region. Furthermore, in this proposal, the delta value increases
each iteration that GB remains under the desired percentage of change ζ, allowing the
algorithm to automatically change from the exploration to exploitation stage as the global
best improves.

This behavior resembles the number of birds allowed given the amount of food and
how fewer birds are admitted over time while food decreases in that location, forcing them
to leave their current position and look for more food.

Since particles are repositioned when δi is less than δ, particles are repositioned
with ψi when δ reaches its maximum value δmax due to minor improvements in GB. The
main improvement in GPSO is the use of the previous speed with inertial momentum,
allowing exploration at the beginning of the run, but its effect diminishes as the speed is
approximated to 0 because (PG − Xi) and (Pi − Xi) are near 0.

The inertial momentum varies depending on delta because it already controls explo-
ration and exploitation. Thus, the inertial momentum increases when δ reaches a higher
value or GB remains with minor changes, i.e., when particles are more likely to converge.
On the other hand, the inertial momentum decreases, maximizing exploitation when δ
reaches a lower value because GB improved more than ζ · GB.

In DSRegPSO, the maximum allowed velocity LSu is controlled depending on the
speed of hyper-sphere expansion Ss, or the parameter that controls how fast we change
δ each iteration, and the improvement is lower than ζ · GB. The update mechanism for
Ss increases it every time δ reaches its maximum value δmax. Similar to delta, Ss has
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boundaries: a maximum speed of expansion Smax and a minimum one Smin. When the
algorithm reaches Smax, Ss restarts to the value Smin.

Several researchers have controlled the maximum velocity since they found that
unlimited velocity produces divergence in the algorithm [50]. Thus, when the max velocity
is higher, there is more exploration or divergence; when it is lower, more exploitation
occurs.

Considering the effect of velocity in exploration and exploitation, in DSRegPSO,
we control the maximum allowed velocity LSu depending on the speed of hyper-sphere
expansion Ss, or the parameter that controls how fast we change δ each iteration, and the
improvement is lower than ζ · GB.

Biologically, suppose birds are repeatably attracted to the same position without
finding more food. In that case, it is as if they suffer desperation to find it, causing an
increment in their speed while their energy reserves allow it. The desperate situation of
food about to end makes birds travel faster and more vaguely.

Thus, the higher the Ss, the more vagueness of particles maximizing exploration.
Additionally, we also maximize exploration in the inertial momentum by including Ss and
δ in its update.

2.5.2. The DSRegPSO Algorithm

The DSRegPSO algorithm’s initialization process involves the GPSO initialization
parameters outlined in Algorithm 1, with the exception of parameter w. In its place,
Equation (10) utilizes parameterω. This parameter uniformly distributes the maximum
inertial momentum (Mmax) across its dependencies, δ

δmax
and S

Smax
, both of which fall within

the range of [0, 1].
ω = Mmax

2 (10)

In DSRegPSO, a new updating speed equation is defined for each iteration (k) in
Equation (11), taking into account the hyper-sphere diameter and its expansion speed. The
inertial momentum component varies based on these factors. This approach is described in
detail in Section 2.5.1.

→
Vi =

[(
δ

δmax
+ Ss

Smax

)
·ω ·

→
Vi

]
+ c1 ·

→
R1 ·

(→
PG −

→
Xi

)
+ c2 ·

→
R2 ·

(→
Pi −

→
Xi

)
(11)

The initialization of LSu and LSl involves determining LSui using Equation (12). LSu
is assigned the value of LSui (Equation (13)), and LSl is obtained using Equation (14).

LSui = λ(Ll − Lu) (12)

LSu = LSui (13)

LSl = −LSu (14)

The λ coefficient modifies the starting limits of speed depending on the size of the
search space, then speed limits LSu and LSl change according to the speed of expansion Ss,
obtaining the maximum velocity allowed when Ss = Smax.

DSRegPSO recalculates LSu and LSl each iteration because maximum velocities vary
during the algorithm depending on Ss (birds’ desperation for food or the expansion speed
described in Section 2.5.1), allowing it to break barriers in local optimums. After all, more
significant speeds increase the exploration range while lower speeds increase exploitation, as
described in [51]. Thus, LSu and LSl are updated with Equations (14) and (15), respectively.

LSu = Ss · LSu (15)

Once DSRegPSO recalculates the speeds of the i particles and retains them under its
limits, Equation (16) updates the position of particles, randomly varying the components
of the particles upper the hyper-sphere diameter δ.
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→
Xi = (1−Ui) ·

(→
Xi +

→
Vi

)
+ Ui · ψ (16)

→
ψi is a random array under the limits of position [Ll , Lu].

→
ψi reinvigorates the swarm

by changing the components in the position vector according to Ui, which indicates if a

particle is too near to
→
PG, depending on the hyper-sphere diameter δ, as in Equation (17).

Ui(δi) =

{
1 δi ≤ δ
0 δi > δ

(17)

with the distance between the particle and the best position (δi) determined with Equation (18).

δi = ∑
(∣∣∣∣ →Xi,d −

→
PG

∣∣∣∣) (18)

The sphere diameter δ is determined in each iteration using Equation (19) when there
is insufficient improvement in GB at that iteration; in other words, |GB(k)−GB(k− 1)| ≤
ζ ·GB(k), with ζ as the improvement factor. Additionally, if δ has reached its maximum, i.e.,
if δ = δmax, then we set δ = δmin and Ss obtains its value according to Equation (20). In the
case that there is enough improvement, then we set δ = δmin and Ss = Smin to maximize
exploitation.

δ =

{
δ = δ+ δmax · Ss δ < δmax

δmin else
(19)

Ss =

{
Ss + Smin Ss < Smax

Smin else
(20)

After obtaining all the parameters in Equations (15) to (20) and the speed of particles
in Equation (11), then Equation (21) updates the position of particles with the proposed
conservation of momentum to retain all positions under the limits [Ll , Lu]. In GPSO, rear-
rangement of position sets the position value to either Ll , if crossing the lower boundary, or
Lu, if crossing the upper boundary. However, in this work, we propose the conservation
of momentum principle for PSO, making particles change their direction backward when
crossing the boundaries. This conservational momentum maximizes exploration by return-
ing particles to different positions in the search space if the speed vector makes them travel
beyond the search space boundaries.

→
Xi,d =


max

(
Ll , Lu +

(
Lu −

→
Xi,d

)) →
Xi,d > Lu

min
(

Lu, Ll +

(
Ll −

→
Xi,d

)) →
Xi,d < Ll

(21)

We let δmax and δmin vary depending on
→
PG, progressively reducing the size of the

search space around the best position since the components of a position refine across
iterations, and then we reduce the search space based on that value. However, we let the
user control that refinement with f dmax and f dmin, as in Equations (22) and (23).

δmax = max
(→

PG

)
· f dmax (22)

δmin = min
(→

PG

)
· f dmin (23)

Finally, we update the new speed limits with Equations (24) and (25), and the process
iterates continually while it < itmax or GB ≤ Cd.
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while 𝑘 < 𝑘௠௔௫ or 𝐺஻ ≤ 𝐶ௗ do 𝑉పሬሬ⃗ = ቂቀ ஔஔ೘ೌೣ + ௌௌ೘ೌೣቁ ⋅ ω ⋅ 𝑉పሬሬ⃗ ቃ + 𝑐ଵ ⋅ 𝑅ଵ ⋅ ൫𝑃ሬሬሬሬ⃗ − 𝑋పሬሬሬ⃗ ൯ + 𝑐ଶ ⋅ 𝑅ଶ ⋅ ൫𝑃పሬሬ⃗ − 𝑋పሬሬሬ⃗ ൯; 𝑉పሬሬ⃗ = 𝑉పሬሬ⃗ ∈ ሾ𝐿𝑆௟, 𝐿𝑆௨ሿ; δ௜ = ∑൫ห𝑋ప,ௗሬሬሬሬሬሬ⃗ − 𝑃ሬሬሬሬ⃗ ห൯; 𝑈௜ሺδ௜ሻ = ൜0 δ௜ ≤ δ1 δ௜ > δ; 𝑋పሬሬሬ⃗ = ሺ1 − 𝑈௜ሻ ⋅ ൫𝑋పሬሬሬ⃗ + 𝑉పሬሬ⃗ ൯ +  𝑈௜ ⋅ ψ; 

𝑋ప,ௗሬሬሬሬሬሬ⃗ = ቐ𝑚𝑎𝑥 ቀ𝐿௟, 𝐿௨ + ൫𝐿௨ − 𝑋ప,ௗሬሬሬሬሬሬ⃗ ൯ቁ 𝑋ప,ௗሬሬሬሬሬሬ⃗ > 𝐿௨𝑚𝑖𝑛 ቀ𝐿௨, 𝐿௟ + ൫𝐿௟ − 𝑋ప,ௗሬሬሬሬሬሬ⃗ ൯ቁ 𝑋ప,ௗሬሬሬሬሬሬ⃗ < 𝐿௟ ; 

𝑋పሬሬሬ⃗ = 𝑋పሬሬሬ⃗ ∈ ሾ𝐿௟, 𝐿௨ሿ; 𝐶௜ = 𝑓൫𝑋పሬሬሬ⃗ ൯; 
for 𝑖 ← 1 to 𝑛 do 

if 𝐶௜ < 𝐺௉,௜ then 𝐺௉,௜ = 𝐶௜; 𝑃పሬሬ⃗ = 𝑋పሬሬሬ⃗ ; 
end 
if 𝐺௉,௜ < 𝐺஻ then 𝐺஻  = 𝐺௉,௜; 𝑃ሬሬሬሬ⃗ = 𝑃పሬሬ⃗ ; 
end 

end 𝑖𝑡 =  𝑖𝑡 + 1 ; 
if |𝐺஻ሺ𝑘ሻ − 𝐺஻ሺ𝑘 − 1ሻ| ≤ ζ ⋅ 𝐺஻ሺ𝑘ሻ then 

if δ < δ௠௔௫ then δ = δ + δ௠௔௫ ⋅ 𝑆௦; 
else δ = δ୫୧୬; 

if Sୱ  ≥ 𝑆௠௔௫ then Sୱ = S୫୧୬; 
else Sୱ = 𝑆௦ + 𝑆௠௜௡; 
end 

end 
else δ = δ୫୧୬; Sୱ = S୫୧୬; 
end δ୫ୟ୶ = max൫𝑃ሬሬሬሬ⃗ ൯ ⋅ 𝑓𝑑௠௔௫; δ௠௜௡ = min൫𝑃ሬሬሬሬ⃗ ൯  ⋅ 𝑓𝑑௠௜௡; 𝐿𝑆௨ = ቀ ಌಌ೘ೌೣା ೄೞೄ೘ೌೣቁଶ ⋅ 𝐿𝑆௨௜ ; 𝐿𝑆௟ = −𝐿𝑆௨; 

end 
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LSu =
( δ
δmax +

Ss
Smax )

2 · LSui
(24)

LSl = −LSu (25)

The DSRegPSO technique is presented in Algorithm 3, which applies the previous
formulas while incorporating additional input parameters, namely, f dmax, f dmin, Smax,
Smin, and ζ. Unlike the original PSO approach, LSl and LSu do not need to be specified as
input parameters.

3. Results and Discussion

In this section, the proposed algorithm’s performance is evaluated by testing it on the
15 functions in benchmark CEC’13, as specified in [52]. The aim of the tests is to verify
the algorithm’s convergence capabilities and robustness by performing several runs for
every function optimized, as described in [52]. The leading convergence indicator in the
CEC’13 test is the mean of the best costs, while the Standard Deviation (SD) indicates the
robustness. The benchmark runs 25 times during 3.0E+06 function evaluations, and each
function has 1000 dimensions. To compare DSRegPSO with other heuristics, we used the
Toolkit for Automatic Comparison of Optimizers (TACO), which is also distributed by CEC
and described in [53]. The comparison is based on the mean cost obtained after 25 runs of
3.0E+06 function evaluations of the 15 functions in the benchmark.

We set the DSRegPSO (Algorithm 3) decision variables or input parameters depending on
the optimization requirements for each test, and the best performance obtained according to:

• D, n, f
(→

Xi

)
, Ll , and Lu were specified by the requirements for the optimized functions

in each function of CEC’13.
• We assumed that the remaining input parameters are linearly independent. Based on

this assumption, we chose the values that resulted in the best cost for each benchmark
by varying them heuristically within the ranges specified in Section 3.1.

Additionally, we tested the original GPSO in Algorithm 2 with CEC’13. Again, we
used the same process to select the best input parameters heuristically. Then, we included
the results in the comparison.

The computer used for data analysis and result generation was an Alienware m17 R2
running Microsoft Windows 10 Home, version 10.0.19045, build 19045. The system was
configured with an Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz, 16.0 GB of physical RAM,
and a total of 39.8 GB of virtual memory

3.1. Results of the CEC’13 Test

The 15 functions utilized for testing in CEC’13 are categorized as fully separable,
partially additively separable, overlapping, or non-separable. Each function boasts a
unique domain and global optimum. To ensure accuracy, CEC’13 applies transformations
such as position translation, rotation, and disturbance operations to the objective function
prior to evaluation, as noted in [52].

1. Fully separable functions:

a. f1
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• 𝑆௠௔௫ = ሼ0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0ሽ. 
• 𝑆௠௜௡ = ሼ0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1ሽ. 
• 𝑛 = ሼ1,5,10,20,30,40,50,60,70,80,90,100ሽ. 

Table 1 displays the optimal parameters for the DSRegPSO algorithm based on the 
average best cost after being heuristically evaluated for five runs of 5.0E+05 function eval-
uations per CEC’13 function, in order to obtain the best possible cost per function. We 
tested the algorithm parameters using 5.0E+05 function evaluations instead of 3.0E+06, as 
the latter would not be feasible due to the complexity of the CEC’13 test. 

Table 1. DSRegPSO parameters determined with heuristic selection in the CEC’13 test. 𝒇൫𝑿ሬሬ⃗ ൯ 𝒇𝒅𝒎𝒊𝒏 𝒇𝒅𝒎𝒂𝒙 𝛇 𝒄𝟐 𝑴𝒎𝒂𝒙 𝛌 𝑺𝒎𝒂𝒙 𝑺𝒎𝒊𝒏 𝒏 𝑓ଵ 1.0E − 200 1.0E − 200 5.0E − 02 1.5E + 00 0.0E + 00 7.0E − 01 1.5E + 00 2.0E − 02 5.0E + 01 𝑓ଶ 1.0E − 50 1.0E − 01 1.0E − 02 1.5E + 00 1.0E − 01 1.9E + 00 5.0E − 01 5.0E − 02 5.0E + 00 𝑓ଷ 1.0E − 100 1.0E − 05 5.0E − 01 1.5E + 00 1.0E − 01 2.0E − 01 1.0E − 01 5.0E − 02 2.0E + 01 𝑓ସ 1.0E − 50 1.0E − 01 1.0E − 03 1.0E + 00 0.0E + 00 1.0E + 00 5.0E − 01 5.0E − 02 2.0E + 01 𝑓ହ 1.0E − 50 1.0E + 00 5.0E − 02 2.0E + 00 1.3E + 00 1.3E + 00 3.0E − 01 5.0E − 02 4.0E + 01 𝑓଺ 1.0E − 50 1.0E − 25 1.0E − 03 8.0E − 01 7.0E − 01 7.0E − 01 8.0E − 01 8.0E − 02 5.0E + 01 𝑓଻ 1.0E − 50 1.0E − 10 1.0E − 02 1.5E + 00 4.0E − 01 3.0E − 01 9.0E − 01 5.0E − 02 3.0E + 01 𝑓  1.0E − 25 1.0E − 10 5.0E − 02 6.0E − 01 6.0E − 01 4.0E − 01 4.0E − 01 5.0E − 02 5.0E + 01 𝑓ଽ 1.0E − 25 1.0E − 25 1.0E − 01 2.0E + 00 1.2E + 00 1.3E + 00 3.0E − 01 5.0E − 02 3.0E + 01 

Ackley with
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2. Partially Additively Separable Functions:

• Functions with a separable subcomponent:
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b. 𝑓ହ ≔ Rastrigin with 𝑋⃗ ∈ ሾ−5,5ሿ and 𝑓ହ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

c. 𝑓଺ ≔ Ackley with 𝑋⃗ ∈ ሾ−32,32ሿ and 𝑓଺ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

d. 𝑓଻ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓଻ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

• Functions with no separable subcomponents: 

a. 𝑓 ≔ Elliptic with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓 ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

b. 𝑓ଽ ≔ Rastrigin with 𝑋⃗ ∈ ሾ−5,5ሿ and 𝑓ଽ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

c. 𝑓ଵ଴ ≔ Ackley with 𝑋⃗ ∈ ሾ−32,32ሿ and 𝑓ଵ଴ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

d. 𝑓ଵଵ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵଵ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

3. Overlapping Functions: 

a. 𝑓ଵଶ ≔ Rosenbrock’s with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵଶ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ + 1ቁ = 0. 
b. 𝑓ଵଷ ≔  Schwefels with Conforming Overlapping Subcomponents with 𝑋⃗ ∈ሾ−100,100ሿ and 𝑓ଵଷ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 
c. 𝑓ଵସ ≔  Schwefels with Conflicting Overlapping Subcomponents with 𝑋⃗ ∈ሾ−100,100ሿ and 𝑓ଵସ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

4. Non-separable Functions: 

a. 𝑓ଵହ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵହ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

The DSRegPSO algorithm can use a heuristic approach to find values for 𝑓𝑑௠௜௡ , 𝑓𝑑௠௔௫ , ζ , 𝑐ଶ , 𝑀௠௔௫ , λ , 𝑆௠௔௫ , 𝑆௠௜௡ , and 𝑛 . The values that were heuristically tested are 
provided below. The limits of the parameters related to DSRegPSO: 𝑓𝑑௠௜௡ , 𝑓𝑑௠௔௫ , ζ , 𝑆௠௔௫ , and 𝑆௠௜௡  were determined by increasing or decreasing those limits in order to 
achieve better results. For the parameters related to PSO: 𝑀௠௔௫, λ, 𝑐ଶ, and 𝑛, we used 
limits that were recommended in the literature, specifically in [54,55]. 
• 𝑓𝑑௠௜௡ = ሼ1E − 200, 1E − 100, 1E − 50, 1E − 25, 1E − 10, 1E − 5, 1E − 1,1ሽ. 
• 𝑓𝑑௠௔௫ = ሼ1E − 200, 1E − 100, 1E − 50, 1E − 25, 1E − 10, 1E − 5, 1E − 1,1ሽ. 
• ζ = ሼ1E − 5, 1E − 4, 1E − 3, 1E − 2, 5E − 2, 1E − 1, 5E − 1ሽ. 
• 𝑀௠௔௫ = ሼ0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3ሽ. 
• 𝑐ଶ = ሼ0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5, 2.0ሽ. 
• λ = ሼ0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3ሽ. 
• 𝑆௠௔௫ = ሼ0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0ሽ. 
• 𝑆௠௜௡ = ሼ0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1ሽ. 
• 𝑛 = ሼ1,5,10,20,30,40,50,60,70,80,90,100ሽ. 

Table 1 displays the optimal parameters for the DSRegPSO algorithm based on the 
average best cost after being heuristically evaluated for five runs of 5.0E+05 function eval-
uations per CEC’13 function, in order to obtain the best possible cost per function. We 
tested the algorithm parameters using 5.0E+05 function evaluations instead of 3.0E+06, as 
the latter would not be feasible due to the complexity of the CEC’13 test. 

Table 1. DSRegPSO parameters determined with heuristic selection in the CEC’13 test. 𝒇൫𝑿ሬሬ⃗ ൯ 𝒇𝒅𝒎𝒊𝒏 𝒇𝒅𝒎𝒂𝒙 𝛇 𝒄𝟐 𝑴𝒎𝒂𝒙 𝛌 𝑺𝒎𝒂𝒙 𝑺𝒎𝒊𝒏 𝒏 𝑓ଵ 1.0E − 200 1.0E − 200 5.0E − 02 1.5E + 00 0.0E + 00 7.0E − 01 1.5E + 00 2.0E − 02 5.0E + 01 𝑓ଶ 1.0E − 50 1.0E − 01 1.0E − 02 1.5E + 00 1.0E − 01 1.9E + 00 5.0E − 01 5.0E − 02 5.0E + 00 𝑓ଷ 1.0E − 100 1.0E − 05 5.0E − 01 1.5E + 00 1.0E − 01 2.0E − 01 1.0E − 01 5.0E − 02 2.0E + 01 𝑓ସ 1.0E − 50 1.0E − 01 1.0E − 03 1.0E + 00 0.0E + 00 1.0E + 00 5.0E − 01 5.0E − 02 2.0E + 01 𝑓ହ 1.0E − 50 1.0E + 00 5.0E − 02 2.0E + 00 1.3E + 00 1.3E + 00 3.0E − 01 5.0E − 02 4.0E + 01 𝑓଺ 1.0E − 50 1.0E − 25 1.0E − 03 8.0E − 01 7.0E − 01 7.0E − 01 8.0E − 01 8.0E − 02 5.0E + 01 𝑓଻ 1.0E − 50 1.0E − 10 1.0E − 02 1.5E + 00 4.0E − 01 3.0E − 01 9.0E − 01 5.0E − 02 3.0E + 01 𝑓  1.0E − 25 1.0E − 10 5.0E − 02 6.0E − 01 6.0E − 01 4.0E − 01 4.0E − 01 5.0E − 02 5.0E + 01 𝑓ଽ 1.0E − 25 1.0E − 25 1.0E − 01 2.0E + 00 1.2E + 00 1.3E + 00 3.0E − 01 5.0E − 02 3.0E + 01 

Elliptic with
→
X ∈ [−100, 100] and f4

( →
Xopt

)
= 0.

b. f5

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 41 
 

 

b. 𝑓ହ ≔ Rastrigin with 𝑋⃗ ∈ ሾ−5,5ሿ and 𝑓ହ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

c. 𝑓଺ ≔ Ackley with 𝑋⃗ ∈ ሾ−32,32ሿ and 𝑓଺ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

d. 𝑓଻ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓଻ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

• Functions with no separable subcomponents: 

a. 𝑓 ≔ Elliptic with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓 ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

b. 𝑓ଽ ≔ Rastrigin with 𝑋⃗ ∈ ሾ−5,5ሿ and 𝑓ଽ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

c. 𝑓ଵ଴ ≔ Ackley with 𝑋⃗ ∈ ሾ−32,32ሿ and 𝑓ଵ଴ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

d. 𝑓ଵଵ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵଵ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

3. Overlapping Functions: 

a. 𝑓ଵଶ ≔ Rosenbrock’s with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵଶ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ + 1ቁ = 0. 
b. 𝑓ଵଷ ≔  Schwefels with Conforming Overlapping Subcomponents with 𝑋⃗ ∈ሾ−100,100ሿ and 𝑓ଵଷ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 
c. 𝑓ଵସ ≔  Schwefels with Conflicting Overlapping Subcomponents with 𝑋⃗ ∈ሾ−100,100ሿ and 𝑓ଵସ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

4. Non-separable Functions: 

a. 𝑓ଵହ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵହ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

The DSRegPSO algorithm can use a heuristic approach to find values for 𝑓𝑑௠௜௡ , 𝑓𝑑௠௔௫ , ζ , 𝑐ଶ , 𝑀௠௔௫ , λ , 𝑆௠௔௫ , 𝑆௠௜௡ , and 𝑛 . The values that were heuristically tested are 
provided below. The limits of the parameters related to DSRegPSO: 𝑓𝑑௠௜௡ , 𝑓𝑑௠௔௫ , ζ , 𝑆௠௔௫ , and 𝑆௠௜௡  were determined by increasing or decreasing those limits in order to 
achieve better results. For the parameters related to PSO: 𝑀௠௔௫, λ, 𝑐ଶ, and 𝑛, we used 
limits that were recommended in the literature, specifically in [54,55]. 
• 𝑓𝑑௠௜௡ = ሼ1E − 200, 1E − 100, 1E − 50, 1E − 25, 1E − 10, 1E − 5, 1E − 1,1ሽ. 
• 𝑓𝑑௠௔௫ = ሼ1E − 200, 1E − 100, 1E − 50, 1E − 25, 1E − 10, 1E − 5, 1E − 1,1ሽ. 
• ζ = ሼ1E − 5, 1E − 4, 1E − 3, 1E − 2, 5E − 2, 1E − 1, 5E − 1ሽ. 
• 𝑀௠௔௫ = ሼ0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3ሽ. 
• 𝑐ଶ = ሼ0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5, 2.0ሽ. 
• λ = ሼ0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3ሽ. 
• 𝑆௠௔௫ = ሼ0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0ሽ. 
• 𝑆௠௜௡ = ሼ0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1ሽ. 
• 𝑛 = ሼ1,5,10,20,30,40,50,60,70,80,90,100ሽ. 

Table 1 displays the optimal parameters for the DSRegPSO algorithm based on the 
average best cost after being heuristically evaluated for five runs of 5.0E+05 function eval-
uations per CEC’13 function, in order to obtain the best possible cost per function. We 
tested the algorithm parameters using 5.0E+05 function evaluations instead of 3.0E+06, as 
the latter would not be feasible due to the complexity of the CEC’13 test. 

Table 1. DSRegPSO parameters determined with heuristic selection in the CEC’13 test. 𝒇൫𝑿ሬሬ⃗ ൯ 𝒇𝒅𝒎𝒊𝒏 𝒇𝒅𝒎𝒂𝒙 𝛇 𝒄𝟐 𝑴𝒎𝒂𝒙 𝛌 𝑺𝒎𝒂𝒙 𝑺𝒎𝒊𝒏 𝒏 𝑓ଵ 1.0E − 200 1.0E − 200 5.0E − 02 1.5E + 00 0.0E + 00 7.0E − 01 1.5E + 00 2.0E − 02 5.0E + 01 𝑓ଶ 1.0E − 50 1.0E − 01 1.0E − 02 1.5E + 00 1.0E − 01 1.9E + 00 5.0E − 01 5.0E − 02 5.0E + 00 𝑓ଷ 1.0E − 100 1.0E − 05 5.0E − 01 1.5E + 00 1.0E − 01 2.0E − 01 1.0E − 01 5.0E − 02 2.0E + 01 𝑓ସ 1.0E − 50 1.0E − 01 1.0E − 03 1.0E + 00 0.0E + 00 1.0E + 00 5.0E − 01 5.0E − 02 2.0E + 01 𝑓ହ 1.0E − 50 1.0E + 00 5.0E − 02 2.0E + 00 1.3E + 00 1.3E + 00 3.0E − 01 5.0E − 02 4.0E + 01 𝑓଺ 1.0E − 50 1.0E − 25 1.0E − 03 8.0E − 01 7.0E − 01 7.0E − 01 8.0E − 01 8.0E − 02 5.0E + 01 𝑓଻ 1.0E − 50 1.0E − 10 1.0E − 02 1.5E + 00 4.0E − 01 3.0E − 01 9.0E − 01 5.0E − 02 3.0E + 01 𝑓  1.0E − 25 1.0E − 10 5.0E − 02 6.0E − 01 6.0E − 01 4.0E − 01 4.0E − 01 5.0E − 02 5.0E + 01 𝑓ଽ 1.0E − 25 1.0E − 25 1.0E − 01 2.0E + 00 1.2E + 00 1.3E + 00 3.0E − 01 5.0E − 02 3.0E + 01 
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b. 𝑓ହ ≔ Rastrigin with 𝑋⃗ ∈ ሾ−5,5ሿ and 𝑓ହ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

c. 𝑓଺ ≔ Ackley with 𝑋⃗ ∈ ሾ−32,32ሿ and 𝑓଺ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

d. 𝑓଻ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓଻ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

• Functions with no separable subcomponents: 

a. 𝑓 ≔ Elliptic with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓 ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

b. 𝑓ଽ ≔ Rastrigin with 𝑋⃗ ∈ ሾ−5,5ሿ and 𝑓ଽ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

c. 𝑓ଵ଴ ≔ Ackley with 𝑋⃗ ∈ ሾ−32,32ሿ and 𝑓ଵ଴ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

d. 𝑓ଵଵ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵଵ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

3. Overlapping Functions: 

a. 𝑓ଵଶ ≔ Rosenbrock’s with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵଶ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ + 1ቁ = 0. 
b. 𝑓ଵଷ ≔  Schwefels with Conforming Overlapping Subcomponents with 𝑋⃗ ∈ሾ−100,100ሿ and 𝑓ଵଷ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 
c. 𝑓ଵସ ≔  Schwefels with Conflicting Overlapping Subcomponents with 𝑋⃗ ∈ሾ−100,100ሿ and 𝑓ଵସ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

4. Non-separable Functions: 

a. 𝑓ଵହ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵହ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

The DSRegPSO algorithm can use a heuristic approach to find values for 𝑓𝑑௠௜௡ , 𝑓𝑑௠௔௫ , ζ , 𝑐ଶ , 𝑀௠௔௫ , λ , 𝑆௠௔௫ , 𝑆௠௜௡ , and 𝑛 . The values that were heuristically tested are 
provided below. The limits of the parameters related to DSRegPSO: 𝑓𝑑௠௜௡ , 𝑓𝑑௠௔௫ , ζ , 𝑆௠௔௫ , and 𝑆௠௜௡  were determined by increasing or decreasing those limits in order to 
achieve better results. For the parameters related to PSO: 𝑀௠௔௫, λ, 𝑐ଶ, and 𝑛, we used 
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average best cost after being heuristically evaluated for five runs of 5.0E+05 function eval-
uations per CEC’13 function, in order to obtain the best possible cost per function. We 
tested the algorithm parameters using 5.0E+05 function evaluations instead of 3.0E+06, as 
the latter would not be feasible due to the complexity of the CEC’13 test. 
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4. Non-separable Functions: 

a. 𝑓ଵହ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵହ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

The DSRegPSO algorithm can use a heuristic approach to find values for 𝑓𝑑௠௜௡ , 𝑓𝑑௠௔௫ , ζ , 𝑐ଶ , 𝑀௠௔௫ , λ , 𝑆௠௔௫ , 𝑆௠௜௡ , and 𝑛 . The values that were heuristically tested are 
provided below. The limits of the parameters related to DSRegPSO: 𝑓𝑑௠௜௡ , 𝑓𝑑௠௔௫ , ζ , 𝑆௠௔௫ , and 𝑆௠௜௡  were determined by increasing or decreasing those limits in order to 
achieve better results. For the parameters related to PSO: 𝑀௠௔௫, λ, 𝑐ଶ, and 𝑛, we used 
limits that were recommended in the literature, specifically in [54,55]. 
• 𝑓𝑑௠௜௡ = ሼ1E − 200, 1E − 100, 1E − 50, 1E − 25, 1E − 10, 1E − 5, 1E − 1,1ሽ. 
• 𝑓𝑑௠௔௫ = ሼ1E − 200, 1E − 100, 1E − 50, 1E − 25, 1E − 10, 1E − 5, 1E − 1,1ሽ. 
• ζ = ሼ1E − 5, 1E − 4, 1E − 3, 1E − 2, 5E − 2, 1E − 1, 5E − 1ሽ. 
• 𝑀௠௔௫ = ሼ0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3ሽ. 
• 𝑐ଶ = ሼ0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5, 2.0ሽ. 
• λ = ሼ0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3ሽ. 
• 𝑆௠௔௫ = ሼ0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0ሽ. 
• 𝑆௠௜௡ = ሼ0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1ሽ. 
• 𝑛 = ሼ1,5,10,20,30,40,50,60,70,80,90,100ሽ. 

Table 1 displays the optimal parameters for the DSRegPSO algorithm based on the 
average best cost after being heuristically evaluated for five runs of 5.0E+05 function eval-
uations per CEC’13 function, in order to obtain the best possible cost per function. We 
tested the algorithm parameters using 5.0E+05 function evaluations instead of 3.0E+06, as 
the latter would not be feasible due to the complexity of the CEC’13 test. 

Table 1. DSRegPSO parameters determined with heuristic selection in the CEC’13 test. 𝒇൫𝑿ሬሬ⃗ ൯ 𝒇𝒅𝒎𝒊𝒏 𝒇𝒅𝒎𝒂𝒙 𝛇 𝒄𝟐 𝑴𝒎𝒂𝒙 𝛌 𝑺𝒎𝒂𝒙 𝑺𝒎𝒊𝒏 𝒏 𝑓ଵ 1.0E − 200 1.0E − 200 5.0E − 02 1.5E + 00 0.0E + 00 7.0E − 01 1.5E + 00 2.0E − 02 5.0E + 01 𝑓ଶ 1.0E − 50 1.0E − 01 1.0E − 02 1.5E + 00 1.0E − 01 1.9E + 00 5.0E − 01 5.0E − 02 5.0E + 00 𝑓ଷ 1.0E − 100 1.0E − 05 5.0E − 01 1.5E + 00 1.0E − 01 2.0E − 01 1.0E − 01 5.0E − 02 2.0E + 01 𝑓ସ 1.0E − 50 1.0E − 01 1.0E − 03 1.0E + 00 0.0E + 00 1.0E + 00 5.0E − 01 5.0E − 02 2.0E + 01 𝑓ହ 1.0E − 50 1.0E + 00 5.0E − 02 2.0E + 00 1.3E + 00 1.3E + 00 3.0E − 01 5.0E − 02 4.0E + 01 𝑓଺ 1.0E − 50 1.0E − 25 1.0E − 03 8.0E − 01 7.0E − 01 7.0E − 01 8.0E − 01 8.0E − 02 5.0E + 01 𝑓଻ 1.0E − 50 1.0E − 10 1.0E − 02 1.5E + 00 4.0E − 01 3.0E − 01 9.0E − 01 5.0E − 02 3.0E + 01 𝑓  1.0E − 25 1.0E − 10 5.0E − 02 6.0E − 01 6.0E − 01 4.0E − 01 4.0E − 01 5.0E − 02 5.0E + 01 𝑓ଽ 1.0E − 25 1.0E − 25 1.0E − 01 2.0E + 00 1.2E + 00 1.3E + 00 3.0E − 01 5.0E − 02 3.0E + 01 
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b. 𝑓ହ ≔ Rastrigin with 𝑋⃗ ∈ ሾ−5,5ሿ and 𝑓ହ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

c. 𝑓଺ ≔ Ackley with 𝑋⃗ ∈ ሾ−32,32ሿ and 𝑓଺ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

d. 𝑓଻ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓଻ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

• Functions with no separable subcomponents: 

a. 𝑓 ≔ Elliptic with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓 ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

b. 𝑓ଽ ≔ Rastrigin with 𝑋⃗ ∈ ሾ−5,5ሿ and 𝑓ଽ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

c. 𝑓ଵ଴ ≔ Ackley with 𝑋⃗ ∈ ሾ−32,32ሿ and 𝑓ଵ଴ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

d. 𝑓ଵଵ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵଵ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

3. Overlapping Functions: 

a. 𝑓ଵଶ ≔ Rosenbrock’s with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵଶ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ + 1ቁ = 0. 
b. 𝑓ଵଷ ≔  Schwefels with Conforming Overlapping Subcomponents with 𝑋⃗ ∈ሾ−100,100ሿ and 𝑓ଵଷ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 
c. 𝑓ଵସ ≔  Schwefels with Conflicting Overlapping Subcomponents with 𝑋⃗ ∈ሾ−100,100ሿ and 𝑓ଵସ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

4. Non-separable Functions: 

a. 𝑓ଵହ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵହ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

The DSRegPSO algorithm can use a heuristic approach to find values for 𝑓𝑑௠௜௡ , 𝑓𝑑௠௔௫ , ζ , 𝑐ଶ , 𝑀௠௔௫ , λ , 𝑆௠௔௫ , 𝑆௠௜௡ , and 𝑛 . The values that were heuristically tested are 
provided below. The limits of the parameters related to DSRegPSO: 𝑓𝑑௠௜௡ , 𝑓𝑑௠௔௫ , ζ , 𝑆௠௔௫ , and 𝑆௠௜௡  were determined by increasing or decreasing those limits in order to 
achieve better results. For the parameters related to PSO: 𝑀௠௔௫, λ, 𝑐ଶ, and 𝑛, we used 
limits that were recommended in the literature, specifically in [54,55]. 
• 𝑓𝑑௠௜௡ = ሼ1E − 200, 1E − 100, 1E − 50, 1E − 25, 1E − 10, 1E − 5, 1E − 1,1ሽ. 
• 𝑓𝑑௠௔௫ = ሼ1E − 200, 1E − 100, 1E − 50, 1E − 25, 1E − 10, 1E − 5, 1E − 1,1ሽ. 
• ζ = ሼ1E − 5, 1E − 4, 1E − 3, 1E − 2, 5E − 2, 1E − 1, 5E − 1ሽ. 
• 𝑀௠௔௫ = ሼ0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3ሽ. 
• 𝑐ଶ = ሼ0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5, 2.0ሽ. 
• λ = ሼ0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3ሽ. 
• 𝑆௠௔௫ = ሼ0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0ሽ. 
• 𝑆௠௜௡ = ሼ0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1ሽ. 
• 𝑛 = ሼ1,5,10,20,30,40,50,60,70,80,90,100ሽ. 

Table 1 displays the optimal parameters for the DSRegPSO algorithm based on the 
average best cost after being heuristically evaluated for five runs of 5.0E+05 function eval-
uations per CEC’13 function, in order to obtain the best possible cost per function. We 
tested the algorithm parameters using 5.0E+05 function evaluations instead of 3.0E+06, as 
the latter would not be feasible due to the complexity of the CEC’13 test. 

Table 1. DSRegPSO parameters determined with heuristic selection in the CEC’13 test. 𝒇൫𝑿ሬሬ⃗ ൯ 𝒇𝒅𝒎𝒊𝒏 𝒇𝒅𝒎𝒂𝒙 𝛇 𝒄𝟐 𝑴𝒎𝒂𝒙 𝛌 𝑺𝒎𝒂𝒙 𝑺𝒎𝒊𝒏 𝒏 𝑓ଵ 1.0E − 200 1.0E − 200 5.0E − 02 1.5E + 00 0.0E + 00 7.0E − 01 1.5E + 00 2.0E − 02 5.0E + 01 𝑓ଶ 1.0E − 50 1.0E − 01 1.0E − 02 1.5E + 00 1.0E − 01 1.9E + 00 5.0E − 01 5.0E − 02 5.0E + 00 𝑓ଷ 1.0E − 100 1.0E − 05 5.0E − 01 1.5E + 00 1.0E − 01 2.0E − 01 1.0E − 01 5.0E − 02 2.0E + 01 𝑓ସ 1.0E − 50 1.0E − 01 1.0E − 03 1.0E + 00 0.0E + 00 1.0E + 00 5.0E − 01 5.0E − 02 2.0E + 01 𝑓ହ 1.0E − 50 1.0E + 00 5.0E − 02 2.0E + 00 1.3E + 00 1.3E + 00 3.0E − 01 5.0E − 02 4.0E + 01 𝑓଺ 1.0E − 50 1.0E − 25 1.0E − 03 8.0E − 01 7.0E − 01 7.0E − 01 8.0E − 01 8.0E − 02 5.0E + 01 𝑓଻ 1.0E − 50 1.0E − 10 1.0E − 02 1.5E + 00 4.0E − 01 3.0E − 01 9.0E − 01 5.0E − 02 3.0E + 01 𝑓  1.0E − 25 1.0E − 10 5.0E − 02 6.0E − 01 6.0E − 01 4.0E − 01 4.0E − 01 5.0E − 02 5.0E + 01 𝑓ଽ 1.0E − 25 1.0E − 25 1.0E − 01 2.0E + 00 1.2E + 00 1.3E + 00 3.0E − 01 5.0E − 02 3.0E + 01 
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b. 𝑓ହ ≔ Rastrigin with 𝑋⃗ ∈ ሾ−5,5ሿ and 𝑓ହ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

c. 𝑓଺ ≔ Ackley with 𝑋⃗ ∈ ሾ−32,32ሿ and 𝑓଺ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

d. 𝑓଻ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓଻ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

• Functions with no separable subcomponents: 

a. 𝑓 ≔ Elliptic with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓 ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

b. 𝑓ଽ ≔ Rastrigin with 𝑋⃗ ∈ ሾ−5,5ሿ and 𝑓ଽ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

c. 𝑓ଵ଴ ≔ Ackley with 𝑋⃗ ∈ ሾ−32,32ሿ and 𝑓ଵ଴ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

d. 𝑓ଵଵ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵଵ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

3. Overlapping Functions: 

a. 𝑓ଵଶ ≔ Rosenbrock’s with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵଶ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ + 1ቁ = 0. 
b. 𝑓ଵଷ ≔  Schwefels with Conforming Overlapping Subcomponents with 𝑋⃗ ∈ሾ−100,100ሿ and 𝑓ଵଷ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 
c. 𝑓ଵସ ≔  Schwefels with Conflicting Overlapping Subcomponents with 𝑋⃗ ∈ሾ−100,100ሿ and 𝑓ଵସ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

4. Non-separable Functions: 

a. 𝑓ଵହ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵହ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

The DSRegPSO algorithm can use a heuristic approach to find values for 𝑓𝑑௠௜௡ , 𝑓𝑑௠௔௫ , ζ , 𝑐ଶ , 𝑀௠௔௫ , λ , 𝑆௠௔௫ , 𝑆௠௜௡ , and 𝑛 . The values that were heuristically tested are 
provided below. The limits of the parameters related to DSRegPSO: 𝑓𝑑௠௜௡ , 𝑓𝑑௠௔௫ , ζ , 𝑆௠௔௫ , and 𝑆௠௜௡  were determined by increasing or decreasing those limits in order to 
achieve better results. For the parameters related to PSO: 𝑀௠௔௫, λ, 𝑐ଶ, and 𝑛, we used 
limits that were recommended in the literature, specifically in [54,55]. 
• 𝑓𝑑௠௜௡ = ሼ1E − 200, 1E − 100, 1E − 50, 1E − 25, 1E − 10, 1E − 5, 1E − 1,1ሽ. 
• 𝑓𝑑௠௔௫ = ሼ1E − 200, 1E − 100, 1E − 50, 1E − 25, 1E − 10, 1E − 5, 1E − 1,1ሽ. 
• ζ = ሼ1E − 5, 1E − 4, 1E − 3, 1E − 2, 5E − 2, 1E − 1, 5E − 1ሽ. 
• 𝑀௠௔௫ = ሼ0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3ሽ. 
• 𝑐ଶ = ሼ0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5, 2.0ሽ. 
• λ = ሼ0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3ሽ. 
• 𝑆௠௔௫ = ሼ0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0ሽ. 
• 𝑆௠௜௡ = ሼ0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1ሽ. 
• 𝑛 = ሼ1,5,10,20,30,40,50,60,70,80,90,100ሽ. 

Table 1 displays the optimal parameters for the DSRegPSO algorithm based on the 
average best cost after being heuristically evaluated for five runs of 5.0E+05 function eval-
uations per CEC’13 function, in order to obtain the best possible cost per function. We 
tested the algorithm parameters using 5.0E+05 function evaluations instead of 3.0E+06, as 
the latter would not be feasible due to the complexity of the CEC’13 test. 

Table 1. DSRegPSO parameters determined with heuristic selection in the CEC’13 test. 𝒇൫𝑿ሬሬ⃗ ൯ 𝒇𝒅𝒎𝒊𝒏 𝒇𝒅𝒎𝒂𝒙 𝛇 𝒄𝟐 𝑴𝒎𝒂𝒙 𝛌 𝑺𝒎𝒂𝒙 𝑺𝒎𝒊𝒏 𝒏 𝑓ଵ 1.0E − 200 1.0E − 200 5.0E − 02 1.5E + 00 0.0E + 00 7.0E − 01 1.5E + 00 2.0E − 02 5.0E + 01 𝑓ଶ 1.0E − 50 1.0E − 01 1.0E − 02 1.5E + 00 1.0E − 01 1.9E + 00 5.0E − 01 5.0E − 02 5.0E + 00 𝑓ଷ 1.0E − 100 1.0E − 05 5.0E − 01 1.5E + 00 1.0E − 01 2.0E − 01 1.0E − 01 5.0E − 02 2.0E + 01 𝑓ସ 1.0E − 50 1.0E − 01 1.0E − 03 1.0E + 00 0.0E + 00 1.0E + 00 5.0E − 01 5.0E − 02 2.0E + 01 𝑓ହ 1.0E − 50 1.0E + 00 5.0E − 02 2.0E + 00 1.3E + 00 1.3E + 00 3.0E − 01 5.0E − 02 4.0E + 01 𝑓଺ 1.0E − 50 1.0E − 25 1.0E − 03 8.0E − 01 7.0E − 01 7.0E − 01 8.0E − 01 8.0E − 02 5.0E + 01 𝑓଻ 1.0E − 50 1.0E − 10 1.0E − 02 1.5E + 00 4.0E − 01 3.0E − 01 9.0E − 01 5.0E − 02 3.0E + 01 𝑓  1.0E − 25 1.0E − 10 5.0E − 02 6.0E − 01 6.0E − 01 4.0E − 01 4.0E − 01 5.0E − 02 5.0E + 01 𝑓ଽ 1.0E − 25 1.0E − 25 1.0E − 01 2.0E + 00 1.2E + 00 1.3E + 00 3.0E − 01 5.0E − 02 3.0E + 01 
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b. 𝑓ହ ≔ Rastrigin with 𝑋⃗ ∈ ሾ−5,5ሿ and 𝑓ହ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

c. 𝑓଺ ≔ Ackley with 𝑋⃗ ∈ ሾ−32,32ሿ and 𝑓଺ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

d. 𝑓଻ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓଻ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

• Functions with no separable subcomponents: 

a. 𝑓 ≔ Elliptic with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓 ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

b. 𝑓ଽ ≔ Rastrigin with 𝑋⃗ ∈ ሾ−5,5ሿ and 𝑓ଽ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

c. 𝑓ଵ଴ ≔ Ackley with 𝑋⃗ ∈ ሾ−32,32ሿ and 𝑓ଵ଴ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

d. 𝑓ଵଵ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵଵ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

3. Overlapping Functions: 

a. 𝑓ଵଶ ≔ Rosenbrock’s with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵଶ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ + 1ቁ = 0. 
b. 𝑓ଵଷ ≔  Schwefels with Conforming Overlapping Subcomponents with 𝑋⃗ ∈ሾ−100,100ሿ and 𝑓ଵଷ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 
c. 𝑓ଵସ ≔  Schwefels with Conflicting Overlapping Subcomponents with 𝑋⃗ ∈ሾ−100,100ሿ and 𝑓ଵସ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

4. Non-separable Functions: 

a. 𝑓ଵହ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵହ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

The DSRegPSO algorithm can use a heuristic approach to find values for 𝑓𝑑௠௜௡ , 𝑓𝑑௠௔௫ , ζ , 𝑐ଶ , 𝑀௠௔௫ , λ , 𝑆௠௔௫ , 𝑆௠௜௡ , and 𝑛 . The values that were heuristically tested are 
provided below. The limits of the parameters related to DSRegPSO: 𝑓𝑑௠௜௡ , 𝑓𝑑௠௔௫ , ζ , 𝑆௠௔௫ , and 𝑆௠௜௡  were determined by increasing or decreasing those limits in order to 
achieve better results. For the parameters related to PSO: 𝑀௠௔௫, λ, 𝑐ଶ, and 𝑛, we used 
limits that were recommended in the literature, specifically in [54,55]. 
• 𝑓𝑑௠௜௡ = ሼ1E − 200, 1E − 100, 1E − 50, 1E − 25, 1E − 10, 1E − 5, 1E − 1,1ሽ. 
• 𝑓𝑑௠௔௫ = ሼ1E − 200, 1E − 100, 1E − 50, 1E − 25, 1E − 10, 1E − 5, 1E − 1,1ሽ. 
• ζ = ሼ1E − 5, 1E − 4, 1E − 3, 1E − 2, 5E − 2, 1E − 1, 5E − 1ሽ. 
• 𝑀௠௔௫ = ሼ0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3ሽ. 
• 𝑐ଶ = ሼ0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5, 2.0ሽ. 
• λ = ሼ0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3ሽ. 
• 𝑆௠௔௫ = ሼ0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0ሽ. 
• 𝑆௠௜௡ = ሼ0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1ሽ. 
• 𝑛 = ሼ1,5,10,20,30,40,50,60,70,80,90,100ሽ. 

Table 1 displays the optimal parameters for the DSRegPSO algorithm based on the 
average best cost after being heuristically evaluated for five runs of 5.0E+05 function eval-
uations per CEC’13 function, in order to obtain the best possible cost per function. We 
tested the algorithm parameters using 5.0E+05 function evaluations instead of 3.0E+06, as 
the latter would not be feasible due to the complexity of the CEC’13 test. 

Table 1. DSRegPSO parameters determined with heuristic selection in the CEC’13 test. 𝒇൫𝑿ሬሬ⃗ ൯ 𝒇𝒅𝒎𝒊𝒏 𝒇𝒅𝒎𝒂𝒙 𝛇 𝒄𝟐 𝑴𝒎𝒂𝒙 𝛌 𝑺𝒎𝒂𝒙 𝑺𝒎𝒊𝒏 𝒏 𝑓ଵ 1.0E − 200 1.0E − 200 5.0E − 02 1.5E + 00 0.0E + 00 7.0E − 01 1.5E + 00 2.0E − 02 5.0E + 01 𝑓ଶ 1.0E − 50 1.0E − 01 1.0E − 02 1.5E + 00 1.0E − 01 1.9E + 00 5.0E − 01 5.0E − 02 5.0E + 00 𝑓ଷ 1.0E − 100 1.0E − 05 5.0E − 01 1.5E + 00 1.0E − 01 2.0E − 01 1.0E − 01 5.0E − 02 2.0E + 01 𝑓ସ 1.0E − 50 1.0E − 01 1.0E − 03 1.0E + 00 0.0E + 00 1.0E + 00 5.0E − 01 5.0E − 02 2.0E + 01 𝑓ହ 1.0E − 50 1.0E + 00 5.0E − 02 2.0E + 00 1.3E + 00 1.3E + 00 3.0E − 01 5.0E − 02 4.0E + 01 𝑓଺ 1.0E − 50 1.0E − 25 1.0E − 03 8.0E − 01 7.0E − 01 7.0E − 01 8.0E − 01 8.0E − 02 5.0E + 01 𝑓଻ 1.0E − 50 1.0E − 10 1.0E − 02 1.5E + 00 4.0E − 01 3.0E − 01 9.0E − 01 5.0E − 02 3.0E + 01 𝑓  1.0E − 25 1.0E − 10 5.0E − 02 6.0E − 01 6.0E − 01 4.0E − 01 4.0E − 01 5.0E − 02 5.0E + 01 𝑓ଽ 1.0E − 25 1.0E − 25 1.0E − 01 2.0E + 00 1.2E + 00 1.3E + 00 3.0E − 01 5.0E − 02 3.0E + 01 
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b. 𝑓ହ ≔ Rastrigin with 𝑋⃗ ∈ ሾ−5,5ሿ and 𝑓ହ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

c. 𝑓଺ ≔ Ackley with 𝑋⃗ ∈ ሾ−32,32ሿ and 𝑓଺ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

d. 𝑓଻ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓଻ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

• Functions with no separable subcomponents: 

a. 𝑓 ≔ Elliptic with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓 ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

b. 𝑓ଽ ≔ Rastrigin with 𝑋⃗ ∈ ሾ−5,5ሿ and 𝑓ଽ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

c. 𝑓ଵ଴ ≔ Ackley with 𝑋⃗ ∈ ሾ−32,32ሿ and 𝑓ଵ଴ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

d. 𝑓ଵଵ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵଵ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

3. Overlapping Functions: 

a. 𝑓ଵଶ ≔ Rosenbrock’s with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵଶ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ + 1ቁ = 0. 
b. 𝑓ଵଷ ≔  Schwefels with Conforming Overlapping Subcomponents with 𝑋⃗ ∈ሾ−100,100ሿ and 𝑓ଵଷ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 
c. 𝑓ଵସ ≔  Schwefels with Conflicting Overlapping Subcomponents with 𝑋⃗ ∈ሾ−100,100ሿ and 𝑓ଵସ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

4. Non-separable Functions: 

a. 𝑓ଵହ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵହ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

The DSRegPSO algorithm can use a heuristic approach to find values for 𝑓𝑑௠௜௡ , 𝑓𝑑௠௔௫ , ζ , 𝑐ଶ , 𝑀௠௔௫ , λ , 𝑆௠௔௫ , 𝑆௠௜௡ , and 𝑛 . The values that were heuristically tested are 
provided below. The limits of the parameters related to DSRegPSO: 𝑓𝑑௠௜௡ , 𝑓𝑑௠௔௫ , ζ , 𝑆௠௔௫ , and 𝑆௠௜௡  were determined by increasing or decreasing those limits in order to 
achieve better results. For the parameters related to PSO: 𝑀௠௔௫, λ, 𝑐ଶ, and 𝑛, we used 
limits that were recommended in the literature, specifically in [54,55]. 
• 𝑓𝑑௠௜௡ = ሼ1E − 200, 1E − 100, 1E − 50, 1E − 25, 1E − 10, 1E − 5, 1E − 1,1ሽ. 
• 𝑓𝑑௠௔௫ = ሼ1E − 200, 1E − 100, 1E − 50, 1E − 25, 1E − 10, 1E − 5, 1E − 1,1ሽ. 
• ζ = ሼ1E − 5, 1E − 4, 1E − 3, 1E − 2, 5E − 2, 1E − 1, 5E − 1ሽ. 
• 𝑀௠௔௫ = ሼ0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3ሽ. 
• 𝑐ଶ = ሼ0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5, 2.0ሽ. 
• λ = ሼ0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3ሽ. 
• 𝑆௠௔௫ = ሼ0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0ሽ. 
• 𝑆௠௜௡ = ሼ0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1ሽ. 
• 𝑛 = ሼ1,5,10,20,30,40,50,60,70,80,90,100ሽ. 

Table 1 displays the optimal parameters for the DSRegPSO algorithm based on the 
average best cost after being heuristically evaluated for five runs of 5.0E+05 function eval-
uations per CEC’13 function, in order to obtain the best possible cost per function. We 
tested the algorithm parameters using 5.0E+05 function evaluations instead of 3.0E+06, as 
the latter would not be feasible due to the complexity of the CEC’13 test. 

Table 1. DSRegPSO parameters determined with heuristic selection in the CEC’13 test. 𝒇൫𝑿ሬሬ⃗ ൯ 𝒇𝒅𝒎𝒊𝒏 𝒇𝒅𝒎𝒂𝒙 𝛇 𝒄𝟐 𝑴𝒎𝒂𝒙 𝛌 𝑺𝒎𝒂𝒙 𝑺𝒎𝒊𝒏 𝒏 𝑓ଵ 1.0E − 200 1.0E − 200 5.0E − 02 1.5E + 00 0.0E + 00 7.0E − 01 1.5E + 00 2.0E − 02 5.0E + 01 𝑓ଶ 1.0E − 50 1.0E − 01 1.0E − 02 1.5E + 00 1.0E − 01 1.9E + 00 5.0E − 01 5.0E − 02 5.0E + 00 𝑓ଷ 1.0E − 100 1.0E − 05 5.0E − 01 1.5E + 00 1.0E − 01 2.0E − 01 1.0E − 01 5.0E − 02 2.0E + 01 𝑓ସ 1.0E − 50 1.0E − 01 1.0E − 03 1.0E + 00 0.0E + 00 1.0E + 00 5.0E − 01 5.0E − 02 2.0E + 01 𝑓ହ 1.0E − 50 1.0E + 00 5.0E − 02 2.0E + 00 1.3E + 00 1.3E + 00 3.0E − 01 5.0E − 02 4.0E + 01 𝑓଺ 1.0E − 50 1.0E − 25 1.0E − 03 8.0E − 01 7.0E − 01 7.0E − 01 8.0E − 01 8.0E − 02 5.0E + 01 𝑓଻ 1.0E − 50 1.0E − 10 1.0E − 02 1.5E + 00 4.0E − 01 3.0E − 01 9.0E − 01 5.0E − 02 3.0E + 01 𝑓  1.0E − 25 1.0E − 10 5.0E − 02 6.0E − 01 6.0E − 01 4.0E − 01 4.0E − 01 5.0E − 02 5.0E + 01 𝑓ଽ 1.0E − 25 1.0E − 25 1.0E − 01 2.0E + 00 1.2E + 00 1.3E + 00 3.0E − 01 5.0E − 02 3.0E + 01 
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b. 𝑓ହ ≔ Rastrigin with 𝑋⃗ ∈ ሾ−5,5ሿ and 𝑓ହ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

c. 𝑓଺ ≔ Ackley with 𝑋⃗ ∈ ሾ−32,32ሿ and 𝑓଺ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

d. 𝑓଻ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓଻ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

• Functions with no separable subcomponents: 

a. 𝑓 ≔ Elliptic with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓 ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

b. 𝑓ଽ ≔ Rastrigin with 𝑋⃗ ∈ ሾ−5,5ሿ and 𝑓ଽ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

c. 𝑓ଵ଴ ≔ Ackley with 𝑋⃗ ∈ ሾ−32,32ሿ and 𝑓ଵ଴ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

d. 𝑓ଵଵ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵଵ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

3. Overlapping Functions: 

a. 𝑓ଵଶ ≔ Rosenbrock’s with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵଶ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ + 1ቁ = 0. 
b. 𝑓ଵଷ ≔  Schwefels with Conforming Overlapping Subcomponents with 𝑋⃗ ∈ሾ−100,100ሿ and 𝑓ଵଷ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 
c. 𝑓ଵସ ≔  Schwefels with Conflicting Overlapping Subcomponents with 𝑋⃗ ∈ሾ−100,100ሿ and 𝑓ଵସ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

4. Non-separable Functions: 

a. 𝑓ଵହ ≔ Schwefels Problem 1.2 with 𝑋⃗ ∈ ሾ−100,100ሿ and 𝑓ଵହ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

The DSRegPSO algorithm can use a heuristic approach to find values for 𝑓𝑑௠௜௡ , 𝑓𝑑௠௔௫ , ζ , 𝑐ଶ , 𝑀௠௔௫ , λ , 𝑆௠௔௫ , 𝑆௠௜௡ , and 𝑛 . The values that were heuristically tested are 
provided below. The limits of the parameters related to DSRegPSO: 𝑓𝑑௠௜௡ , 𝑓𝑑௠௔௫ , ζ , 𝑆௠௔௫ , and 𝑆௠௜௡  were determined by increasing or decreasing those limits in order to 
achieve better results. For the parameters related to PSO: 𝑀௠௔௫, λ, 𝑐ଶ, and 𝑛, we used 
limits that were recommended in the literature, specifically in [54,55]. 
• 𝑓𝑑௠௜௡ = ሼ1E − 200, 1E − 100, 1E − 50, 1E − 25, 1E − 10, 1E − 5, 1E − 1,1ሽ. 
• 𝑓𝑑௠௔௫ = ሼ1E − 200, 1E − 100, 1E − 50, 1E − 25, 1E − 10, 1E − 5, 1E − 1,1ሽ. 
• ζ = ሼ1E − 5, 1E − 4, 1E − 3, 1E − 2, 5E − 2, 1E − 1, 5E − 1ሽ. 
• 𝑀௠௔௫ = ሼ0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3ሽ. 
• 𝑐ଶ = ሼ0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5, 2.0ሽ. 
• λ = ሼ0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3ሽ. 
• 𝑆௠௔௫ = ሼ0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0ሽ. 
• 𝑆௠௜௡ = ሼ0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1ሽ. 
• 𝑛 = ሼ1,5,10,20,30,40,50,60,70,80,90,100ሽ. 

Table 1 displays the optimal parameters for the DSRegPSO algorithm based on the 
average best cost after being heuristically evaluated for five runs of 5.0E+05 function eval-
uations per CEC’13 function, in order to obtain the best possible cost per function. We 
tested the algorithm parameters using 5.0E+05 function evaluations instead of 3.0E+06, as 
the latter would not be feasible due to the complexity of the CEC’13 test. 

Table 1. DSRegPSO parameters determined with heuristic selection in the CEC’13 test. 𝒇൫𝑿ሬሬ⃗ ൯ 𝒇𝒅𝒎𝒊𝒏 𝒇𝒅𝒎𝒂𝒙 𝛇 𝒄𝟐 𝑴𝒎𝒂𝒙 𝛌 𝑺𝒎𝒂𝒙 𝑺𝒎𝒊𝒏 𝒏 𝑓ଵ 1.0E − 200 1.0E − 200 5.0E − 02 1.5E + 00 0.0E + 00 7.0E − 01 1.5E + 00 2.0E − 02 5.0E + 01 𝑓ଶ 1.0E − 50 1.0E − 01 1.0E − 02 1.5E + 00 1.0E − 01 1.9E + 00 5.0E − 01 5.0E − 02 5.0E + 00 𝑓ଷ 1.0E − 100 1.0E − 05 5.0E − 01 1.5E + 00 1.0E − 01 2.0E − 01 1.0E − 01 5.0E − 02 2.0E + 01 𝑓ସ 1.0E − 50 1.0E − 01 1.0E − 03 1.0E + 00 0.0E + 00 1.0E + 00 5.0E − 01 5.0E − 02 2.0E + 01 𝑓ହ 1.0E − 50 1.0E + 00 5.0E − 02 2.0E + 00 1.3E + 00 1.3E + 00 3.0E − 01 5.0E − 02 4.0E + 01 𝑓଺ 1.0E − 50 1.0E − 25 1.0E − 03 8.0E − 01 7.0E − 01 7.0E − 01 8.0E − 01 8.0E − 02 5.0E + 01 𝑓଻ 1.0E − 50 1.0E − 10 1.0E − 02 1.5E + 00 4.0E − 01 3.0E − 01 9.0E − 01 5.0E − 02 3.0E + 01 𝑓  1.0E − 25 1.0E − 10 5.0E − 02 6.0E − 01 6.0E − 01 4.0E − 01 4.0E − 01 5.0E − 02 5.0E + 01 𝑓ଽ 1.0E − 25 1.0E − 25 1.0E − 01 2.0E + 00 1.2E + 00 1.3E + 00 3.0E − 01 5.0E − 02 3.0E + 01 
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b. 𝑓ହ ≔ Rastrigin with 𝑋⃗ ∈ ሾ−5,5ሿ and 𝑓ହ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 

c. 𝑓଺ ≔ Ackley with 𝑋⃗ ∈ ሾ−32,32ሿ and 𝑓଺ ቀ𝑋optሬሬሬሬሬሬሬሬ⃗ ቁ = 0. 
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achieve better results. For the parameters related to PSO: 𝑀௠௔௫, λ, 𝑐ଶ, and 𝑛, we used 
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Table 1 displays the optimal parameters for the DSRegPSO algorithm based on the 
average best cost after being heuristically evaluated for five runs of 5.0E+05 function eval-
uations per CEC’13 function, in order to obtain the best possible cost per function. We 
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Schwefels Problem 1.2 with
→
X ∈ [−100, 100] and f15

( →
Xopt

)
= 0.

The DSRegPSO algorithm can use a heuristic approach to find values for f dmin, f dmax,
ζ, c2, Mmax, λ, Smax, Smin, and n. The values that were heuristically tested are provided
below. The limits of the parameters related to DSRegPSO: f dmin, f dmax, ζ, Smax, and
Smin were determined by increasing or decreasing those limits in order to achieve better
results. For the parameters related to PSO: Mmax, λ, c2, and n, we used limits that were
recommended in the literature, specifically in [54,55].

• f dmin = {1E− 200, 1E− 100, 1E− 50, 1E− 25, 1E− 10, 1E− 5, 1E− 1, 1}.
• f dmax = {1E− 200, 1E− 100, 1E− 50, 1E− 25, 1E− 10, 1E− 5, 1E− 1, 1}.
• ζ = {1E− 5, 1E− 4, 1E− 3, 1E− 2, 5E− 2, 1E− 1, 5E− 1}.
• Mmax = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3}.
• c2 = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5, 2.0}.
• λ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3}.
• Smax = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.
• Smin = {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1}.
• n = {1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

Table 1 displays the optimal parameters for the DSRegPSO algorithm based on the
average best cost after being heuristically evaluated for five runs of 5.0E+05 function
evaluations per CEC’13 function, in order to obtain the best possible cost per function. We
tested the algorithm parameters using 5.0E+05 function evaluations instead of 3.0E+06, as
the latter would not be feasible due to the complexity of the CEC’13 test.
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Table 1. DSRegPSO parameters determined with heuristic selection in the CEC’13 test.

f
(→

X
)

fdmin fdmax ζ c2 Mmax λ Smax Smin n

f1 1.0E− 200 1.0E− 200 5.0E− 02 1.5E + 00 0.0E + 00 7.0E− 01 1.5E + 00 2.0E− 02 5.0E + 01
f2 1.0E− 50 1.0E− 01 1.0E− 02 1.5E + 00 1.0E− 01 1.9E + 00 5.0E− 01 5.0E− 02 5.0E + 00
f3 1.0E− 100 1.0E− 05 5.0E− 01 1.5E + 00 1.0E− 01 2.0E− 01 1.0E− 01 5.0E− 02 2.0E + 01
f4 1.0E− 50 1.0E− 01 1.0E− 03 1.0E + 00 0.0E + 00 1.0E + 00 5.0E− 01 5.0E− 02 2.0E + 01
f5 1.0E− 50 1.0E + 00 5.0E− 02 2.0E + 00 1.3E + 00 1.3E + 00 3.0E− 01 5.0E− 02 4.0E + 01
f6 1.0E− 50 1.0E− 25 1.0E− 03 8.0E− 01 7.0E− 01 7.0E− 01 8.0E− 01 8.0E− 02 5.0E + 01
f7 1.0E− 50 1.0E− 10 1.0E− 02 1.5E + 00 4.0E− 01 3.0E− 01 9.0E− 01 5.0E− 02 3.0E + 01
f8 1.0E− 25 1.0E− 10 5.0E− 02 6.0E− 01 6.0E− 01 4.0E− 01 4.0E− 01 5.0E− 02 5.0E + 01
f9 1.0E− 25 1.0E− 25 1.0E− 01 2.0E + 00 1.2E + 00 1.3E + 00 3.0E− 01 5.0E− 02 3.0E + 01
f10 1.0E− 25 1.0E− 01 1.0E− 03 8.0E− 01 3.0E− 01 7.0E− 01 5.0E− 01 5.0E− 02 5.0E + 01
f11 1.0E− 50 1.0E + 00 1.0E− 02 1.3E + 00 2.0E− 01 5.0E− 01 5.0E− 01 4.0E− 02 3.0E + 01
f12 1.0E− 25 1.0E− 01 1.0E− 02 1.0E− 01 3.0E− 01 1.3E + 00 1.0E− 01 1.0E− 01 1.0E + 00
f13 1.0E− 50 1.0E− 01 1.0E− 02 1.3E + 00 3.0E− 01 5.0E− 01 5.0E− 01 5.0E− 02 3.0E + 01
f14 1.0E− 25 1.0E + 00 5.0E− 01 1.0E + 00 5.0E− 01 4.0E− 01 5.0E− 01 5.0E− 02 4.0E + 01
f15 1.0E− 50 1.0E− 25 1.0E− 02 1.3E + 00 4.0E− 01 6.0E− 01 9.0E− 01 5.0E− 02 3.0E + 01

Similarly, we select the c1, c2, wmax, λ, and n input parameters of the GPSO with a
heuristic approach. The values heuristically tested are below. Again, in the case that the
best parameter found corresponds to the lower or upper value, we tested extra values by
increasing or decreasing those limits with the same step:

• c1 = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5, 2.0}.
• c2 = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5, 2.0}.
• wmax = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3}.
• λ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3}.
• n = {1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

Table 2 shows the best parameters for GPSO based on the mean best cost after heuris-
tically testing them against five runs of 5.0E + 05 function evaluations for each CEC’13
function.

Table 2. GPSO parameters determined with heuristic selection in the CEC’13 test.

f
(→

X
)

c1 c2 wmax λ n

f1 2.0E + 00 1.5E + 00 5.0E− 01 1.0E− 01 8.0E + 01
f2 2.0E + 00 2.0E + 00 0.0E + 00 1.3E + 00 1.0E + 02
f3 2.0E + 00 1.0E + 00 7.0E− 01 1.0E− 01 3.0E + 01
f4 1.5E + 00 1.5E + 00 7.0E− 01 1.0E− 01 8.0E + 01
f5 1.2E + 00 2.0E + 00 7.0E− 01 2.0E− 01 7.0E + 01
f6 1.5E + 00 8.0E− 01 7.0E− 01 1.0E− 01 7.0E + 01
f7 1.5E + 00 1.3E + 00 7.0E− 01 2.0E− 01 5.0E + 01
f8 1.3E + 00 2.0E + 00 7.0E− 01 1.0E− 01 5.0E + 01
f9 2.0E + 00 1.0E + 00 7.0E− 01 1.0E− 01 9.0E + 01
f10 2.0E + 00 1.0E + 00 6.0E− 01 7.0E− 01 5.0E + 01
f11 1.5E + 00 1.5E + 00 7.0E− 01 1.0E− 01 8.0E + 01
f12 1.0E− 01 2.0E + 00 1.0E− 01 1.0E− 01 1.0E + 02
f13 1.5E + 00 1.5E + 00 7.0E− 01 1.0E− 01 5.0E + 01
f14 1.5E + 00 1.5E + 00 7.0E− 01 1.0E− 01 9.0E + 01
f15 1.5E + 00 1.0E + 00 7.0E− 01 1.0E− 01 8.0E + 01

The results obtained using the DSRegPSO and the GPSO using the selected input pa-
rameters in the CEC’13 benchmark with 1000 dimensions for 3.0E+ 06 function evaluations
and 25 runs are shown below in Table 3. The average time per iteration varies depending
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on the functions and the algorithm. Despite the proposed modifications to PSO, the time
per iteration remains below 100 µs.

Table 3. DSRegPSO mean, SD, worst, and best results using the CEC’13 benchmark.

f
(
→
X
) Average Time

per Iteration in
Seconds

Mean SD Worst Best

Algorithms DSRegPSO GPSO DSRegPSO GPSO DSRegPSO GPSO DSRegPSO GPSO DSRegPSO GPSO

f1 3.16E− 05 1.02E− 05 4.07E− 04 1.44E+ 10 1.73E− 04 1.55E+ 10 1.07E− 03 4.63E+ 10 1.90E− 04 2.91E+ 09
f2 4.44E− 05 1.19E− 05 8.63E+ 02 4.36E+ 04 1.29E+ 02 8.31E+ 02 1.16E+ 03 4.54E+ 04 6.87E+ 02 4.19E+ 04
f3 4.79E− 05 1.33E− 05 2.00E+ 01 2.03E+ 01 1.10E− 09 2.74E− 02 2.00E+ 01 2.03E+ 01 2.00E+ 01 2.02E+ 01
f4 4.44E− 05 1.26E− 05 2.15E+ 09 8.63E+ 10 7.17E+ 08 5.17E+ 10 3.84E+ 09 2.06E+ 11 1.24E+ 09 2.75E+ 10
f5 4.95E− 05 1.46E− 05 7.76E+ 06 8.38E+ 06 2.64E+ 06 1.79E+ 06 1.45E+ 07 1.35E+ 07 3.76E+ 06 5.66E+ 06
f6 4.72E− 05 1.10E− 05 1.01E+ 06 1.03E+ 06 1.26E+ 04 7.76E+ 03 1.04E+ 06 1.04E+ 06 9.96E+ 05 1.01E+ 06
f7 2.24E− 05 7.74E− 06 5.85E+ 04 3.84E+ 09 1.26E+ 04 3.29E+ 09 9.24E+ 04 1.79E+ 10 3.59E+ 04 5.73E+ 08
f8 9.60E− 05 1.50E− 05 3.34E+ 13 4.24E+ 14 2.31E+ 13 3.30E+ 14 1.12E+ 14 1.80E+ 15 1.06E+ 13 1.32E+ 14
f9 4.56E− 02 1.77E− 05 4.65E+ 08 9.12E+ 08 1.93E+ 08 1.50E+ 08 1.28E+ 09 1.26E+ 09 3.05E+ 08 6.12E+ 08
f10 4.01E− 03 1.52E− 05 9.25E+ 07 9.20E+ 07 5.49E+ 05 6.64E+ 05 9.39E+ 07 9.31E+ 07 9.17E+ 07 9.07E+ 07
f11 4.32E− 05 1.62E− 05 5.42E+ 08 1.25E+ 11 8.35E+ 07 1.06E+ 11 7.57E+ 08 3.98E+ 11 4.32E+ 08 3.44E+ 09
f12 3.36E− 05 1.10E− 06 2.48E+ 03 1.60E+ 12 1.36E+ 03 3.58E+ 10 6.69E+ 03 1.67E+ 12 1.56E+ 03 1.53E+ 12
f13 6.72E− 05 6.72E− 06 1.37E+ 07 1.18E+ 10 2.58E+ 06 5.31E+ 09 2.02E+ 07 2.52E+ 10 1.03E+ 07 3.03E+ 09
f14 4.32E− 05 7.20E− 06 2.47E+ 08 1.09E+ 11 2.85E+ 07 7.19E+ 10 3.08E+ 08 2.96E+ 11 1.92E+ 08 7.87E+ 09
f15 2.88E− 05 3.96E− 06 6.73E+ 05 2.31E+ 12 6.04E+ 04 3.07E+ 12 8.18E+ 05 1.44E+ 13 5.79E+ 05 2.80E+ 10

According to the results presented in Table 3, DSRegPSO outperforms GPSO in terms
of both achieving the best cost for each function and demonstrating higher stability. This is
evident from the fact that DSRegPSO has the best mean, best, SD, and worst values among
the two algorithms, and it shows lower SD values in 14 out of the total 15 functions of the
CEC’13 test.

Figure 3 shows the performance in the first 25,000 function evaluations for the pro-
posed DSRegPSO in the optimization of f1 of CEC’13. Figure 4 shows the performance
in the entire run with function evaluations on a logarithmic scale. The behaviors of the
DSRegPSO in Figures 3 and 4 show that the proposed algorithm continually improves and
resets the particle’s position without requiring stagnation to reinvigorate the swarm similar
to RegPSO (Figure 1).
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Figure 3 shows the performance in the first 25,000 function evaluations for the pro-
posed DSRegPSO in the optimization of 𝑓ଵ of CEC’13. Figure 4 shows the performance in 
the entire run with function evaluations on a logarithmic scale. The behaviors of the 
DSRegPSO in Figures 3 and 4 show that the proposed algorithm continually improves 
and resets the particle’s position without requiring stagnation to reinvigorate the swarm 
similar to RegPSO (Figure 1). 

 
Figure 3. Cost value for the first 25,000 function evaluations with DSRegPSO and 𝑓ଵ of CEC’13. 

 
Figure 4. Cost value with the x-axis on a logarithmic scale for the DSRegPSO in 𝑓ଵ of CEC’13. 

Figure 4. Cost value with the x-axis on a logarithmic scale for the DSRegPSO in f1 of CEC’13.

We also used Principal Component Analysis (PCA) to condense the particle position
data from 1000 to 3 dimensions. This allowed us to create 3D position plots, which helped
us visualize the revival of the swarm and prevent stagnation. Analyzing the three principal
components provided us with valuable insights into particle behavior and optimized
the swarm. Additionally, we have included convergence diagrams for functions 1 to
15 of CEC’13 for DSRegPSO to assess the convergence and stagnation of our proposal.
These diagrams show a comparison per run for the 3.00E+06 function evaluations with
checkpoints registered at 1.20E+05, 3.00E+05, 6.00E+05, 9.00E+05, 1.20E+06, 1.50E+06,
1.80E+06, 2.10E+06, 2.40E+06, 2.70E+06, and 3.00E+06 function evaluations, as per the
default configuration of CEC’13.

Figures 5 and 6 display the convergence and PCA of Function 1 of CEC’13. As depicted
in the figures, the algorithm continues to improve even after 3.00E+06 function evaluations
and does not converge. Additionally, the comparison among the runs demonstrates the
level of stability in the algorithm for this function.
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Figures 7 and 8 showcase the convergence and PCA of Function 2 of CEC’13. As seen
in the figures, the algorithm shows continual improvement even after 3.00E+06 function
evaluations and does not converge. Moreover, the comparison between runs illustrates the
algorithm’s stability level for this function.
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Figure 8. PCA of 5 particle positions in Function 2 of CEC’13 for DSRegPSO.

Figures 9 and 10 presented in CEC’13 highlight the convergence and PCA of Function
3. Figure 9 demonstrates the early convergence of the global best cost, and a comparison
between the runs reveals stagnation caused by Function 3 being a pinhole function that
cannot be solved with PSO. However, Figure 10 depicts that particles never encounter
stagnation or convergence, as indicated by the PCA.
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Figure 10. PCA of 20 particle positions in Function 3 of CEC’13 for DSRegPSO.

Figures 11 and 12 demonstrate the convergence and PCA of Function 4 of CEC’13.
The figures show that the algorithm exhibits continuous improvement even after 3.00E+06
function evaluations and does not converge. Additionally, the comparison between runs
indicates the algorithm’s level of stability for this function.
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Figure 12. PCA of 20 particle positions in Function 4 of CEC’13 for DSRegPSO.

Figures 13 and 14 showcase the convergence and PCA of Function 5 of CEC’13. These
figures indicate that the algorithm continues to improve even after 3.00E+06 function
evaluations and does not converge. However, comparing the results of multiple runs
highlights that the algorithm’s stability level is poor for this function.
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Figure 14. PCA of 40 particle positions in Function 5 of CEC’13 for DSRegPSO.

Figures 15 and 16 demonstrate the convergence and PCA of Function 6 of CEC’13.
The figures show that the algorithm exhibits continuous improvement even after 3.00E+06
function evaluations and does not converge. However, comparing the results of multiple
runs highlights that the algorithm’s stability level is poor.
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Figures 17 and 18 demonstrate the convergence and PCA of Function 7 of CEC’13.
The figures show that the algorithm exhibits continuous improvement even after 3.00E+06
function evaluations and does not converge. Additionally, the comparison between runs
indicates the algorithm’s level of stability for this function.
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Figure 18. PCA of 30 particles’ positions in Function 7 of CEC’13 for DSRegPSO.

Figures 19 and 20 demonstrate the convergence and PCA of Function 8 of CEC’13.
The figures show that the algorithm exhibits continuous improvement even after 3.00E+06
function evaluations and does not converge. However, the comparison between runs
indicates that the algorithm’s level of stability is poor.
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Figure 20. PCA of 50 particle positions in Function 8 of CEC’13 for DSRegPSO.

Figures 21 and 22 showcase the convergence and PCA of Function 9 of CEC’13. These
figures indicate that the algorithm continues to improve even after 3.00E+06 function
evaluations and does not converge. However, comparing the results of multiple runs
highlights that the algorithm’s stability level is poor in this function.
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Figures 23 and 24 demonstrate the convergence and PCA of Function 10 of CEC’13.
The figures show that the algorithm exhibits continuous improvement even after 3.00E+06
function evaluations and does not converge. However, the comparison between runs
indicates that the algorithm’s level of stability is poor.

Mathematics 2023, 11, x FOR PEER REVIEW 23 of 41 
 

 

 
Figure 22. PCA of 30 particle positions in Function 9 of CEC´13 for DSRegPSO. 

Figures 23 and 24 demonstrate the convergence and PCA of Function 10 of CEC’13. 
The figures show that the algorithm exhibits continuous improvement even after 3.00E+06 
function evaluations and does not converge. However, the comparison between runs in-
dicates that the algorithm’s level of stability is poor. 

 
Figure 23. Convergence diagram of Function 10 of CEC´13 for DSRegPSO with 25 runs and 3.00 +
E06 function evaluations. 

 
Figure 24. PCA of 50 particle positions in Function 10 of CEC´13 for DSRegPSO. 

Figures 25 and 26 demonstrate the convergence and PCA of Function 11 of CEC’13. 
The figures show that the algorithm exhibits continuous improvement even after 3.00E+06 
function evaluations and does not converge. Additionally, the comparison between runs 
indicates the algorithm’s level of stability for this function. 

Figure 23. Convergence diagram of Function 10 of CEC’13 for DSRegPSO with 25 runs and 3.00+E06
function evaluations.



Mathematics 2023, 11, 4339 23 of 40

Mathematics 2023, 11, x FOR PEER REVIEW 23 of 41 
 

 

 
Figure 22. PCA of 30 particle positions in Function 9 of CEC´13 for DSRegPSO. 

Figures 23 and 24 demonstrate the convergence and PCA of Function 10 of CEC’13. 
The figures show that the algorithm exhibits continuous improvement even after 3.00E+06 
function evaluations and does not converge. However, the comparison between runs in-
dicates that the algorithm’s level of stability is poor. 

 
Figure 23. Convergence diagram of Function 10 of CEC´13 for DSRegPSO with 25 runs and 3.00 +
E06 function evaluations. 

 
Figure 24. PCA of 50 particle positions in Function 10 of CEC´13 for DSRegPSO. 

Figures 25 and 26 demonstrate the convergence and PCA of Function 11 of CEC’13. 
The figures show that the algorithm exhibits continuous improvement even after 3.00E+06 
function evaluations and does not converge. Additionally, the comparison between runs 
indicates the algorithm’s level of stability for this function. 

Figure 24. PCA of 50 particle positions in Function 10 of CEC’13 for DSRegPSO.

Figures 25 and 26 demonstrate the convergence and PCA of Function 11 of CEC’13.
The figures show that the algorithm exhibits continuous improvement even after 3.00E+06
function evaluations and does not converge. Additionally, the comparison between runs
indicates the algorithm’s level of stability for this function.
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Figure 26. PCA of 30 particle positions in Function 11 of CEC’13 for DSRegPSO.

From Figures 27 and 28, it is evident that Function 12 of CEC’13 does not converge even
after 3.00E+06 function evaluations. The PCA was conducted on the results obtained after
setting the number of particles to five, as PCA cannot be performed with only one particle.
It is worth noting that the algorithm shows continuous improvement, and comparing the
runs indicates the stability level of the algorithm for this specific function.



Mathematics 2023, 11, 4339 24 of 40

Mathematics 2023, 11, x FOR PEER REVIEW 24 of 41 
 

 

 
Figure 25. Convergence diagram of Function 11 of CEC´13 for DSRegPSO with 25 runs and 𝟑. 𝟎𝟎 + E𝟎𝟔 function evaluations. 

 
Figure 26. PCA of 30 particle positions in Function 11 of CEC´13 for DSRegPSO. 

From Figures 27 and 28, it is evident that Function 12 of CEC’13 does not converge 
even after 3.00E+06 function evaluations. The PCA was conducted on the results obtained 
after setting the number of particles to five, as PCA cannot be performed with only one 
particle. It is worth noting that the algorithm shows continuous improvement, and com-
paring the runs indicates the stability level of the algorithm for this specific function. 

 
Figure 27. Convergence diagram of Function 12 of CEC´13 for DSRegPSO with 25 runs and 𝟑. 𝟎𝟎 + E𝟎𝟔 function evaluations. 

Figure 27. Convergence diagram of Function 12 of CEC’13 for DSRegPSO with 25 runs and 3.00+E06
function evaluations.

Mathematics 2023, 11, x FOR PEER REVIEW 25 of 41 
 

 

 
Figure 28. PCA of 5 particle positions in Function 12 of CEC´13 for DSRegPSO. 

Figures 29 and 30 demonstrate the convergence and PCA of Function 13 of CEC’13. 
The figures show that the algorithm exhibits continuous improvement even after 3.00E+06 
function evaluations and does not converge. Additionally, the comparison between runs 
indicates the algorithm’s level of stability for this function. 

 
Figure 29. Convergence diagram of Function 13 of CEC´13 for DSRegPSO with 25 runs and 3.00 +
E06 function evaluations. 

 
Figure 30. PCA of 40 particle positions in Function 13 of CEC´13 for DSRegPSO. 

Figures 31 and 32 demonstrate the convergence and PCA of Function 14 of CEC’13. 
The figures show that the algorithm exhibits continuous improvement even after 3.00E+06 
function evaluations and does not converge. Additionally, the comparison between runs 
indicates the algorithm’s level of stability for this function. 

Figure 28. PCA of 5 particle positions in Function 12 of CEC’13 for DSRegPSO.

Figures 29 and 30 demonstrate the convergence and PCA of Function 13 of CEC’13.
The figures show that the algorithm exhibits continuous improvement even after 3.00E+06
function evaluations and does not converge. Additionally, the comparison between runs
indicates the algorithm’s level of stability for this function.
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Figure 30. PCA of 40 particle positions in Function 13 of CEC’13 for DSRegPSO.

Figures 31 and 32 demonstrate the convergence and PCA of Function 14 of CEC’13.
The figures show that the algorithm exhibits continuous improvement even after 3.00E+06
function evaluations and does not converge. Additionally, the comparison between runs
indicates the algorithm’s level of stability for this function.
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Figure 32. PCA of 40 particle positions in Function 14 of CEC’13 for DSRegPSO.

Figures 33 and 34 demonstrate the convergence and PCA of Function 15 of CEC’13.
The figures show that the algorithm exhibits continuous improvement even after 3.00E+06
function evaluations and does not converge. Additionally, the comparison between runs
indicates the algorithm’s level of stability for this function.
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Figure 34. PCA of 30 particle positions in Function 15 of CEC’13 for DSRegPSO.

Table 4 shows the CEC’13 TACO ranking comparison with DSRegPSO based on the
best cost obtained after 1.20E + 05, 6.00E + 05, and 3.00E + 06 function evaluations for the
25 runs, where the index registered is the number of functions when the algorithm obtains
the best results. The proposed algorithm DSRegPSO obtains the best results in optimizing
the non-separable function.

Table 4. Ranking comparison based on mean cost with CEC’13, including the proposed DSRegPSO.

Algorithm 1.20E+05 6.00E+05 3.00E+06

AMO 0 0 0
APO 0 0 0
AQO 0 0 0

BICCA 0 1 1
CC-CMA-ES 0 1 1

DECC-G 6 0 0
DEEPSO 0 0 0

DMO 0 0 0
DPO 0 0 0
DQO 1 0 0

DSRegPSO 4 1 1
IHDELS 1 0 0

MLSHADE-SPA 0 4 4
MOS 1 0 0
RO 0 0 0

SACC 0 1 0
SHADEILS 2 8 8

VMODE 0 0 0

Table 5 compares the costs obtained for each algorithm registered in CEC’13 TACO
in the functions of the CEC’13 benchmark against DSRegPSO and GPSO. Our proposal
obtains the best value in the more complex test with the non-separable function.
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Table 5. Mean cost comparison with CEC’13, including the proposed DSRegPSO.

Algorithm f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

AMO 0.00E+00 8.48E+02 0.00E+00 1.57E+08 6.69E+06 1.63E+05 2.07E+04 8.71E+12 4.09E+08 8.99E+05 5.16E+07 3.17E+02 3.14E+06 2.69E+07 2.44E+06
APO 0.00E+00 8.32E+02 0.00E+00 1.62E+08 7.01E+06 1.45E+05 3.31E+02 1.70E+13 3.96E+08 7.07E+05 2.54E+07 1.06E+02 7.88E+05 9.92E+06 2.08E+06
AQO 0.00E+00 8.39E+02 0.00E+00 1.61E+08 6.84E+06 1.79E+05 1.52E+04 7.31E+12 4.08E+08 9.46E+05 4.65E+07 1.91E+02 3.68E+06 2.69E+07 2.40E+06

BICCA 0.00E+00 8.46E−07 7.27E−01 8.85E+08 2.58E+06 1.46E+05 1.82E+05 3.78E+12 2.18E+08 1.24E+06 2.85E+07 1.40E+03 1.09E+07 4.27E+07 3.16E+06
CC-CMA-ES 5.80E−09 1.33E+03 0.00E+00 2.19E+09 7.28E+14 5.87E+05 7.44E+06 3.88E+14 3.71E+08 7.55E+05 1.58E+08 1.27E+03 6.69E+08 7.10E+07 3.03E+07

DECC-G 0.00E+00 1.03E+03 3.00E−10 2.12E+10 5.07E+06 6.08E+04 4.27E+08 3.88E+14 4.17E+08 1.19E+07 1.60E+11 1.07E+03 3.36E+10 6.27E+11 6.01E+07
DEEPSO 1.44E+08 1.49E+04 2.04E+01 4.77E+09 1.45E+07 1.02E+06 1.54E+07 5.42E+12 9.17E+08 9.07E+07 5.60E+08 1.54E+10 8.75E+08 4.33E+08 7.04E+06

DMO 0.00E+00 8.16E+02 0.00E+00 2.20E+08 7.12E+06 1.50E+05 5.26E+04 1.07E+13 5.28E+08 5.70E+05 1.16E+08 2.45E+02 6.55E+06 4.57E+07 3.02E+07
DPO 0.00E+00 1.05E+03 0.00E+00 2.71E+08 6.85E+06 1.38E+05 2.52E+04 2.33E+13 4.02E+08 1.08E+06 9.88E+07 3.45E+02 4.04E+06 2.86E+07 2.80E+06
DQO 0.00E+00 8.41E+02 0.00E+00 1.56E+08 7.06E+06 1.52E+05 2.06E+04 7.52E+12 4.10E+08 8.02E+05 5.43E+07 2.07E+02 3.21E+06 2.43E+07 2.38E+06

DSRegPSO 1.90E−04 6.87E+02 2.00E+01 1.24E+09 3.76E+06 9.96E+05 3.59E+04 1.06E+13 3.05E+08 9.17E+07 4.32E+08 1.56E+03 1.03E+07 1.92E+08 5.79E+05
GPSO 2.91E+09 4.19E+04 2.02E+01 2.75E+10 5.66E+06 1.01E+06 5.73E+08 1.32E+14 6.12E+08 9.07E+07 3.44E+09 1.53E+12 3.03E+09 7.87E+09 2.80E+10

IHDELS 4.34E−28 1.32E+03 2.01E+01 3.04E+08 9.59E+06 1.03E+06 3.46E+04 1.36E+12 6.74E+08 9.16E+07 1.07E+07 3.77E+02 3.80E+06 1.58E+07 2.81E+06
MLSHADE-

SPA 1.94E−22 7.89E+01 0.00E+00 6.90E+08 1.80E+06 1.40E+03 5.31E+04 9.77E+12 1.61E+08 6.56E+02 4.04E+07 1.04E+02 7.21E+07 1.52E+07 2.76E+07

MOS 0.00E+00 8.32E+02 0.00E+00 1.74E+08 6.94E+06 1.48E+05 1.62E+04 8.00E+12 3.83E+08 9.02E+05 5.22E+07 2.47E+02 3.40E+06 2.56E+07 2.35E+06
RO 0.00E+00 8.09E+02 0.00E+00 2.25E+08 6.33E+06 1.29E+05 3.46E+04 8.43E+12 3.85E+08 6.14E+05 8.53E+07 4.81E+02 4.61E+06 3.44E+07 1.00E+07

SACC 0.00E+00 5.71E+02 1.21E+00 3.66E+10 6.95E+06 2.07E+05 1.58E+07 9.86E+14 5.77E+08 2.11E+07 5.30E+08 8.74E+02 1.51E+09 7.34E+09 1.88E+06
SHADEILS 2.69E−24 1.00E+03 2.01E+01 1.48E+08 1.39E+06 1.02E+06 7.41E+01 3.17E+11 1.64E+08 9.18E+07 5.11E+05 6.18E+01 1.00E+05 5.76E+06 6.25E+05

VMODE 8.51E−04 5.51E+03 3.41E−04 8.48E+09 7.28E+14 1.99E+05 3.44E+06 3.26E+13 7.51E+08 9.91E+06 1.58E+08 2.34E+03 2.43E+07 9.35E+07 1.11E+07
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Additionally, we compare the results in accuracy delivered with the TACO toolkit in
Figure 35. Here, we find that Shadeils—an algorithm focusing on LSGO—still has the best
results across all the algorithms in the CEC’13 test. However, despite not focusing on LSGO,
our proposal improves the results in several functions compared with the other algorithms
and obtains the best results compared with algorithms inspired by PSO. Moreover, the cyan
region in the plot is the biggest for all the algorithms since our proposal is the best one in
the non-separable function.
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Figure 36 shows the TACO comparison, just considering the non-separable function,
showing that our algorithm is the best at optimizing it.
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measures how much these perturbations can affect the outputs of the algorithm [56,57]. 

A robust algorithm can handle different types of disturbances, such as input errors 
or process variations, and still generate consistent and reliable results. This robustness is 
demonstrated by the algorithm’s ability to continuously improve and converge toward a 
solution even when noise is present in particle positions. On the other hand, algorithm 
sensitivity explains how the algorithm reacts to minor variations or disturbances. A highly 
sensitive algorithm will produce significant variations in outcomes even with minor dis-
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Figure 36. TACO comparison across all algorithms, including DSRegPSO and GPSO in the non-
separable CEC’13 function.

The Wilcoxon test is a non-parametric statistical test that compares the median rank of
two related samples. It is proper when the normality assumption of the samples cannot
be met and is a suitable alternative to the Student’s t-test [53]. Table 6 shows the results of
the statistical Wilcoxon test as defined in the TACO toolkit. It compares the algorithm’s
p-value in each row (first) concerning the algorithm in each column (second).
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Table 6. Wilcoxon test comparing algorithms registered in TACO in the CEC’13 test.

Algorithm AMO APO AQO BICCA CCCMA-
ES DECC-G DEEPSO DMO DPO DQO DSRegPSO GPSO IHDELS MLSHADE-

SPA MOS RO SACC SHADEILS VMODE Accum.
Error (%)

AMO 1.0E+00 2.1E−01 9.0E−01 8.9E−01 8.4E−03 3.4E−03 8.4E−03 2.0E−02 2.4E−02 4.5E−01 8.3E−02 4.3E−04 1.9E−01 9.3E−01 6.2E−01 6.6E−01 5.7E−03 4.8E−02 6.1E−05 6.0E+01
APO 2.1E−01 1.0E+00 1.7E−01 3.3E−01 2.0E−03 3.4E−03 8.4E−03 7.9E−02 8.4E−03 9.0E−02 3.9E−01 4.3E−04 5.5E−02 9.3E−01 2.1E−01 6.2E−01 1.2E−02 6.4E−02 6.1E−05 6.0E+01
AQO 9.0E−01 1.7E−01 1.0E+00 8.9E−01 8.4E−03 3.4E−03 8.4E−03 1.4E−02 2.8E−02 9.0E−01 8.3E−02 4.3E−04 1.9E−01 9.3E−01 1.0E+00 1.9E−01 5.7E−03 5.5E−02 6.1E−05 6.0E+01

BICCA 8.9E−01 3.3E−01 8.9E−01 1.0E+00 3.4E−03 3.4E−03 6.1E−05 3.6E−01 6.8E−01 8.9E−01 2.2E−02 6.1E−05 4.5E−01 6.0E−01 8.9E−01 9.8E−01 2.6E−03 4.1E−02 1.8E−04 6.0E+01
CCCMA-ES 8.4E−03 2.0E−03 8.4E−03 3.4E−03 1.0E+00 1.3E−01 1.5E−01 4.3E−03 8.4E−03 8.4E−03 3.0E−01 8.3E−02 7.3E−02 6.1E−05 6.7E−03 2.0E−03 1.9E−01 1.0E−02 8.9E−01 6.0E+01

DECC-G 3.4E−03 3.4E−03 3.4E−03 3.4E−03 1.3E−01 1.0E+00 3.3E−01 2.2E−02 6.7E−03 3.4E−03 2.2E−02 6.4E−01 1.4E−01 6.1E−05 3.4E−03 3.4E−03 8.0E−01 8.4E−03 2.3E−01 6.0E+01
DEEPSO 8.4E−03 8.4E−03 8.4E−03 6.1E−05 1.5E−01 3.3E−01 1.0E+00 2.6E−02 8.4E−03 8.4E−03 1.8E−02 1.2E−02 8.5E−04 2.6E−02 8.4E−03 1.8E−02 8.0E−01 8.5E−04 4.2E−01 6.0E+01

DMO 2.0E−02 7.9E−02 1.4E−02 3.6E−01 4.3E−03 2.2E−02 2.6E−02 1.0E+00 4.1E−01 1.7E−02 6.4E−01 4.3E−04 1.0E+00 9.5E−02 1.4E−02 3.8E−02 2.0E−02 4.8E−02 2.0E−03 6.0E+01
DPO 2.4E−02 8.4E−03 2.8E−02 6.8E−01 8.4E−03 6.7E−03 8.4E−03 4.1E−01 1.0E+00 6.0E−02 3.9E−01 4.3E−04 3.9E−01 3.3E−01 1.0E−02 2.6E−01 5.7E−03 2.2E−02 6.1E−05 6.0E+01
DQO 4.5E−01 9.0E−02 9.0E−01 8.9E−01 8.4E−03 3.4E−03 8.4E−03 1.7E−02 6.0E−02 1.0E+00 8.3E−02 4.3E−04 1.9E−01 9.3E−01 8.5E−01 1.9E−01 1.4E−02 5.5E−02 6.1E−05 6.0E+01

DSRegPSO 8.3E−02 3.9E−01 8.3E−02 2.2E−02 3.0E−01 2.2E−02 1.8E−02 6.4E−01 3.9E−01 8.3E−02 1.0E+00 4.3E−04 2.8E−01 3.0E−02 7.3E−02 8.3E−02 4.1E−02 4.8E−02 2.1E−01 6.0E+01
GPSO 4.3E−04 4.3E−04 4.3E−04 6.1E−05 8.3E−02 6.4E−01 1.2E−02 4.3E−04 4.3E−04 4.3E−04 4.3E−04 1.0E+00 1.2E−02 6.1E−05 4.3E−04 3.1E−04 1.1E−01 8.5E−04 2.2E−02 6.0E+01

IHDELS 1.9E−01 5.5E−02 1.9E−01 4.5E−01 7.3E−02 1.4E−01 8.5E−04 1.0E+00 3.9E−01 1.9E−01 2.8E−01 1.2E−02 1.0E+00 8.5E−01 1.9E−01 8.9E−01 3.9E−01 1.5E−03 1.5E−02 6.0E+01
MLSHADE-

SPA 9.3E−01 9.3E−01 9.3E−01 6.0E−01 6.1E−05 6.1E−05 2.6E−02 9.5E−02 3.3E−01 9.3E−01 3.0E−02 6.1E−05 8.5E−01 1.0E+00 9.3E−01 8.5E−01 2.6E−03 1.5E−01 1.2E−02 6.0E+01

MOS 6.2E−01 2.1E−01 1.0E+00 8.9E−01 6.7E−03 3.4E−03 8.4E−03 1.4E−02 1.0E−02 8.5E−01 7.3E−02 4.3E−04 1.9E−01 9.3E–01 1.0E+00 5.2E−02 5.7E−03 4.8E−02 6.1E−05 6.0E+01
RO 6.6E−01 6.2E−01 1.9E−01 9.8E−01 2.0E−03 3.4E−03 1.8E−02 3.8E−02 2.6E−01 1.9E−01 8.3E−02 3.1E−04 8.9E−01 8.5E−01 5.2E−02 1.0E+00 5.7E−03 4.8E−02 6.1E−05 6.0E+01

SACC 5.7E−03 1.2E−02 5.7E−03 2.6E−03 1.9E−01 8.0E−01 8.0E−01 2.0E−02 5.7E−03 1.4E−02 4.1E−02 1.1E−01 3.9E−01 2.6E−03 5.7E−03 5.7E−03 1.0E+00 2.2E−02 2.1E−01 6.0E+01
SHADEILS 4.8E−02 6.4E−02 5.5E−02 4.1E−02 1.0E−02 8.4E−03 8.5E−04 4.8E−02 2.2E−02 5.5E−02 4.8E−02 8.5E−04 1.5E−03 1.5E−01 4.8E−02 4.8E−02 2.2E−02 1.0E+00 1.0E−02 6.0E+01

VMODE 6.1E−05 6.1E−05 6.1E−05 1.8E−04 8.9E−01 2.3E−01 4.2E−01 2.0E−03 6.1E−05 6.1E−05 2.1E−01 2.2E−02 1.5E−02 1.2E−02 6.1E−05 6.1E−05 2.1E−01 1.0E−02 1.0E+00 6.0E+01
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Blue indicates that the first algorithm is better than the second, and red indicates that
the first is worse than the second, with a significance of 5%. Cyan indicates that the first
algorithm is better than the second one, and yellow indicates that the first one is worse
than the second. For cyan and yellow colors, there is a significance of 10%. Black means
that there are no detected significant differences.

The Wilcoxon test results show that despite the limitations of PSO exploring LSGO
problems, our proposal still has better results than the four algorithms with 5% signifi-
cance. Furthermore, we maintain similar performance or inconclusive advantage with
eight algorithms.

Table 7 shows the Wilcoxon test considering only the algorithms inspired in PSO
(GPSO and DEEPSO). The results support that DSRegPSO is the best PSO-inspired algo-
rithm with results in the CEC’13 test. Again, Blue indicates that the first algorithm is better
than the second, and red indicates that the first is worse than the second, with a significance
of 5%. Cyan indicates that the first algorithm is better than the second one, and yellow
indicates that the first one is worse than the second. For cyan and yellow colors, there is a
significance of 10%. Black means that there are no detected significant differences.

Table 7. Wilcoxon test taking into consideration PSO-inspired algorithms.

Algorithm DEEPSO DSRegPSO GPSO Accum. Error
(%)

DEEPSO 1.0E+00 1.8E−02 1.2E−02 9.8E+00
DSRegPSO 1.8E−02 1.0E+00 4.3E−04 9.8E+00

GPSO 1.2E−02 4.3E−04 1.0E+00 9.8E+00

In algorithm design, it is essential to assess both robustness and sensitivity, especially
in situations where disturbances or noise are expected. Robustness refers to the ability of
an algorithm to maintain its performance despite perturbations, while sensitivity measures
how much these perturbations can affect the outputs of the algorithm [56,57].

A robust algorithm can handle different types of disturbances, such as input errors
or process variations, and still generate consistent and reliable results. This robustness is
demonstrated by the algorithm’s ability to continuously improve and converge toward a
solution even when noise is present in particle positions. On the other hand, algorithm
sensitivity explains how the algorithm reacts to minor variations or disturbances. A
highly sensitive algorithm will produce significant variations in outcomes even with minor
disturbances [57].

In our study, we evaluated the robustness and sensitivity of DSRegPSO by conducting
25 runs of CEC’13 under identical circumstances without controlling the seeds. This
allowed us to generate different initial positions of particles. The results in Table 3 and the
convergence diagrams demonstrate that DSRegPSO performs even better than the original
PSO in terms of stability.

Additionally, as a means of testing the robustness of the DSRegPSO algorithm in
the presence of noise, we carried out two experiments using the CEC’13 functions. The
first experiment involved introducing random noise of varying magnitudes (1%, 5%, 10%
15%, and 20%) to the particle positions before evaluating the functions. The purpose
of this experiment was to evaluate how the algorithm responds to perturbations in the
search space for high-dimensional functions. Specifically, it aimed to determine whether the
algorithm could still improve or converge to an optimal or near-optimal solution even when
particles in a high-dimensional space are slightly displaced from their original positions due
to noise.

In the second test, we introduce random noise of magnitudes (1%, 5%, 10%, 15%, and
20%) into the result of the cost function evaluation. This test assesses the algorithm’s ability
to handle errors or variations in the evaluation of the objective function in high-dimensional
spaces. Specifically, we investigate how the algorithm responds to the perceived “quality”
of a solution (measured by its objective function) in the presence of noise. The goal is to



Mathematics 2023, 11, 4339 31 of 40

understand how noise affects the algorithm’s ability to still improving or converge to an
optimal or near-optimal solution.

Figure 37 shows a comparison between convergence diagrams with noise in particle
positions and cost of Function 1 of CEC’13. Despite noise in particle positions, the algorithm
continues to improve in the initial evaluations but rapidly converges to similar cost values.
This could be due to the sensitivity of the cost function to small changes in particle positions.
However, the algorithm still improves in tests with noise added to the cost, demonstrating
the robustness of DSRegPSO.
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In Figure 38, there is a comparison of convergence diagrams between noise in particle
positions and cost of Function 2 of CEC’13. Despite the noise in particle positions, the
algorithm continues to perform well in the initial evaluations and subsequently converges
to similar cost values. This could be because the cost function is very sensitive to even
small changes in particle positions. However, the algorithm still performs well in tests
where noise is added to the cost, which demonstrates the robustness of DSRegPSO.
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Figure 38. Convergence diagrams of Function 2 of CEC’13 adding noise to position and cost.

In the comparison of convergence diagrams between noise in particle positions and
the cost of Function 3 of CEC’13 depicted in Figure 39, adding noise to particle positions or
the cost value resulted in convergence to similar cost values, with minimal improvements.
This could be due to the fact that the cost function is highly sensitive to changes in position,
and the cost value variation is also too small compared with the noise, as evidenced by
both convergence diagrams. As a result, the algorithm showed a lack of robustness in noise
tests for Function 3.
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Figure 40 presents a comparison of convergence diagrams between particle position
noise and cost of Function 4 of CEC’13. Despite noise in particle positions, the DSRegPSO
algorithm exhibits good performance in the initial evaluations and subsequently converges
to similar cost values. This is due to the high sensitivity of the cost function to even minor
alterations in particle positions. However, tests where noise is added to the cost indicate
that DSRegPSO is robust and continues to perform well.
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Figure 40. Convergence diagrams of Function 4 of CEC’13 adding noise to position and cost.

Figure 41 showcases a comparison of convergence diagrams adding noise to particle
position and cost of Function 5 of CEC’13. Despite the presence of noise in particle posi-
tions, the DSRegPSO algorithm exhibits commendable performance, converging to similar
cost values. This can be attributed to the cost function’s high sensitivity to even minute
changes in particle positions. However, tests that introduced noise to the cost indicate that
DSRegPSO is robust and continues to deliver good performance.
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When comparing convergence diagrams between noise in particle positions and
cost of Function 6 of CEC’13 (Figure 42), it was found that adding noise to either the
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particle positions or cost value led to convergence to similar cost values, with only minimal
improvements. This could be because the cost function is highly sensitive to changes in
position and the cost value variation is too small compared with the noise. Consequently,
the algorithm demonstrated a lack of robustness in noise tests for Function 6.
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In Figure 43, there is a comparison of convergence diagrams between noise in particle
positions and cost of Function 7 of CEC’13. Despite the noise in particle positions, the
algorithm continues to perform well in the initial evaluations and subsequently reaches
similar cost values. This could be because the cost function is very sensitive to even small
changes in particle positions. However, the algorithm still performs well in tests where
noise is added to the cost, which demonstrates the robustness of DSRegPSO.
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Figure 44 presents a comparison of convergence diagrams between particle position
noise and cost of Function 8 of CEC’13. Despite noise in particle positions, the DSRegPSO
algorithm exhibits good performance in the initial evaluations and subsequently converges
to similar cost values. This is due to the high sensitivity of the cost function to even minor
alterations in particle positions. However, tests where noise is added to the cost indicate
that DSRegPSO is robust and continues to perform well.
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Figure 45 showcases a comparison of convergence diagrams adding noise to particle
position and cost of Function 9 of CEC’13. Despite the presence of noise in particle posi-
tions, the DSRegPSO algorithm exhibits commendable performance, converging to similar
cost values. This can be attributed to the cost function’s high sensitivity to even minute
changes in particle positions. However, tests that introduced noise to the cost indicate that
DSRegPSO is robust and continues to deliver good performance.
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Figure 46 presents a comparison of convergence diagrams between particle position
noise and cost of Function 10 of CEC’13. Despite noise in particle positions, the DSRegPSO
algorithm exhibits good performance in the initial evaluations and subsequently converges
to similar cost values. This is due to the high sensitivity of the cost function to even minor
alterations in particle positions. However, tests where noise is added to the cost indicate
that DSRegPSO is robust and continues to perform well.
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In Figure 47, there is a comparison of convergence diagrams between noise in particle
positions and cost of Function 11 of CEC’13. Despite the noise in particle positions, the
algorithm continues to perform well in the initial evaluations and continue improving in
its cost values without reaching the response without noise. This could be because the
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cost function is very sensitive to even small changes in particle positions. However, the
algorithm still performs well in tests where noise is added to the cost, which demonstrates
the robustness of DSRegPSO.
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Figure 48 showcases a comparison of convergence diagrams adding noise to particle
position and cost of Function 12 of CEC’13. Despite the presence of noise in particle
positions, the DSRegPSO algorithm exhibits commendable performance, converging to
similar cost values. This can be attributed to the cost function’s high sensitivity to even
minute changes in particle positions. However, tests that introduced noise to the cost
indicate that DSRegPSO is robust and continues to deliver good performance.
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Figure 48. Convergence diagrams of Function 12 of CEC’13 adding noise to position and cost.

In Figure 49, there is a comparison of convergence diagrams between noise in particle
positions and cost of Function 13 of CEC’13. Despite the noise in particle positions, the
algorithm continues to perform well in the initial evaluations and subsequently reaches
similar cost values. This could be because the cost function is very sensitive to even small
changes in particle positions. However, the algorithm still performs well in tests where
noise is added to the cost, which demonstrates the robustness of DSRegPSO.
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Figure 50 shows convergence diagrams for noise in particle positions and the cost of
Function 14 of CEC’13. Despite the noise, the algorithm performs well in initial evaluations
and continues to improve cost values. The cost function is sensitive to small changes in
particle positions, which may explain this. However, DSRegPSO shows better robustness
in tests where noise is added to the cost instead of the position of particles.
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In Figure 51, there is a comparison of convergence diagrams between noise in particle
positions and cost of Function 15 of CEC’13. Despite the noise in particle positions, the
algorithm continues to perform well in the initial evaluations and subsequently reaches
similar cost values. This could be because the cost function is very sensitive to even small
changes in particle positions. However, the algorithm still performs well in tests where
noise is added to the cost, which demonstrates the robustness of DSRegPSO.
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4. Conclusions

In this work, we present a novel adaptation of Particle Swarm Optimization (PSO)
known as Dynamical Sphere Regrouping PSO (DSRegPSO). The proposed variant addresses
the issue of stagnation that commonly occurs in global optimization problems, particularly
those that are large-scale. To avoid stagnation, we introduced two mechanisms.

The first mechanism involves the use of a dynamical sphere to regulate exploration
and exploitation during a run, thereby preventing the particles from converging. The
second mechanism is based on the conservation of physics momentum, which returns
particles that travel outside the search space in the opposite direction, enabling maximum
exploration of the search space.

We improved the original regrouping PSO algorithm in three main ways. Firstly,
we introduced dynamical sphere regrouping, which allows the swarm to be continually
reinvigorated without waiting for stagnation to be detected. This mechanism also helps
regulate exploration and exploitation during a run. Secondly, we modified the inertial
effects, varying them across iterations and increasing them when required for exploration.
Lastly, we used momentum conservation to maintain diversity in the swarm by keeping
particles within the search space when the speed equation takes them out.
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Despite the existence of several variants and alternatives in the PSO algorithm, not
all of them have been registered in the Toolkit of Automatic Comparison of Optimizers in
CEC’13, which is a standard for LSGO evaluation. Moreover, some proposals only work
with their own proposed tests or on specific problems. However, our DSRegPSO algorithm
underwent testing against the CEC’13 functions for evaluating new machine learning
algorithms in LSGO and achieved superior results compared with other algorithms and
PSO-inspired algorithms, such as DEEPSO and GPSO.

In order to sustain our conclusion, we conducted a Wilcoxon test to compare all algo-
rithms that use CEC’13 as support for their results. The Wilcoxon test results demonstrated
that DSRegPSO is superior to DECC-G, DEEPSO, GPSO, and SACC and has similar results
to APO, CCCMA-ES, DMO, DPO, IHDELS, and VMODE with a statistical significance of
5%. Additionally, our algorithm produced the best results for optimizing the non-separable
function reaching a cost value of 5.79E+05, surpassing all other CEC’13 TACO registered
algorithms. Thus, we recommend utilizing the proposed algorithm in applications of
non-separable problems to explore the capabilities of DSRegPSO in real-world scenarios.
Again, we conducted a Wilcoxon test, but based on PSO-inspired algorithms, and found
that DSRegPSO outperforms GPSO and DEEPSO with 5% significance level.

In the Wilcoxon test, we also found that Shadeils, an algorithm focused on LSGO,
delivered the best results in separable functions across all algorithms in the CEC’13 test. We
identified that DSRegPSO did not produce the best results in separable functions because
it did not prioritize detecting possible simplifications of the search space by separately
optimizing dimensions, although this was not the focus of DSRegPSO in our work.

Despite not focusing on LSGO, our proposal achieved superior results in several
functions compared with other algorithms and outperformed PSO-inspired algorithms.

Additionally, we used PCA to transform the particle positions from 1000 dimensions to
3 and plot 3D points with their positions across iterations. This confirms that the algorithm
continuously avoids stagnation and keeps looking for better positions to improve the global
best without converging in position. Although the algorithm may converge early in the
global best cost of Function 3 of CEC’13, it never converges in position.

Algorithm design requires assessing robustness and sensitivity to expected distur-
bances or noise. Robustness ensures consistent performance despite perturbations, while
sensitivity measures the impact of perturbations on an algorithm’s outputs.

We conducted 25 runs of CEC’13 without controlling the seeds to vary starting condi-
tions and evaluate DSRegPSO’s robustness. The results show that DSRegPSO performs
better than the original PSO in terms of stability, as demonstrated by the convergence
diagrams in Table 3 that compare mean, best, worst, and standard deviation.

Furthermore, we conducted two experiments using CEC’13 functions to test the
robustness and sensitivity of the DSRegPSO algorithm against noise and registered the
convergence diagrams. The first experiment involved adding random noise (1%, 5%, 10%,
15%, and 20%) to particle positions to evaluate the algorithm’s ability to converge in a
high-dimensional space. In the second experiment, we introduced random noise of varying
levels (1%, 5%, 10%, 15%, and 20%) to assess the algorithm’s performance in handling
errors or variations in the high-dimensional objective function evaluation. Based on our
tests, we found that the DSRegPSO is a robust algorithm that can handle noise effectively.
The algorithm continued to improve even in the presence of noise in 13 out of 15 functions
of CEC’13. However, in all the functions, it did react to noise by modifying the reached
global best. We believe that this was due to the high sensitivity of CEC’13 functions.

Future Work

The DSRegPSO algorithm has demonstrated superior performance in the non-separable
function of the CEC’13 when compared with non-PSO-inspired algorithms. To further
improve its utility in future versions, we propose the implementation of mechanisms for
detecting separability, allowing for a simplified search space with separable functions, as
seen in other LSGO algorithms.
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Additionally, a thorough analysis of the parameters in the proposed algorithm is sug-
gested to determine the optimal values for optimizing different situations. We particularly
suggest focusing on the parameters related to the maximum diameter of the hyper-sphere
and the expansion speed, as an optimal choice for these parameters could lead to less
exploration and, consequently, fewer iterations.
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