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Abstract: In practical usage, QR codes often become difficult to recognize due to damage. Traditional
restoration methods exhibit a limited effectiveness for severely damaged or densely encoded QR
codes, are time-consuming, and have limitations in addressing extensive information loss. To tackle
these challenges, we propose a two-stage restoration model named the EHFP-GAN, comprising an
edge restoration module and a QR code reconstruction module. The edge restoration module guides
subsequent restoration by repairing the edge images, resulting in finer edge details. The hierarchical
feature pyramid within the QR code reconstruction module enhances the model’s global image
perception. Using our custom dataset, we compare the EHFP-GAN against several mainstream image
processing models. The results demonstrate the exceptional restoration performance of the EHFP-
GAN model. Specifically, across various levels of contamination, the EHFP-GAN achieves significant
improvements in the recognition rate and image quality metrics, surpassing the comparative models.
For instance, under mild contamination, the EHFP-GAN achieves a recognition rate of 95.35%, while
under a random contamination, it reaches 31.94%, both outperforming the comparative models. In
conclusion, the EHFP-GAN model demonstrates remarkable efficacy in the restoration of damaged
QR codes.

Keywords: image inpainting; damaged QR code reconstruction; gan

MSC: 68U10

1. Introduction

In recent years, QR codes have found widespread applications globally, especially in
areas such as mobile payments, logistics tracking, identity verification, and access control [1–5].
Take traceable QR codes as an example; they assist users in tracking critical information such
as the product origin, production date, and manufacturer, ensuring product quality and
safety [2,3,6]. However, in practical usage, QR codes can become damaged due to various
reasons such as daily wear and tear, liquid splashes, or other accidental factors, leading to
their failure to be recognized, thereby affecting the product traceability and security [7–10].

The objective of repairing damaged QR codes is to restore their missing areas and
enable proper recognition [11]. From this standpoint, the restoration of damaged QR codes
can be considered a specific application within the domain of image restoration. With
their excellent image generation capabilities, Generative Adversarial Networks (GANs)
have achieved considerable research success [9,10,12–17]. However, the integration of
restoring damaged QR codes with GAN methods commonly used in the field of image
restoration is relatively scarce. Therefore, from this perspective, our research aims to
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explore the feasibility of applying GANs to the task of repairing damaged QR codes and
propose a novel solution. As previously mentioned, the restoration of damaged QR codes is
essentially a special case of image restoration. However, due to the specific characteristics of
QR code images, we encounter unique challenges when employing GANs for restoration.

Challenge 1: Information recovery takes priority over image quality for QR code
restoration. The core of QR code image restoration is to recover the information contained
so that it can be read again. Compared to general image restoration that focuses on visual
effect, QR code restoration needs to first consider the recognizability rate after restoration.
This requires that the recognition rate metric is more important than image quality when
evaluating the restoration models. The availability of information is an additional constraint
unique to QR code image restoration tasks.

Challenge 2: The lack of local textures makes relying on the local context difficult
for QR code restoration. QR code images inherently have fewer texture details, which
makes local restoration difficult. Models need to rely more on non-local contextual infor-
mation for structurally reasonable inference [15]. Different from image inpainting that
only cares about visual effects, QR code image restoration needs to prioritize ensuring
the recognizability of information, paying more attention to restoring the global structure
rather than reconstructing the local texture details.

To address the aforementioned unique challenges faced by QR code image restoration,
we propose a novel deep learning model named the Edge-enhanced Hierarchical Feature
Pyramid GAN (EHFP-GAN). The model comprises two sub-modules: the Edge Restoration
Module and the QR Code Reconstruction Module. The Edge Restoration Module repairs
the edge image generated by the Canny edge detection [18], and its restoration results are
fed alongside the original image into the QR Code Reconstruction Module, enhancing the
quality of the edge restoration. Within the QR Code Reconstruction Module, we introduce
the Hierarchical Feature Pyramid (HFP) Block that leverages multi-scale feature fusion
to expand the receptive field, enhancing the global information modeling capability, thus
improving the restoration results. Additionally, we design a discriminator for adversarial
training and introduce a recognition rate loss to optimize the information recovery.

The main contributions of this paper can be summarized as follows:

• We propose a multi-scale feature fusion module named the Hierarchical Feature Pyra-
mid (HFP) Block, which seamlessly integrates into the network and enhances the
model’s perception of global contextual information.

• We design and implement an edge-enhanced hierarchical feature pyramid GAN,
named EHFP-GAN, built upon the foundation of the HFP Block. The EHFP-GAN
focuses on restoring and reconstructing damaged QR code images.

• We demonstrate through comparative experiments with other advanced methods
that the EHFP-GAN model achieves state-of-the-art improvements in QR code image
quality, with a particularly notable enhancement in QR code recognizability.

The structure of this paper is organized as follows: In Section 2, we review the related
work in the field. Section 3 introduces our proposed QR code restoration method. Section 4
details the experimental setup and presents our analysis of the results. Section 5 delves
into the practical applications and challenges inherent in this research. Finally, in Section 6,
we conclude our study and outline future research directions.

2. Related Work

Since the inception of QR codes, ensuring their reliable scanning and decoding in
various environments has been a focus of research [1,4,5,7–10,19–22]. Concurrently, image
inpainting techniques have played a significant role in image processing tasks such as photo
restoration and object removal [11,15–17,21,23–26]. Therefore, existing image inpainting
methods provide valuable references for investigating QR code restoration. In this chapter,
we review the advancements in QR code and image inpainting research to establish the
theoretical foundation for subsequent chapters.
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2.1. QR Code-Related Work

Since the emergence of QR codes, ensuring their reliable scanning and decoding in
different environments has been a research hotspot. Relevant studies have mainly aimed at
improving the reliability of QR codes from the perspectives of error correction codes, denoising
techniques, and image enhancement. In terms of error correction codes, QR codes primarily
utilize Reed–Solomon error correction techniques to rectify reading errors, enhancing the data
reliability and readability [27]. However, in cases of actual damage, the performance of this
technique is not ideal. Due to potential interferences such as stains, blurriness, rotation, and
scaling, researchers have developed a range of anti-interference techniques, including filtering,
denoising, rotation correction, and scale normalization, to reduce the impact of interference
on QR code recognition. In terms of denoising techniques, Tomoyoshi Shimobaba et al. (2018)
proposed a holographic image restoration algorithm using autoencoders. Through numerical
diffraction calculations or holographic optical reconstruction, they obtained reconstructed
images and utilized autoencoders to remove image noise pollution, thus restoring clearer
holographic images of QR codes [28]. Furthermore, researchers have employed the Cahn–
Hilliard equation to address QR code image restoration, particularly in restoring low-order sets
(edges, corners) and enhancing edges [21]. When dealing with severely damaged QR codes,
the effectiveness of traditional image processing techniques is relatively limited. As a result,
in recent years, researchers have shifted their focus towards deep learning technology. For
blurred QR images, researchers have begun exploring from the perspective of deep learning.
For instance, Michael John Fanous et al. proposed GANscan, a high-speed imaging method
based on generative adversarial networks, which is employed to capture QR codes on rapidly
moving scanning devices. This method primarily utilizes GANs to process motion-blurred QR
video frames into clear images [12]. The above studies extended QR technology to adapt to
various environments from different perspectives. However, these methods mainly addressed
QR code blurriness and noise issues, with limited research on addressing damaged QR codes.

2.2. Image Inpainting Work

Image inpainting refers to the task of reconstructing lost or corrupted parts of images
based on the surrounding available pixels. Its core idea is to utilize spatial continuity and
texture similarity in natural images to synthesize plausible content for missing regions.
Early methods relied on traditional signal processing techniques for image completion,
extending based on the inherent image similarity and structure, yielding limited effects. For
example, pixel-by-pixel and block-by-block filling, both of which start from the boundaries
of the image’s damaged areas, gradually fill unknown regions in images using known
information from the surrounding or similar areas in the image based on calculated pri-
orities, aiming to synthesize visually continuous images [25,26]. However, this method is
only suitable for small area restoration, and it presents issues of blurriness and unnatural
textures in repairing complex backgrounds and large missing areas. In recent years [29],
deep learning has seen rapid development, particularly excelling in image inpainting tasks,
enabling the learning of intrinsic priors in images and yielding more realistic completion
results. For example, the Context Encoders model utilizes end-to-end convolutional neural
networks for image completion, representing one of the earliest successful applications
of deep learning to this task. Its core innovation lies in the introduction of the encoder–
decoder structure of generative models, which can directly process images with holes [30].
Given the development of deep learning in image inpainting tasks in recent years, more
people have focused on its applied research, such as object removal and photo restora-
tion. For example, Wan et al. proposed a method using deep learning to restore severely
degraded old photos. The method involves training two VAEs to transform old photos
and clean photos into latent spaces and learning transformations between the two latent
spaces on synthesized image pairs, and then designing global and local branches to handle
structural and non-structural defects in old photos, respectively. The two branches are
fused in the latent space to enhance the recovery from composite defects [14]. This provides
new perspectives for researching QR code restoration. However, unlike ordinary image
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restoration tasks such as object removal and photo restoration, QR images contain semantic
information, requiring a delicate balance between the visual effect and readability. How to
employ the image inpainting techniques for high-quality QR code restoration still offers
many unexplored possibilities.

In summary, effective restoration techniques for damaged QR codes are not only signifi-
cant in the field of QR codes but also represent a new extension of image restoration issues. This
study is conducted based on this background, aiming to explore efficient QR code restoration
methods. The subsequent chapters will detail our technical approach and innovative work.

3. Methods

Inspired by the EdgeConnect model [16], we propose an end-to-end generative adver-
sarial network named EHFP-GAN for reconstructing severely damaged QR code images.
As illustrated in Figure 1, this model consists of multiple modules, including the core
modules Edge-Net and QR-Net, along with their corresponding edge reconstruction dis-
criminator D1, QR code reconstruction discriminator D2, and global result discriminator
D3. These three discriminators share a unified network architecture. The Edge-Net module
predicts the edge map of the QR code using an encoder–decoder architecture. Based on the
predicted edge map, the QR-Net module utilizes a convolutional network to reconstruct
the complete QR code image. Additionally, the discriminator modules facilitate adversarial
training, and the loss function integrates multiple constraints such as adversarial loss, struc-
tural similarity, and mean squared error. By connecting the Edge-Net and QR-Net modules
in series, along with the discriminators and loss functions, the proposed EHFP-GAN model
achieves end-to-end QR code image reconstruction.
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Figure 1. The overall framework of our proposed EHFP-GAN model. It consists of two modules,
edge reconstruction and QR code reconstruction. The edge reconstruction module adopts an encoder–
decoder architecture to predict the restored edge map based on the input corrupted QR code image
and its Canny edge. The QR code reconstruction module uses a multi-scale feature Unet, which
utilizes a Hierarchical Feature Pyramid (HFP) Block for cross-scale feature fusion by extracting
multi-scale features through the encoder and progressively restoring spatial resolution through the
decoder. The input image enhanced by edge reconstruction is concatenated with the predicted edge
feature and fed into the QR code reconstruction module to output the final restored result.
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3.1. Edge Reconstruction Module

The edge reconstruction module employs an encoder–decoder structure [30]. The
encoder consists of 3 downsampling convolutional blocks, utilizing Instance Normalization
and ReLU for normalization and nonlinear activation. The input channel count of the
first convolutional block is 4, progressively increasing to 128 and 256 channels for feature
extraction. The decoder conducts stepwise upsampling to restore the resolution. The
encoder and decoder exchange information through a bottleneck connection composed of
residual networks [31], where the feature maps output by the encoder are passed to different
levels of the decoder after undergoing upsampling and channel reduction. This architecture
transfers both semantic information and detailed content. The final convolutional layer
maps the channel count to 1, and after being processed by the sigmoid activation function,
it outputs the predicted edge map.

The objective of the edge reconstruction module is to predict and generate the repaired
edge map based on the prior knowledge of the Canny edge map of the original QR code
image. We first detect the edge information E of the damaged QR code original image
I using the Canny edge detection, and then, we concatenate E and I along the channel
dimension to form the input feature map Xegde of the module

Xedge = E⊕ I (1)

where I provides the image content, while E provides crucial prior knowledge about the
edge structure. Based on the input Xegde, we construct a network with an encoder–decoder
structure to predict the target edge map. The forward operation of the network can be
expressed as

Ê = Edge-Net
(

Xegde

)
(2)

Here, Ê represents the edge map predicted by the network. Through end-to-end
training, the model learns to reconstruct fine edge details from the input Xegde as guidance
for the subsequent QR code reconstruction module. We employ stepwise downsampling
and upsampling to extract and restore edge semantic information. Residual connections
assist in optimizing network training. This design ensures that the predicted edge map Ê
maintains sufficient structural coherence.

3.2. QR Code Reconstruction Module

We have designed a multi-scale feature fusion module [32,33] known as the Hierarchi-
cal Feature Pyramid (HFP) Block to enhance the model’s contextual reasoning capability.
The HFP Block has the ability to capture information from various semantic levels, offer-
ing a broader perspective even in the presence of extensive damage, thus enhancing the
structural coherence.

The design of the HFP, as depicted in Figure 2, primarily consists of (1) an encoding
section that progressively acquires feature maps at different scales using convolution and
pooling; (2) a multi-scale fusion section that performs upsampling and channel fusion on the
encoded features, resulting in a fused pyramid-style feature representation. In the context
of fusing multi-scale encoded features, we utilize learnable upsampling layers rather than
fixed interpolation methods like bilinear upsampling. This design choice stems from the
need to recover fine details lost during downsampling in the encoding process. Fixed
interpolation often cannot restore such high-frequency information, resulting in blurring.
By contrast, learnable upsampling allows the network to learn optimized upscaling filters,
thus helping to reconstruct critical details and mitigate information loss. This capability is
crucial for the HFP Block to focus on restoring damaged portions in QR codes.
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We express the computational process of the HFP Block using the following formula:

HFP(X) = Conv1×1(X2 ↑ 4x⊕ X1 ↑ 2x⊕Conv(X)) (3)

where X represents the input feature map of the HFP Block, X1 and X2 are the downsampled
feature maps generated by the encoder at different layers,⊕ denotes channel concatenation,
and ↑ indicates upsampling. Through upsampling and concatenation, the HFP Block
combines multi-scale features.

The feature map processed by the HFP Block retains rich contextual information.
We use HFP in place of conventional convolutional layers in the QR code reconstruction
module, constructing an encoder–decoder structure as shown in Figure 1. This design
enhances the model’s ability to capture both local and global information. The QR code
reconstruction module can be represented as a whole:

Iout = QR-Net(Ê⊕ I
)

(4)

QR-Net(x) = Dec(Enc(x)) (5)

where Enc and Dec represent the encoder and decoder, respectively, and the input image I
along with the predicted edge Ê serve as the input for the QR-Net module of the QR code
reconstruction module. The encoder Enc is composed of a series of cascaded HFP Blocks,
with the first-level HFP Block directly taking the original input x as its input.

Enc(1)(x) = HFP(x) (6)

In the subsequent levels, each HFP Block takes the output of the previous level HFP
Block as its input:

Enc(n)(x) = HFP
(

Enc(n−1)(x)
)

(7)

Similarly, the decoder Dec is also composed of multiple levels of concatenated HFP
Blocks. In the first-level HFP Block, the input consists of the upsampled original input x
concatenated with the encoded feature en from the nth layer of the encoder:

Dec(1)(x) = HFP(x ↑ ⊕ en) (8)
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Each subsequent HFP module concatenates the output of the previous HFP module
with the corresponding encoder features and uses it as the input:

Dec(n)(x) = HFP
(

Dec(n−1)(x) ↑ ⊕ en−1
)

(9)

Through the design of the HFP Block, the QR code reconstruction network enhances
its ability to model information from different semantic levels. It overcomes the challenge of
the QR code images lacking sufficient texture details, and even in the presence of extensive
damage, it can provide a broader perspective, leading to the generation of more coherent
and natural reconstruction results. The encoder–decoder architecture we employ also
facilitates the better fusion of local and global information. In the subsequent experiments,
we will observe that compared to other methods, this QR code reconstruction module
can achieve a qualitative improvement, especially performing better in cases of severe
damage. Ultimately, our EHFP-GAN model, through the combined utilization of the edge
reconstruction module and the QR code reconstruction module, establishes an effective end-
to-end learning framework to achieve image restoration of severely damaged QR codes.

3.3. Discriminators

To address the discrimination between generated images and real images, we designed
a convolutional neural network-based discriminator to differentiate between real QR
code images and generated QR code images. As depicted in Figure 1, the discriminator
consists of 5 convolutional blocks that progressively extract feature representations from
the input images using Leaky ReLU activation functions and downsampling operations.
The first convolutional block utilizes 4 × 4 convolution kernels with 64 channels and a
stride of 2 for downsampling. The subsequent two blocks further increase the number of
channels to enhance feature expression. The fourth block maintains the resolution without
downsampling to refine features. Finally, a 1 × 1 convolution kernel reduces the channel
count to 1, resulting in a binary classification output. Except for the first convolutional layer,
spectral normalization is applied to the remaining convolutional layers to enhance the
network stability. The optimization of the discriminator is conducted within the adversarial
training framework, aiming to effectively distinguish between real and generated QR codes.

3.4. Loss Functions

In the context of generative adversarial networks, the training objective of the genera-
tor network is to produce fake images that are convincing enough to deceive the discrimi-
nator. To achieve this goal, it is necessary to design a loss function that effectively guides
the generator. In this paper, a combined multi-task loss function is designed as follows:

Losstotal = α · Lossadv + β · LossSSIM + γ · LossMSE + δ · LossQR (10)

where α, β, γ, and δ are coefficients used to balance the contributions of different losses.
In this study, α = 0.1, β = 0.25, γ = 0.6, and δ = 0.05 were chosen. The setting of these
coefficients in the entire loss function is crucial for the model’s performance and stability.
Now, let us delve into the reasons behind each loss and weight configuration in more detail.

The adversarial loss Lossadv stems from the ability of the generator in a generative
adversarial network to deceive the discriminator. Its calculation formula is as follows:

Lossadv = Ex∼pdata(x)[logD(x)] +Ez∼pz(z)[log(1− D(G(z)))] (11)

where x ∼ pdata (x) represents sampling from the distribution of real QR code images,
where pdata (x) is the distribution of the original QR codes. D(x) represents the discrimi-
nator’s probability of judging the authenticity of the original QR code image. z ∼ pz (z)
represents sampling from the distribution of damaged QR code images, where pz(z) is the
distribution of damaged QR codes. G(z) generates repaired images based on the damaged
images, and D(G(z)) represents the discriminator’s probability of judging the authenticity
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of the repaired QR code images. The choice of a smaller weight (α = 0.1) is made to ensure
that in the early stages of training, the generator is not unduly affected by a significant
adversarial loss, thus preventing an early model collapse. This weight selection helps
to maintain training stability and allows the model to gradually learn to generate more
deceptive images without facing excessive penalties too soon in the process.

Structural similarity loss LossSSIM [34] is calculated using the following formula:

SSIM = 1−
(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (12)

LossSSIM = 1− SSIM+1
2 (13)

where µx and µy represent the mean values of the original and generated images, respec-
tively, σ2

x and σ2
y represent the variances of the original and generated images, respectively,

σxy represents the covariance between the original and generated images, and c1 and c2 are
stability constants. For ease of computation and utilization, LossSSIM is normalized to map
the SSIM range from [−1, 1] to [0, 1]. LossSSIM contributes to maintaining the structural
similarity between the generated images and the original images, ensuring that essential
features are preserved. The rationale behind setting this weight to β = 0.25 for this task
is rooted in the emphasis of QR code image reconstruction on preserving the structural
similarity of the images. Selecting an appropriate weight ensures that the generated images
maintain visually similar structures to the original images, consequently upholding the
readability and accuracy of the QR codes. This weight configuration underscores the
task’s focus on image structure and plays a pivotal role in upholding the quality and
recognizability of the images.

Mean squared error loss LossMSE, is calculated using the following formula:

LossMSE =
1
n

n

∑
i=1

(xi − yi)
2 (14)

where xi and yi represent the grayscale values of the i-th pixel in the original and generated
images, respectively, and n is the total number of pixels in the image. LossMSE emphasizes
pixel-level accuracy and detail retention in images. The weight setting for LossMSE (γ = 0.6)
plays a crucial role in the task by maintaining image clarity and improving image quality
in later stages of training. This high γ value ensures close alignment between generated
and target images at the pixel level, particularly preserving image sharpness. MSE loss is
vital for enhancing image quality, emphasizing its key role in the task.

QR code loss LossQR is calculated using the following formula:

LossQR =

{
similarity(Q1, Q2), if repaired QR code is readable

0, otherwise
(15)

Q1 and Q2 represent the original QR code image and the generated QR code image,
respectively. When the repaired QR code is readable, the character similarity between the
repaired and original QR codes is computed as LossQR; when the repaired QR code is not
readable, LossQR is set to 0. The LossQR is crucial for rapid model convergence during the
early stages of training. However, in the later stages of training, as most QR code images
can already be recognized but the image quality still needs improvement, the impact of
LossQR gradually diminishes. To address this, we set its weight coefficient δ to a relatively
small value (0.05) to ensure a positive effect on the model’s training during the initial stages
while avoiding excessive constraints on the model’s learning in the later stages.

The combination of multiple loss functions contributes to generating high-quality QR
code images. Among them, the adversarial loss promotes the generation of realistic images,
structural similarity loss ensures structural similarity, mean squared error loss enhances
detail restoration, and QR code loss optimizes the accuracy of information recovery.
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4. Experiments
4.1. Datasets

To train and evaluate the performance of our proposed QR code restoration model,
we created a custom dataset consisting of two main components: original QR code images
and irregular masks.

4.1.1. Original QR Code Images

In QR code restoration tasks, the error correction level and version of the QR code
play a significant role in the difficulty of the restoration. The error correction level
(L—Low; M—Medium; Q—Quarter; H—High) determines the extent of damage that the
QR code can withstand (L-7%, M-15%, Q-25%, H-30%) [35], while the version determines
the complexity and data capacity of the QR code. There are different versions ranging
from 1 to 40, each with its inherent number of modules. (A module refers to the square
black and white dots that make up the QR code.) For instance, a QR code of version 1
consists of 21 × 21 modules. To comprehensively consider the impact of these factors on
the restoration model, we intentionally created an original QR code image dataset that
includes various error correction levels (L, M, Q, H) and versions (1–5).

We employed the qrcode library in Python to generate original QR code images.
During the generation process, we set different version numbers, error correction levels,
and image size parameters to obtain diversified QR code styles. To ensure dataset diversity,
we used timestamps as the data content of each QR code, ensuring unique content for each
QR code. The generated QR code images were saved in JPEG format. By generating original
QR codes with different error correction levels and versions, we ensure dataset diversity
and generalization ability. This dataset design helps to better verify the performance of
the restoration model when dealing with various styles of QR codes, avoiding model
over-reliance on specific QR code styles. This dataset design enhances the robustness and
generalization ability of the restoration model, ensuring its capability to handle various
types of damaged QR codes in real-world applications. It is worth noting that in the
subsequent experimental evaluations, we will demonstrate the model’s performance on
QR code images with different error correction levels and degrees of damage to further
validate the effectiveness of the dataset.

4.1.2. Irregular Masks

To simulate varying levels of contamination and damage, we utilized the irregular
masks from the Irregular Mask Dataset [17]. This dataset offers masks of various shapes
and sizes, which can simulate damage and missing parts in QR code images. The dataset
covers different hole-to-image area ratios: (0.01, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.4], (0.4, 0.5],
(0.5, 0.6]. Each category contains 1000 masks with and without border constraints. We
randomly selected and applied these irregular masks to the original QR code images to
generate QR code images with different degrees of damage. The application of masks
includes covering, masking, and partial covering. By combining the original QR code
images with irregular masks, we generated a dataset of damaged QR code images with
varying degrees of contamination and random damage.

In summary, our dataset includes damaged QR code images with varying degrees
of contamination and damage, along with corresponding irregular masks for each image.
This dataset will be used to evaluate the performance and effectiveness of our proposed
restoration model.

4.1.3. Dataset Split

We followed the method described in Section 4.1.1 to generate a total of 13,800 original
QR code images and divided them into 10,000 for training and 3800 for testing.

For training, it is important to note that we used 10,000 generated original QR code
images, and in each training iteration, we randomly selected one mask image to create a
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paired damaged QR code image. This approach ensures that the damaged QR code images
used for training are not precomputed but are dynamically generated during each iteration.

For testing, to maintain fairness and stability, we employed a different method. We
initially combined the original QR code images with mask images to create the damaged QR
code dataset, which was then used for testing. Therefore, from the test dataset, we extracted
2000 images to create a contamination level test set, which was used to evaluate the model’s
performance on QR codes with different levels of contamination. Furthermore, we extracted
1800 images from the test dataset to create a random contamination level test set, which
allowed us to assess the model’s performance under random contamination levels.

Through this dataset splitting, we can assess the generalization and robustness of
the restoration model on data outside the training set. Simultaneously, the test sets with
different contamination levels and random contamination degrees provide a more compre-
hensive evaluation of the model’s performance under various scenarios.

4.2. Training Configuration and Strategies
4.2.1. Staged Training Strategy

We adopted a staged training strategy to effectively enhance the QR code restoration
performance of our model. Specifically, the training process is divided into the follow-
ing stages:

• Individual training of the edge reconstruction module. The optimizer updates only
the parameters of this module. We utilize the Canny edge detection algorithm [18] to
obtain the edge map A from the input image and edge map B from the target image.
Edge map A is used as the input, and B serves as the supervisory signal for training.
In this case, the loss function excludes the QR code loss, with the weight parameter
set to zero. This ensures that the edge restoration module can accurately restore edge
information.

• Individual training of the QR code reconstruction module. The optimizer updates only
the parameters of this module. We also acquire edge maps B from the target image
and concatenate them with the original input image along the channel dimension,
using the complete loss function for training.

• Joint training of the entire model. The optimizer updates all parameters, while keeping
the loss function unchanged. Following the phased training of the previous two
steps, the individual modules have been pre-trained effectively, and this step aims to
strengthen the collaborative effect between the two modules.

In all three stages mentioned above, we employed corresponding discriminators for
adversarial training. This essentially designs three independent GANs for training in
different stages. Such a staged strategy allows for better training of our designed EHFP-
GAN model, thus achieving superior performance in QR code restoration tasks.

4.2.2. Training Parameter Settings

During the model training process, we thoroughly considered the settings of various
critical parameters to ensure efficient and stable training, resulting in excellent QR code
restoration performance. Detailed adjustments were made in the following aspects:

We employed Adam optimizers for both discriminators and generators, with initial
learning rates set at 10−5 and 10−6. To further optimize the training process, we introduced
a learning rate decay strategy. Such settings help to maintain the stability of Generative
Adversarial Networks (GANs) and enable the model to better learn image restoration tasks.
Considering that a single GPU memory is approximately 16 GB, we set the batch size to
8. This choice aims to ensure sufficient utilization of CUDA memory space and also helps
to avoid memory-related limitations. Based on our preliminary experiments, we set the
training iteration count to 200 epochs. This setting ensures that the model fully converges
during the training process, leading to improved restoration results. Additionally, we
selected an input image size of 512 × 512. This size choice strikes a balance between
computational resources and model performance, demonstrating excellence in QR code
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restoration tasks. Through meticulous hyperparameter tuning, our objective is to achieve
efficient and stable model training, resulting in outstanding restoration performance across
various tasks.

4.3. Evaluation Metrics

The following are the objective evaluation metrics that we will use in this experiment,
along with their rationales:

• The Recognition Rate (RR) is adopted as a key quantitative metric to evaluate the
performance of QR code restoration methods. The RR is calculated as the number of
restored QR code images that are correctly recognized, divided by the total number
of damaged input images. A restored image is considered successfully recognized
only if the QR decoder can extract its original embedded information without errors.
The RR directly quantifies how well a method can recover damaged QR codes to be
identifiable again. A higher RR indicates the method restores more damaged codes to
be correctly recognized. Maximizing the RR is an important goal when optimizing
solutions for QR code restoration.

• Structural Similarity Index (SSIM) [34] compares the restored results with original
images in terms of brightness, contrast, and structure.

• L1 Error is widely used to measure the average absolute error between restored and
original images at the pixel level for evaluating reconstruction accuracy.

• Fréchet Inception Distance (FID) [36] evaluates the perceptual quality distance between
generated and real images. Compared to traditional pixel-level metrics, FID focuses
more on perceptual quality, consistent with human subjective evaluation.

• Peak Signal-to-Noise Ratio (PSNR) measures the image reconstruction accuracy by
calculating the PSNR between restored and original images. It is commonly used to
assess restoration quality.

In summary, we will primarily use RR as the main metric to evaluate model restoration
performance, along with the other four metrics for comprehensive assessment.

4.4. Comparison Models

The following is a brief introduction to the classic models used for comparison.

• Pconv [17]: Partial Convolutional Network aims to address color discrepancies both
inside and outside of the holes. By incorporating partial convolutional layers, PConv
effectively restores details and structure in damaged images.

• AOT-GAN [15]: A method based on learning aggregated contextual transformations
and enhancing discriminators for high-resolution image restoration. AOT-GAN lever-
ages a generative adversarial network framework to generate more authentic and
intricate restoration outcomes.

• Unet [37]: A classical image segmentation network model featuring an encoder–
decoder architecture. Unet performs well in image processing tasks, capturing contex-
tual information between input and output by learning their mapping, thus achieving
precise image restoration.

We selected these comparison models because of their extensive applications and
successful case studies in image processing tasks. Although research on deep learning
models for QR code restoration is relatively limited, we believe that these classic image
restoration models hold certain adaptability and potential. They serve as benchmarks
for comparison and analysis alongside our proposed method. Moreover, there are other
potential comparison models or methods worth exploring, especially those extensively
employed in analogous tasks or domains. Introducing and comparing these models will
further enrich our research and analysis.



Mathematics 2023, 11, 4349 12 of 19

4.5. Experimental Results
4.5.1. Quantitative Comparisons

To validate the effectiveness of our proposed EHFP-GAN model, this section conducts
quantitative comparisons with three representative comparative models, Pconv, AOT-GAN,
and Unet, using the designed test dataset as previously mentioned. The experimental
results are presented in Table 1. It can be observed that as the QR code hole ratio increases,
the recognition rate gradually decreases, becoming completely unrecognizable at a 20–30%
hole ratio level. Simultaneously, the variations in metrics such as L1, SSIM, and PSNR
further validate the moderate difficulty level of the dataset.

Table 1. Quantitative comparisons of the proposed EHFP-GAN with representative comparative
models. ↓ Lower values indicate better performance, while ↑ higher values denote improved results.
Best and second best outcomes are highlighted and underlined, respectively.

Masking Rate Masked Qrcode PConv [17] AOT-GAN [15] Unet [37] EHFP-GAN

RR↑

1–10% 31.45% 41.65% 79.45% 89.3% 95.35%
10–20% 2.00% 4.65% 35.9% 51.4% 67.05%
20–30% 0.00% 0.10% 6.62% 13.2% 24.45%
30–40% 0.00% 0.05% 0.70% 1.25% 4.85%
40–50% 0.00% 0.00% 0.03% 0.05% 0.10%
50–60% 0.00% 0.00% 0.00% 0.00% 0.00%

RANDOM 6.22% 8.33% 22.56% 25.61% 31.94%

PSNR↑

1–10% 18.456 18.817 26.867 29.734 33.385
10–20% 12.91 13.323 17.882 20.226 23.103
20–30% 10.451 10.892 13.905 15.818 17.905
30–40% 8.977 9.439 11.406 13.174 14.807
40–50% 7.866 8.333 9.689 11.465 12.569
50–60% 6.925 7.414 7.751 9.866 10.315

RANDOM 10.921 11.321 14.532 16.703 18.591

SSIM↑

1–10% 0.951 0.951 0.99 0.99 0.996
10–20% 0.869 0.871 0.951 0.948 0.966
20–30% 0.781 0.787 0.893 0.881 0.913
30–40% 0.702 0.714 0.824 0.799 0.837
40–50% 0.622 0.641 0.748 0.713 0.735
50–60% 0.544 0.573 0.624 0.601 0.569

RANDOM 0.746 0.755 0.838 0.823 0.837

FID↓

1–10% 0.504 0.822 0.055 0.029 0.017
10–20% 2.543 2.812 0.281 0.159 0.093
20–30% 6.295 4.575 0.85 0.512 0.34
30–40% 11.38 6.187 1.914 1.284 1.012
40–50% 18.201 9.354 3.784 2.724 2.817
50–60% 34.978 18.646 11.241 9.701 15.284

RANDOM 10.46 5.64 2.545 1.831 2.452

L1(10−2)↓

1–10% 0.029 0.022 0.009 0.007 0.005
10–20% 0.071 0.056 0.025 0.023 0.016
20–30% 0.118 0.093 0.052 0.049 0.037
30–40% 0.163 0.128 0.086 0.083 0.067
40–50% 0.209 0.164 0.124 0.122 0.108
50–60% 0.257 0.201 0.187 0.177 0.179

RANDOM 0.141 0.111 0.08 0.076 0.068

In comparison with other methods, the EHFP-GAN achieves the best performance in
terms of recognition rate. As shown in Table 1, across different levels of the QR code hole
ratio, the EHFP-GAN’s recognition rate surpasses that of the other models, reaching 95.35%
within a 1–10% hole ratio range, which is significantly higher than Unet’s second-best result
of 89.3%. Figure 3 presents a clear line chart illustrating the impact of increasing the hole
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ratio on QR code recognition rates for different models. Recognition rates for all models
exhibit a declining trend, and as the hole ratio increases, the differences in recognition
rates among the models become more pronounced. The EHFP-GAN model consistently
maintains the highest recognition rates, demonstrating its superior robustness for damaged
QR codes. Compared to other models, the EHFP-GAN achieves higher recognition rates
at higher hole ratios, especially excelling under severe damage conditions. EHFP-GAN
consistently exhibits the highest recognition accuracy across all hole ratio levels.
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In terms of restored image quality, the EHFP-GAN outperforms the other methods
in overall PSNR and SSIM indicators, indicating superior visual fidelity and structural
similarity of the generated images. For instance, at a 10–20% hole ratio level, the EHFP-
GAN achieves a PSNR of 23.103 and an SSIM of 0.966, both superior to Pconv (PSNR 20.226,
SSIM 0.948) and the AOT-GAN (PSNR 17.882, SSIM 0.951). From the perspective of FID,
our model performs optimally in the 1–40% range, while in other cases, it maintains a high
level of performance, although not the best. Concerning the L1 metric, Unet performs
better under high hole ratio conditions, whereas the EHFP-GAN shines under low hole
ratio conditions. For instance, at a 1–10% hole ratio level, the EHFP-GAN’s L1 of 0.005 is
lower than that of Unet (0.007) and AOT-GAN (0.009). Figure 4 visually demonstrates that
as the QR code hole ratio increases, the PSNR and SSIM values for all models gradually
decrease, while the FID and L1 values increase. However, it is worth noting that the
EHFP-GAN consistently delivers a top-tier performance across these metrics, especially
in the 1–40% hole ratio range. In the range of 40–60%, certain metrics may not attain their
peak performance, but they typically reach a level close to optimal. This underscores EHFP-
GAN’s exceptional ability to generate high-quality images, particularly under conditions of
low hole ratios. In the case of hole ratios ranging from 50% to 60%, several metrics, such as
SSIM, PSNR, L1, and more, as depicted in Figure 4, clearly demonstrate a tight clustering
of results for all models within a remarkably limited range. This phenomenon arises due
to the substantial occlusion experienced by QR code images in this range, resulting in
generally suboptimal performance across these models when it comes to recovering images
with such elevated levels of obstruction.
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In summary, the quantitative analysis validates that the EHFP-GAN model outper-
forms the current comparative methods in terms of recognition rate and generated image
quality, confirming its effectiveness in the realm of QR code restoration tasks.

4.5.2. Qualitative Comparisons

To intuitively demonstrate the image restoration effects of different models, we con-
ducted qualitative analysis. In Figure 5, row H shows the restoration results of each model
under conditions of high hole density. It can be seen that Pconv and AOT-GAN gener-
ated QR code images with distinct black and white colors. While Unet and EHFP-GAN
have gray areas, which is due to color deviations occurring when restoring large occluded
areas. In Figure 5, row L shows the results under conditions with scattered damage and
a moderate hole ratio. In this case, the overall color performance of the four models is
better, but the effect of the EHFP-GAN is the best. This is because the AOT-GAN and Unet
underperformed compared to the EHFP-GAN in restoring the locator area, while the latter
can perfectly restore the position and graphical structure of the locator area. As for Pconv,
although its color restoration is better, there is obvious distortion in the structure.

To validate the robustness of the EHFP-GAN model under different hole ratios, we
compared its image restoration effects at four different ratios of (1) 1–10%, (2) 10–20%,
(3) 20–30%, and (4) 30–40% (as shown in rows I–IV of Figure 6). The experimental results
show that due to the blank borders around QR code images, the actual information content
damage is more severe than the direct image damage level. Under low hole ratios, the model
can restore QR code edges relatively well. But as the ratio increases, the edge restoration
quality gradually decreases, and the images become blurred to some extent. Nevertheless,
the restored QR codes at different hole ratios can all be successfully recognized. This
result proves the robust restoration capability of the EHFP-GAN model for damaged QR
code images.

In summary, the qualitative analysis shows that the EHFP-GAN model can effectively
restore QR code images damaged to different degrees, and outperforms existing compara-
tive models in aspects of color, structure, information integrity, and especially, restoring
the locator area of QR codes better. This is consistent with the aforementioned quantitative
results, and intuitively verifies the superiority of the EHFP-GAN over comparative models.
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4.5.3. Ablation Study

To validate the effectiveness of the proposed modules, we conducted ablation experi-
ments on a subset of QR codes from the test dataset with damage levels ranging from 1% to
40%. Since the QR code reconstruction module adopts a structure similar to Unet [31], we
selected the basic module of Unet, the Double Convolution (DC Block), as the comparative
baseline in the experiments. Four network structures were constructed: one with only
the DC Block, one with only the HFP Block, one utilizing only edge information, and one
combining both the HFP Block and edge information.

Table 2 presents the QR code recognition rate, PSNR, SSIM, and other metrics for each
experimental combination. The results for the DC Block alone indicate a significantly lower
recognition rate of only 13.5% and a PSNR of 11.434, underscoring its limited capacity to
effectively restore damaged QR codes. This highlights its constraint in extracting critical
context features necessary for QR code restoration. In contrast, the HFP Block alone yielded
a notable improvement in the recognition rate, achieving 44.8%, and a corresponding PSNR
of 21.588. This substantial enhancement can be attributed to its multi-scale encoding–
decoding structure, which captures both localized patterns and global semantics essential
for reconstructing corrupted regions in the QR codes. Utilizing only edge information
also led to an increased recognition rate of 41.45%, validating its valuable contribution
during the restoration process. However, it became evident that edge information alone
is insufficient. The optimal performance was achieved when combining it with the HFP
Block’s contextual features, resulting in a recognition rate of 47.05% and a PSNR of 22.083.
This underscores the strong synergistic effect between the two components.

Table 2. Quantitative results of ablation experiment.

Edge-Net HFP Block DC Block RR↑ PSNR↑ SSIM↑ FID↓ L1↓
√

13.50% 11.434 0.781 5.645 0.106√ √
41.45% 21.124 0.914 0.411 0.037√
44.80% 21.588 0.926 0.258 0.033√ √
47.05% 22.083 0.927 0.284 0.032

In conclusion, the ablation experiments confirm the pivotal roles of the HFP Block
and edge information in enhancing model performance for QR code restoration. The
HFP Block provides essential contextual features for focusing on damaged portions, while
edges offer valuable structural guidance. Combining the two components enables the
comprehensive utilization of both local patterns and global semantics, leading to the
effective restoration of QR codes. These results provide robust support for the validity of
the proposed network design.
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5. Discussion

In this section, we will discuss the practical applications and implications of our QR
code restoration approach. While our study has achieved notable results in the field of QR
code restoration, there remain areas for improvement and further exploration.

• Real-world applications: Our QR code restoration method holds great potential for real-
world applications. The ubiquity of QR codes in various industries, including retail,
logistics, and advertising, underscores the importance of effective QR code restoration.
Specifically, our approach can enhance the readability and visual quality of damaged
QR codes, which are commonly encountered in practical scenarios. By restoring
QR codes to their original state, our technology can facilitate seamless transactions,
improve inventory management, and enhance user experiences in scanning codes.

• Impact on special QR codes: In contemporary applications, QR codes are increasingly
diverse, often incorporating images and additional elements. While our study pri-
marily focused on standard QR codes, there is a growing need to address specialized
QR codes. Future research should expand our dataset to include these unique QR
code variations, allowing our model to effectively restore a broader range of QR codes
found in real-world contexts.

• Resource optimization: The demand for computational resources during model train-
ing and restoration is an important consideration, especially for real-time applications.
We acknowledge the need to optimize algorithms and model structures to reduce
computational resource requirements. This optimization will not only improve the
real-time performance but also make our approach more accessible for a wide range
of practical applications.

• External factors: Real-world environments are often subject to external factors such
as changes in lighting conditions, which can interfere with restoration results. To
address this, we propose the incorporation of image enhancement and preprocessing
techniques that can mitigate the effects of external factors. These enhancements will
contribute to our model’s robustness in real-world scenarios.

6. Conclusions

In conclusion, our study presents a novel approach to the restoration of damaged
QR codes using generative adversarial networks and hierarchical feature pyramid mod-
ules. Our research demonstrates the effectiveness of this approach in enhancing QR code
recognition accuracy and visual quality. As QR codes continue to play a crucial role in vari-
ous industries, our technology holds promise for practical applications in retail, logistics,
and beyond.

Future research endeavors should focus on further refining restoration algorithms,
expanding datasets to accommodate diverse QR code types, optimizing computational
resource requirements, and addressing external interference. By pursuing these avenues, we
can enhance the performance and applicability of QR code restoration models, ultimately
providing improved solutions for relevant application domains.

Author Contributions: J.Z. and Z.L. worked on conceptualization, methodology, the model, and
writing—original draft preparation; R.Z. (Ruolin Zhao), Z.Z., Y.F., J.L., R.Z. (Rong Zhu) and S.L.
worked on validation and writing—review and editing. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 62373390, and in part by the Key projects of Guangdong basic and applied basic research
fund 2022B1515120059.

Data Availability Statement: Data underlying the results presented in this paper are not publicly
available at this time but may be obtained from the authors upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2023, 11, 4349 18 of 19

References
1. Jiao, S.; Zou, W.; Li, X. QR code based noise-free optical encryption and decryption of a gray scale image. Opt. Commun. 2017, 387,

235–240. [CrossRef]
2. Bai, H.; Zhou, G.; Hu, Y.; Sun, A.; Xu, X.; Liu, X.; Lu, C. Traceability technologies for farm animals and their products in China.

Food Control 2017, 79, 35–43. [CrossRef]
3. Tarjan, L.; Šenk, I.; Tegeltija, S.; Stankovski, S.; Ostojic, G. A readability analysis for QR code application in a traceability system.

Comput. Electron. Agric. 2014, 109, 1–11. [CrossRef]
4. Chen, R.; Zheng, Z.; Yu, Y.; Zhao, H.; Ren, J.; Tan, H.-Z. Fast Restoration for Out-of-Focus Blurred Images of QR Code With Edge

Prior Information via Image Sensing. IEEE Sens. J. 2021, 21, 18222–18236. [CrossRef]
5. Karrach, L.; Pivarčiová, E.; Bozek, P. Recognition of Perspective Distorted QR Codes with a Partially Damaged Finder Pattern in

Real Scene Images. Appl. Sci. 2020, 10, 7814. [CrossRef]
6. Fröschle, H.-K.; Gonzales-Barron, U.; McDonnell, K.; Ward, S. Investigation of the potential use of e-tracking and tracing of

poultry using linear and 2D barcodes. Comput. Electron. Agric. 2009, 66, 126–132. [CrossRef]
7. Chen, R.; Zheng, Z.; Pan, J.; Yu, Y.; Zhao, H.; Ren, J. Fast Blind Deblurring of QR Code Images Based on Adaptive Scale Control.

Mob. Netw. Appl. 2021, 26, 2472–2487. [CrossRef]
8. van Gennip, Y.; Athavale, P.; Gilles, J.; Choksi, R. A Regularization Approach to Blind Deblurring and Denoising of QR Barcodes.

IEEE Trans. Image Process. 2015, 24, 2864–2873. [CrossRef] [PubMed]
9. Wang, M.; Chen, K.; Lin, F. Multi-residual generative adversarial networks for QR code deblurring. In Proceedings of the

International Conference on Electronic Information Technology (EIT 2022), Chengdu, China, 18–20 March 2022; pp. 589–594.
10. Wang, B.; Xu, J.; Zhang, J.; Li, G.; Wang, X. Motion deblur of QR code based on generative adversative network. In Proceedings of

the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence, Sanya, China, 20–22 December 2019;
pp. 166–170.

11. Bertalmio, M.; Sapiro, G.; Caselles, V.; Ballester, C. Image inpainting. In Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques, New Orleans, LA, USA, 23–28 July 2000; pp. 417–424.

12. Fanous, M.J.; Popescu, G. GANscan: Continuous scanning microscopy using deep learning deblurring. Light. Sci. Appl. 2022, 11,
265. [CrossRef] [PubMed]

13. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

14. Wan, Z.; Zhang, B.; Chen, D.; Zhang, P.; Chen, D.; Liao, J.; Wen, F. Bringing old photos back to life. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2747–2757.

15. Zeng, Y.; Fu, J.; Chao, H.; Guo, B. Aggregated Contextual Transformations for High-Resolution Image Inpainting. IEEE Trans. Vis.
Comput. Graph. 2022, 29, 3266–3280. [CrossRef] [PubMed]

16. Nazeri, K.; Ng, E.; Joseph, T.; Qureshi, F.Z.; Ebrahimi, M. Edgeconnect: Generative image inpainting with adversarial edge
learning. arXiv 2019, arXiv:1901.00212.

17. Liu, G.; Reda, F.A.; Shih, K.J.; Wang, T.-C.; Tao, A.; Catanzaro, B. Image inpainting for irregular holes using partial convolutions.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 85–100.

18. Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 6, 679–698. [CrossRef]
19. Fan, Z.; Liu, Z.; Li, M. Research on QR Code Image Recognition. In Proceedings of the 2012 Second International Conference on

Electric Information and Control Engineering-Volume 01, Washington, DC, USA, 6–8 April 2012; pp. 1189–1192.
20. Gu, Y.; Zhang, W. QR code recognition based on image processing. In Proceedings of the International Conference on Information

Science and Technology, Nanjing, China, 26–28 March 2011; pp. 733–736.
21. Theljani, A.; Houichet, H.; Mohamed, A. An adaptive Cahn-Hilliard equation for enhanced edges in binary image inpainting. J.

Algorithms Comput. Technol. 2020, 14, 1748302620941430. [CrossRef]
22. Wakahara, T.; Yamamoto, N. Image processing of 2-dimensional barcode. In Proceedings of the 2011 14th International Conference

on Network-Based Information Systems, Tirana, Albania, 7–9 September 2011; pp. 484–490.
23. Yu, J.; Lin, Z.; Yang, J.; Shen, X.; Lu, X.; Huang, T.S. Generative image inpainting with contextual attention. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5505–5514.
24. Yang, C.; Lu, X.; Lin, Z.; Shechtman, E.; Wang, O.; Li, H. High-resolution image inpainting using multi-scale neural patch

synthesis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July
2017; pp. 6721–6729.

25. Telea, A. An image inpainting technique based on the fast marching method. J. Graph. Tools 2004, 9, 23–34. [CrossRef]
26. Criminisi, A.; Perez, P.; Toyama, K. Region Filling and Object Removal by Exemplar-Based Image Inpainting. IEEE Trans. Image

Process. 2004, 13, 1200–1212. [CrossRef] [PubMed]
27. Reed, I.S.; Solomon, G. Polynomial Codes Over Certain Finite Fields. J. Soc. Ind. Appl. Math. 1960, 8, 300–304. [CrossRef]
28. Shimobaba, T.; Endo, Y.; Hirayama, R.; Nagahama, Y.; Takahashi, T.; Nishitsuji, T.; Kakue, T.; Shiraki, A.; Takada, N.; Masuda, N.;

et al. Autoencoder-based holographic image restoration. Appl. Opt. 2017, 56, F27–F30. [CrossRef] [PubMed]
29. Nguyen, V.-T.; Nguyen, A.-T.; Nguyen, V.-T.; Bui, H.-A. A real-time human tracking system using convolutional neural network

and particle filter. In Intelligent Systems and Networks; Selected Articles from ICISN 2021, Vietnam, 2021; Springer: Berlin/Heidelberg,
Germany, 2021; pp. 411–417.

https://doi.org/10.1016/j.optcom.2016.11.066
https://doi.org/10.1016/j.foodcont.2017.02.040
https://doi.org/10.1016/j.compag.2014.08.015
https://doi.org/10.1109/JSEN.2021.3085568
https://doi.org/10.3390/app10217814
https://doi.org/10.1016/j.compag.2009.01.002
https://doi.org/10.1007/s11036-021-01780-y
https://doi.org/10.1109/TIP.2015.2432675
https://www.ncbi.nlm.nih.gov/pubmed/25974935
https://doi.org/10.1038/s41377-022-00952-z
https://www.ncbi.nlm.nih.gov/pubmed/36071043
https://doi.org/10.1145/3422622
https://doi.org/10.1109/TVCG.2022.3156949
https://www.ncbi.nlm.nih.gov/pubmed/35254985
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1177/1748302620941430
https://doi.org/10.1080/10867651.2004.10487596
https://doi.org/10.1109/TIP.2004.833105
https://www.ncbi.nlm.nih.gov/pubmed/15449582
https://doi.org/10.1137/0108018
https://doi.org/10.1364/AO.56.000F27
https://www.ncbi.nlm.nih.gov/pubmed/28463295


Mathematics 2023, 11, 4349 19 of 19

30. Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; Efros, A.A. Context encoders: Feature learning by inpainting. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2536–2544.

31. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

32. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.

33. Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122.
34. Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale structural similarity for image quality assessment. In Proceedings of the Thrity-

Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; pp. 1398–1402.
35. Wave, D. Information Capacity and Versions of the QR Code. 2022. Available online: https://www.qrcode.com/en/about/

version.html (accessed on 4 October 2023).
36. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale update rule converge to a

local nash equilibrium. arXiv 2017, arXiv:1706.08500.
37. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of

the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; Proceedings, Part III 18. pp. 234–241.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.qrcode.com/en/about/version.html
https://www.qrcode.com/en/about/version.html

	Introduction 
	Related Work 
	QR Code-Related Work 
	Image Inpainting Work 

	Methods 
	Edge Reconstruction Module 
	QR Code Reconstruction Module 
	Discriminators 
	Loss Functions 

	Experiments 
	Datasets 
	Original QR Code Images 
	Irregular Masks 
	Dataset Split 

	Training Configuration and Strategies 
	Staged Training Strategy 
	Training Parameter Settings 

	Evaluation Metrics 
	Comparison Models 
	Experimental Results 
	Quantitative Comparisons 
	Qualitative Comparisons 
	Ablation Study 


	Discussion 
	Conclusions 
	References

