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Abstract: Accurate load forecasting can bring economic benefits and scheduling optimization.
The complexity and uncertainty arising from the coupling of different energy sources in integrated
energy systems pose challenges for simultaneously predicting multiple target load sequences. Exist-
ing data-driven methods for load forecasting in integrated energy systems use multi-task learning
to address these challenges. When determining the input data for multi-task learning, existing
research primarily relies on data correlation analysis and considers the influence of external envi-
ronmental factors in terms of feature engineering. However, such feature engineering methods lack
the utilization of the characteristics of multi-target sequences. In leveraging the characteristics of
multi-target sequences, language generation models trained on textual logic structures and other
sequence features can generate synthetic data that can even be applied to self-training to improve
model performance. This provides an idea for feature engineering in data-driven time-series forecasting
models. However, because time-series data are different from textual data, existing transformer-based
language generation models cannot be directly applied to generating time-series data. In order to
consider the characteristics of multi-target load sequences in integrated energy system load forecasting,
this paper proposed a generative tractive network (GTN) model. By selectively utilizing appropriate
autoregressive feature data for temporal data, this model facilitates feature mining from time-series
data. This model is capable of analyzing temporal data variations, generating novel synthetic time-series
data that align with the intrinsic temporal patterns of the original sequences. Moreover, the model can
generate synthetic samples that closely mimic the variations in the original time series. Subsequently,
through the integration of the GTN and autoregressive feature data, various prediction models are
employed in case studies to affirm the effectiveness of the proposed methodology.

Keywords: generative tractive network; integrated energy system; feature mining

MSC: 37M10

1. Introduction

With the improvement in the efficiency of sustainable energy utilization in integrated
energy systems, research related to integrated energy systems has become a trending topic.
Consequently, load forecasting in integrated energy systems has also become a focal point
of research. For energy systems, accurate load forecasting equals better economic benefits
and more convenient optimization scheduling. However, load forecasting in integrated
energy systems is not limited to multiple energy objectives. It also involves coupling
between these objectives due to the interconversion of multiple energy sources within the
system. From Figure 1, it can be seen that the energy conversion in the integrated energy
system is very complex. This coupling, combined with the inherent random fluctuations in
load, makes accurate multi-objective forecasting more challenging [1].

Multi-task learning provides a framework for addressing the multi-energy load time
series in integrated energy systems, allowing for learning different energy coupling rela-
tionships through information exchange. To enhance the accuracy of multi-task learning,
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various statistical methods [2,3] and machine learning techniques such as feature selection,
training methods, feature extraction, attention mechanisms, data augmentation, and oth-
ers [4–8] can still be effective. However, for multi-energy load time series in integrated
energy systems, their sequence characteristics are also essential information. The above
methods do not improve model performance based on sequence characteristics. Analyzing
the sequence characteristics of multi-objective time series means that the model can gener-
ate new time series from the original time series. This new time series must be related to the
original time series to have an impact on the prediction model and improve its performance.
Therefore, the key question is how to use a generation model to learn the characteristics of
multi-target time series to achieve the desired effect.

Figure 1. Conversion of multi-energy source in integrated energy system.

In recent years, language generation models have made significant progress in analyz-
ing sequence structures. Language models are capable of generating lengthy sentences by
taking lengthy sentences as input, which includes both multi-task learning and leveraging
information between long sentence inputs. For textual sequence data, existing language
generation models based on the transformer architecture [6] have achieved significant com-
municative capabilities. This demonstrates that generative models can be used to analyze
structured sequence data and generate new sequence data. Moreover, in the field of natural
language processing, the training process of language models has shown that the data
generated by the language model itself can be used to further train the model, improving
its performance. Hence, it is plausible that time-series data generated by generative models
can also be employed to enhance the performance of time-series forecasting models. How-
ever, unlike text sequence data, which often have large-scale training data, time-series data
are typically of smaller scale. Furthermore, it is crucial to note that time-series data often
represent the outcomes of complex systems evolving over time. This is quite different from
text sequence data, which typically exhibit strong logical structures like word connections.
Unlike language generation models that can generate new content, time-series generation
models face the challenge of lacking training labels due to the difficulty in analyzing the
structure of complex systems.

In the field of computer vision, existing research has cleverly used the discrimination
between real and fake data to address the issue of training generation models without
sufficient labels. Generative adversarial networks (GANs) [9] rely on adversarial learning
between two networks. In this framework, the generator model is trained to produce sam-
ples that closely resemble real data samples, usually from a random standard distribution.
However, GANs have primarily found applications in image generation and classification
tasks and are not well suited for continuous sequence data regression problems. The main
goal of this paper is to design a generative model based on the principles of GANs that can
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analyze the characteristics of multi-target time series. This approach generates artificial
synthetic data that can be used to enhance the performance of load forecasting models in
integrated energy systems.

The primary contribution of this paper lies in proposing a generative tractive network
(GTN) model, comprising both a generative model and a tractive discriminative model, for
feature mining on multi-target time-series data. The model leverages the autoregressive
feature samples constructed based on time-series characteristics to capture specific time-
series patterns. These autoregressive feature samples are then applied to the generative
model to generate artificial synthetic data that reflect the analysis of the original time-series
data. The process of the GTN can be seen as a process of obtaining an inverse mapping,
where a fixed mapping model is used to train the generative model. This process is referred
to as tractive learning. Using the above artificially synthesized time-series data results in
an improvement in the performance of integrated energy system load forecasting models
and enhances the robustness of the forecasting models.

2. Related Work

Integrated energy systems have strengthened their utilization of renewable energy
while also introducing uncertainty and complexity [10,11]. Concerning load forecasting in
integrated energy systems, various approaches have been employed to enhance prediction
models, and the key is how to leverage the interaction of information between multiple
energy sources while enhancing multi-task learning efficiency. For instance, in the study
by [12], a K-means algorithm is utilized to extract user characteristics within an integrated
energy system, followed by the application of deep belief networks for load forecasting.
In [13], a hybrid model combining CNN and GRU is employed for feature extraction, and
ensemble learning techniques are applied to improve multi-task learning prediction accu-
racy. Reference [14] leverages historical data, weather data, date data, and socioeconomic
data as input features. Bootstrap resampling is employed along with machine learning
methods for multi-task learning. In [15], the maximal information coefficient (MIC) is
used to analyze coupling relationships between different components of integrated energy
systems, which determine the inputs for the relevant model. Additionally, weather data
features are incorporated, and the dataset is partitioned by season to enhance multi-task
learning accuracy. Reference [16] employs Pearson coefficients to analyze the coupling
relationships between various components of an integrated energy system. They utilize a
parallel architecture involving CNN and GRU, allowing different features to be input from
both ends and eventually combined through a fully connected layer to accomplish multi-
objective forecasting tasks. Similarly, in [17], which also employs a parallel architecture
with CNN and sequential networks, batch normalization layers are integrated to create a
deeper prediction model for improving performance. Reference [18] adopts a multi-task
learning approach alongside support vector machines to simultaneously analyze the cou-
pling relationships among multiple energy sources. In [19], a combination of CNN and
BiGRU, coupled with attention mechanisms, serves as a multi-objective prediction model.
Multi-task loss functions are then optimized to achieve superior prediction performance.
Reference [20] constructs multiple data compositions using various features derived from
time series, statistics, and temporal changes. Weak learning models are developed for
feature extraction, and these models are eventually integrated into the prediction model,
leading to enhanced performance. Lastly, in [21], a wavelet transform is applied to decom-
pose time-series data, and different prediction models are employed for high-frequency
and low-frequency components. The results are then aggregated to produce multi-source
load forecasts.

Regarding load forecasting in integrated energy systems, most of the cited literature
employs approaches that analyze the data correlations specific to certain time series or use a
combination of basic models to create complex models in order to enhance prediction model
performance. For example, these approaches involve calculating data correlations [15,16],
historical data correlations [14], time-series pattern correlations [3], environmental corre-
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lations [15,16], date correlations [15], algorithmic feature extraction [8,12], and complex
modeling techniques [17].

In summary, the existing research on multi-objective load forecasting in integrated en-
ergy systems combines various methods such as time-series analysis, analysis of integrated
energy system characteristics, and machine learning methods. However, due to the inher-
ent complexity of integrated energy systems [10,11], it is challenging to precisely analyze
the entire system from within. While current research employs various correlation-based
feature extraction methods, these methods may not fully capture the intricacies of complex
system behaviors [22]. Furthermore, increasing the complexity of prediction models both in-
creases computational costs and cannot guarantee the improvement of model performance
on small-scale time-series data. Moreover, complex models need more hyperparameter
tuning and optimization challenges. Particularly in the optimization of hyperparameters,
small-scale time-series data can lead to issues of underfitting or overfitting in complex
models, resulting in poor generalization accuracy of prediction models.

The existing different prediction models use data in the methods illustrated in Figure 2.
Statistical models combine historical data and fluctuations for forecasting, while machine
learning models utilize features with high correlations for feature extraction to complete
predictions. This is all due to the difficulty in analyzing and describing the results of
complex systems, where it is challenging to find a clear mathematical relationship between
independent variables and predictions. In integrated energy systems, multiple energy
sources such as electricity, heat, cold, and gas not only undergo mutual conversion but also
exhibit their own fluctuations over time. It is challenging to establish coupling relationships
for multi-objective analysis or mathematical descriptions that can be used for predictive
modeling in complex systems. Even in integrated energy systems, where energy load can
be viewed as a result of human activities, this merely transforms one complex variable
into another, providing little help for prediction. However, attempting to analyze the
characteristics of multi-energy target sequences from the perspective of a generative model,
as shown in Figure 2, to obtain a new time series that can be mapped to the original
multi-target time series, has yielded a desired method’s effect.

Recent literature [23] has shown that artificial data generation can enhance model
performance. By constructing specific time-series data, the proposed GTN can achieve
the above objectives. The advantage of the GTN lies in the fact that they do not require
the design of complex network structures, time-consuming hyperparameter tuning, or the
search for additional high-correlation data to increase input features. Instead, they directly
analyze multi-energy target time sequences to generate artificially synthesized data that
can improve predictive model performance.

Figure 2. Description of the characteristics of different methods.
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3. Analysis of Multi-Objective Time Series in Integrated Energy System

In order to ensure the specificity of the proposed GTN for multi-objective time series within
integrated energy systems, specific steps are taken in both data preprocessing and the training
data composition of the GTN. In data preprocessing, the amplitude differences of various
energy sources are harnessed. During the training phase of the GTN, data with the capability to
recognize temporal data patterns is employed. The detailed procedure is as follows.

3.1. Data Source

The data for this study were obtained from [24], consisting of original cold, heat,
and electricity load data sampled at an hourly frequency for the year 2022. The dataset
comprises a total of 8760 time points. However, for machine learning models, including
neural networks, this sample size is relatively small. Regarding small datasets with a
sample size smaller than 10,000, a split of 70% for training and 30% for validation was
employed [25], while the testing set comprises the initial two weeks of the year 2023.
Any anomalies present in the original load data due to sensor malfunctions or unforeseen
circumstances have been treated through interpolation. The load is standardized in kilowatt
(KW) units, and for precise unit conversions, refer to the explanations provided in [24].

3.2. Data Preprocessing

For machine learning, integrated energy system load prediction is evidently a multi-
task learning problem, where the model needs to simultaneously learn from multiple
historical datasets and predict the load values of multiple energy sources at a specific time
point. Existing research in multi-task learning often involves normalizing different energy
source data separately [15,16]. If the amplitude and trend of load variations for different
energy sources are similar, separate normalization of different energy source data can aid
in the learning process of predictive models. However, if there are substantial differences
in the amplitude and trend of load variations among different energy sources, separate
normalization may constrain the learning capacity of the model.

As depicted in Figure 3, within the multi-energy load data employed in this paper,
the amplitude of heat load differs significantly from that of electricity and cooling load.
Moreover, throughout most of the year, the amplitude variations of the heat load remain
relatively consistent compared to other loads. This situation results in the heat load being
of relatively secondary importance in multi-task learning predictive models. Furthermore,
from the data visualization, it is evident that there are abrupt variations in the amplitude
of the heat load during specific periods in 2022. If separate normalizations are applied to
different loads, the abrupt variations in the heat load trend are more significant compared
to the gradual variations observed in electricity and cooling loads. This could potentially
affect the learning process of multi-tasking.

Therefore, after converting the load units into a unified standard, the data normaliza-
tion approach adopted in this study takes into account the distinct electricity, cooling, and
heating loads. The specific procedure is as follows:

x =
x− xmin(heat)

xmax(cool) − xmin(heat)
(1)

x =
x− xmin(heat)

xmax(cool) − xmin(heat)
(2)

where xmax(cool) represents the maximum value among the three types of loads (electricity,
cooling, and heating), and xmin(heat) represents the minimum value among these three
types of loads. This normalization approach serves the dual purpose of both reflecting the
dominant role of data with larger amplitudes in the aforementioned multi-task learning and
mitigating the influence of the significant fluctuations in heat load on multi-task learning
within this dataset. In Figure 4, the overall trend obtained from this normalization is shown.
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Figure 3. Normalized multi-load curves for the year 2022. In the image, ”KW” represents electrical
energy, ”CHWKW” represents cooling energy, and ”HTKW” represents heating energy. All three of
them are measured in kilowatts (kW).

Figure 4. Total load curve for the year 2022.

3.3. Autoregressive Feature Data

For time-series prediction, historical data can significantly enhance predictive model
performance. In [14], only the load value at the previous time step and other simultane-
ously related features are utilized for predicting the subsequent time step. In [13], feature
extraction is performed using the load data from the previous four hours, combined with
data from the current time point for prediction. In [16], different loads and a sequence of 24
time steps are employed as a two-dimensional feature vector, which is subjected to feature
extraction using convolutional neural networks. In [15], the utilization of historical data is
carried out as follows:

[xt−8760, xt−168, xt−24, xt−2, xt−1]→ xt (3)

The aforementioned studies indicate that existing research primarily focuses on utilizing
historical data from related time steps for predicting the target. However, the primary
objective of this paper is to analyze current time-series data and generate new time-series
data. In classical statistics, the autoregressive (AR) component of the ARIMA model [26]
relies on historical sampled values at certain time intervals for future estimation, reflecting
time-series variations through continuous time steps of historical data. Thus, to ensure
that data features capture time-series characteristics, constructing autoregressive feature
data can involve selecting fixed time steps. The specifics of an individual sample can be
described as follows:

[xt−n, xt−(n−1), . . ., xt−2, xt−1]→ yt−1 (4)

Here, xt−1 represents the load sampled value at time point t− 1, n denotes the chosen
time step length, and yt−1 signifies the newly generated data at time point t − 1. The
autoregressive feature sample can be conceived as generating new data related to such
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temporal variations for the current time point by incorporating historical sampled values
from n time steps, including the current time step. Through this approach, the original time
series can generate new time series with a length smaller than the original by n− 1.

For similar reasons as discussed above, despite not satisfying the independent and
identically distributed (i.i.d) condition, autoregressive feature samples can be directly
employed for predictive modeling in machine learning data. A single sample used for
prediction can be described as follows:

[xt−n, xt−(n−1), . . ., xt−2, xt−1]→ xt (5)

where the data on the left-hand side remain consistent as described earlier, with xt denoting
the time-series value at the next time step.

By transforming time series within a certain time step into data samples, this emphasis
on how sequences change within a specific range will be applied to the subsequent GTN
and predictive model in this paper.

4. Feature Mining Based on GTN

The generative adversarial network (GAN) [9] leverages concepts from game theory,
employing a generative model and a discriminative model in a competitive process of dis-
tinguishing between real and fake instances. Through iterative optimization, the generative
and discriminative models enhance each other’s performance, ultimately enabling the gen-
erative model to produce samples surpassing the discriminative model’s capabilities. This
can be understood as fostering a “collaboration” between the two models during the overall
training process. For specific time series, this paper draws upon this concept and employs
autoregressive feature data to construct a generative tractive network (GTN) by incorporating
a generative model (netG) and a discriminative model (netD) for time series feature extrac-
tion, as depicted in Figure 5. The generative model generates new artificial data while the
discriminative model assesses whether the new data can replicate the original samples. The
training of the generative model is guided by the feedback from the discriminative model’s
outcomes. This model is referred to as the generative tractive network (GTN).

Figure 5. Generative Tractive Network.

4.1. Principle of the Generative Tractive Network

In the context of a generative tractive network, the term ”tractive” can be understood
as follows: when dealing with time-series data, the goal is to use a generative model to
produce new time-series features that can map to the original time series. However, a
generative model lacks its own labels and cannot be trained solely on its own. Therefore, in
such cases, another network with labels can be used. This additional network updates itself
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while simultaneously assisting in the training of the generative model. This process, where
a labeled model is used to train the generative model and steer it in the desired direction, is
what is meant by “tractive”.

The distinctions between tractive learning and adversarial learning within the realm
of generative models are illustrated in Figure 6. In adversarial learning, the generative
model generates fake samples from a random standard distribution, and the role of the
discriminative model is to distinguish between real samples (labeled as 1) and the fake
samples produced by the generative model (labeled as 0). The discriminative model’s
classification task drives the training of the entire adversarial network. In an ideal scenario,
a trained discriminative model is unable to differentiate between real samples and fake
samples generated by the trained generative model, resulting in the discriminative model’s
recognition probability for a mixed real–fake sample being approximately 1

2 , akin to random
guessing.

Figure 6. Difference between adversarial and tractive: (a) adversarial learning (b) tractive learning.

In tractive learning, the generative model’s objective is to analyze the original data
and generate new data y highly correlated with the original data. On the other hand, the
tractive discriminative model’s role is to determine whether this new data y can generate
the original analyzed sample. Assuming θ represents the model parameters, ideally, the
generative model function fG(x, θ1) and the tractive discriminative model function fD(y, θ2)
should exhibit an inverse relationship. The newly generated data y by the trained generative
model should be transformable back to the original samples, implying that this new data y
are deemed highly related to the original samples.

Throughout the training process, the labeled tractive discriminative model determines
the unlabeled generative model, facilitating the iterative updating of the entire network’s
parameters.

The role of GAN lies in facilitating adversarial learning between networks. This
enables the generative model to create convincingly realistic fake samples from standard
distribution data, and these deceptive samples, representing patterns of the original images,
can be employed for subsequent training stages. On the other hand, GTNs leverage tractive
learning between networks, enabling the generative model to analyze the changing patterns
in the original time-series data. This analysis leads to the creation of new model-analyzed
data, which, in turn, can generate high-precision artificial time series samples that closely
resemble the variations in the original time series. All these novel data can be harnessed to
enhance the performance of the subsequent predictive model.
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Due to its reliance on principles from game theory, the GAN employs an objective
function that embodies the adversarial process between the generative and discriminative
models. This function is explicitly formulated as follows:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)]

+Ez∼pz(z)[log(1− D(G(z)))]
(6)

In the GTN, the intention is to leverage the discriminative model to guide the training
process of the generative model. Therefore, the objective function reflects the process in
which the discriminative model guides the generative model. This objective function can
be represented as follows:

min
G

min
D

V(D, G) = Ex∼pdata(x)[D(G(x))− x]2

+Ex∼pdata(x)[G(D(G(x)))− G(x)]2
(7)

From the objective function, it is evident that by optimizing the discriminative model, the
generative model is further trained to generate new features are correlated with the original
data distribution. The flowchart of the GTN can be found in Figure 7, and the algorithm
pseudo-code is provided in Algorithm 1.

Algorithm 1 Minibatch Adam training of generative tractive network.

• Through time steps n sample onebatch of n features [xt−n, . . . , xt−1] from time series.
for number of training iterations do

• Sample minibatch of m examples {x(1), . . . , x(m)} from data generating distribution
pdata(x).
• Update netD by descending its gradient:

∇θd
1
m ∑m

i=1 [D(G(x(i)))− x(i)]2

• Use the updated netD update the generator by descending its gradient:
∇θg

1
m ∑m

i=1[G(D(G(x(i))))− G(x(i))]2

end for

The explanation of Figure 7 is as follows. First, construct autoregressive feature data
that reflects the characteristics of multi-energy load sequences. The data are forwarded
through the generative model netG to obtain the output of the generative model (OutputG).
OutputG forwards through the tractive discriminative model netD, trained with the original
time-series data as labels. OutputD, obtained by passing OutputG through the trained
tractive discriminative model netD, serves as new data. This new data are used to train the
generative model netG, considering OutputG as the label. Finally, observe whether the loss
of the generative model (lossG) and the loss of the guidance identification model (lossD)
approach zero. If the conditions are met, the training ends; otherwise, repeat the above
training steps.
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start

AR feature
dataset

Forward netG
get outputG

Forward netD
train netD

Repassed trained
netD get outputD

Train netG with
outputD and outputG

lossG and lossD < ε

stop

no

yes

Figure 7. Flow chart of generative tractive network.

4.2. Feature Mining

For the generative model netG responsible for generating artificial features, this study
employs the gated recurrent unit (GRU) sequence model [27]. This choice is attributed to
the utilization of an additional input hidden state “h” of the sequence model during the
GTN training process, which prevents the model from getting trapped in local minima
during the initial phases of training. The discriminative tractive model netD is selected
to be a multi-layer perceptron (MLP) with two hidden layers, each containing a variable
number of neurons chosen from the range of [40, 30]. The loss function for the network is
chosen as the mean squared error (MSE), often referred to as L2 loss.

After 250 epochs of iteration, the mean squared errors (MSEs) of netG and netD are
presented in Table 1. The generated artificial features are shown in Figure 8.

Table 1. The loss of netG and netD.

Epoches LossG LossD

250 0.00020 0.00012
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Figure 8. The artificial features generated by netG.

Regarding the artificial features obtained by netG from the data, these features are
capable of generating the original data. In Figure 8, it can be observed that in features with
significant fluctuation amplitudes, the network captures the overall variations of the original
time series. Initially, there is a presence of seasonality, followed by an upward trend over time.
After reaching a peak usage period, there is a subsequent downward trend. For the other
two features with smaller fluctuation amplitudes, the model also captures a certain level of
seasonality and exhibits a consistent downward trend, similar to the previous feature.

From Figure 9, it can be clearly seen that the artificially generated features capture the
overall trend of the load. Additionally, it can be observed that both the artificially generated
features and the average load curve appear very dense. This is because the load always
follows a pattern of being high during the day and low at night, and there are no large-scale
sudden changes within a period of time. This phenomenon indicates that the network has
learned the seasonality of the load.

The generated artificial samples are depicted in Figure 10. From Figure 10, it can be
observed that the artificial samples obtained through artificial features largely capture the
seasonality and trends of the original time series. However, the model’s performance is
suboptimal during peak hours.

The newly added Table 2 shows the different statistical indicators between artificially
generated samples and the original multi-energy time series. Regarding the averages, the
generated electrical load and cooling load have averages of 0.305 and 0.375, respectively,
which are close to the actual loads’ averages of 0.312 and 0.389. However, the generated
heating load has an average of 0.030, while the actual load has an average of 0.024, which is
not ideal. This discrepancy is due to the data preprocessing method adopted in this study to
reduce the impact of the heating load. Regarding the maximum values, the generated loads
are 0.432, 0.789, and 0.053, while the actual loads are 0.581, 1.0, and 0.070, respectively. It can
be observed that the network’s performance is relatively poor in replicating peak values,
indicating that the network struggles to learn extreme energy consumption patterns. Similar
phenomena are observed in the representation of minimum values. The performance in
maximum and minimum values also affects the variance, making the generated samples’
variances smaller than those of the actual loads. Finally, the generated samples exhibit
performance close to the actual loads across various quantiles, even for the heating load.
Therefore, these samples can be utilized as new training samples for predictive models.
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Figure 9. Comparison between artificially generated features and the 2022 total mean load curve.

Figure 10. The artificial samples generated by netD.

Furthermore, because this paper uses the sequence model GRU as the generative
model, the outputs of the generative model also include the hidden state outputs h. The
GRU hidden state outputs of the generative model are shown in Figure 11. When combined
with the unified unit 2022 multi-energy average curve in Figure 12, it can be observed that
despite the differences in amplitude range, the two exhibit highly similar trends. This also
indicates that the GRU generative model, in the process of analyzing the original data,
captures the overall trends of the original multi-energy time series.

Table 2. Comparison between artificially generated samples and the original multi-energy time series.

Mean Std Min 25% 50% 75% Max

Artificial electricity 0.305 0.048 0.202 0.267 0.297 0.343 0.432

Original electricity 0.312 0.069 0.136 0.259 0.291 0.359 0.581

Artificial cool 0.375 0.191 0.096 0.205 0.336 0.521 0.789

Original cool 0.389 0.220 0.076 0.198 0.334 0.567 1.000

Artificial heat 0.030 0.008 0.016 0.024 0.028 0.036 0.053

Original heat 0.024 0.011 0.000 0.0162 0.019 0.031 0.070
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Figure 11. The output h of the generative model GRU hidden state.

Figure 12. The unified unit multi-energy average curve in 2022.

5. Case Study

In the case study, this paper chooses to combine the GTN and GRU prediction model.
Other compared prediction models include the GRU without the additional GTN component,
non-sequential neural networks MLP, and other complex models proposed in previous literature.
Additionally, this paper will analyze the impact of autoregressive data on the robustness of the
prediction models. The specific experimental settings are as follows.

5.1. Experiment Setting

In order to validate the effectiveness of the proposed approach, this paper’s prediction
model will refrain from extensive optimization of most hyperparameters. All hyperparam-
eters except for the autoregressive time step length will be randomly selected. The specific
choices of parameters and model selection are outlined as follows:

• The autoregressive time step length is uniformly set to 24, as load variations exhibit at
least a daily seasonality.
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• The prediction model selects the sequence model gated recurrent unit (GRU) or a
multi-layer perceptron (MLP) with two hidden layers.

• The dimension of the GRU sequence is set to 24.
• The MLP has two hidden layers with neuron counts of [40, 30], and ReLU activation

functions are used. Given that load values are positive, the output layer’s activation
function is chosen as the Sigmoid function.

• The batch size is fixed at 24.
• A single loss function, L1 loss (MAE), is selected. The overall loss function for multi-

task target prediction is formulated as follows:

Loss =
n

∑
i=1

wi(t)Li (8)

Here, n represents the number of multi-tasks, and wi(t) and Li denote the weight
parameters and the loss function of the i-th task, respectively.

5.2. Multi-Objective Prediction Using GTN

The GTN has the capability to synthesize new features and samples, which provides
more flexibility in data feature engineering. Depending on the composition of different
time-series data, various artificially synthesized quantities can be employed to enhance
the performance of prediction models. In this study, we conducted experiments using
two different approaches for constructing time-series data: using only the historical data
from the previous time step or utilizing the autoregressive feature data. The corresponding
experiments are outlined below.

5.2.1. Predicting the Next Time Step Using Only the Historical Data from the Previous
Time Step

Reference [15] proposed a comprehensive prediction method based on multi-task
learning and bidirectional long short-term memory (MT-BiLSTM) networks for multi-
source load data from the same system in the years 2016 to 2019. The performance of this
method on the dataset used in this paper is shown in Table 3. Figure13 demonstrates the
fitting performance of this prediction method on the test set, showing significant deviations
in the fitting for the cooling load. It can be observed that even though the model is relatively
complex, it exhibits suboptimal performance on a small-scale dataset. This phenomenon
can be attributed to the limited number and features of the samples.

Table 3. Experimental results.

Eletric Load Cooling Load Heating Load
Val MAPE Test MAPE Val MAPE Test MAPE Val MAPE Test MAPE

GTN-GRU 2.53% 2.17% 2.77% 2.79% 4.16% 4.03 %

GRU 2.72% 2.32% 4.20% 3.08% 4.73% 4.62%

GTN-MLP 2.82% 2.32% 5.22% 4.46% 4.21% 4.41%

MLP 4.10% 4.48% 6.02% 5.25% 7.02% 8.21%

The predictive model in
reference [15] 5.06% 5.45% 9.26% 6.58% 6.11% 5.01%

The highest accuracy in the same column is indicated in bold.

GRU utilizing the GTN and the results of comparative experiments are also presented
in Table 3. The chosen error metric remains mean absolute percentage error (MAPE).

From the experimental results, it is evident that when only the historical sampling
values of the previous time step are used as features, the GRU model shows an improve-
ment in predictive generalization accuracy after undergoing data analysis with GTN. The
improvement of the GTU-GRU model, in comparison to the GRU model, is particularly
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pronounced for the cooling load prediction. This collectively indicates that the feature
mining method based on GTN effectively enhances the predictive model performance.
Additionally, with the introduction of new data, there is no noticeable fluctuation in the
predictive accuracy of the multi-objective predictions. This further suggests that the GTN
feature mining method contributes to an increased robustness in the predictive model.
Furthermore, among all the model comparisons, the GTN-GRU model achieved the best
prediction accuracy for all three energy sources, demonstrating the effectiveness of the ap-
proach presented in this paper. Figure 14 illustrates the fitting performance of the proposed
GTN-GRU method on the test set, showing no significant deviations in the fitting for the
three different energy loads.

Figure 13. Performance of MT-BiLSTM in [15] on test set.

Figure 14. Performance of GTN-GRU on test set.
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In addition, compared to the GRU model, the non-sequential MLP model performs
poorly on the test set. However, by adding the GTN module, it can be observed that not
only is the prediction accuracy of all three loads improved, but the prediction accuracy
of the electric and thermal loads is also very close to the performance of the regular GRU
model. This indicates that the proposed GTN model has an accuracy improvement effect
even for non-sequential models.

5.2.2. Autoregressive Feature Data Prediction Model

Autoregressive feature data can be used not only for temporal feature mining by
GTN but also for training prediction models. While examining the performance of the
autoregressive feature data prediction model, this study also assesses the robustness of the
model using the artificially generated features (add feature) and artificial samples (add
sample) obtained through GTN. The specific experimental results are presented in Table 4.

From the experimental results, it can be observed that using the original dataset
alone, the autoregressive feature construction model exhibits decent accuracy performance,
aligning with the conclusion that autoregressive features can better capture historical data
patterns. However, as shown in Table 4, when different amounts of artificial data are added,
hardly any model exhibits stable performance in terms of generalization metrics. The
performance of the autoregressive feature construction model starts to become unstable.
This is attributed to the significant use of historical data as features, which violates the prin-
ciple of i.i.d data. Consequently, the model’s robustness is compromised, and fluctuations
in prediction results arise when the data changes. In this paper, autoregressive data are
applied in the generative model to produce analytical results of the original time series.
These results are utilized as new data features for training predictive models. Furthermore,
this paper only predicts the next moment using the current time point. The theoretical
basis for improving model robustness through artificially generated data can be found
in reference [23]. Overall, this study opted for trading computational cost for improved
prediction accuracy and ensured model robustness. Given that the training dataset in this
study is relatively small, the increase in computational cost is acceptable.

Table 4. AR feature data experimental results.

Electric Load Cooling Load Heating Load
Val MAPE Test MAPE Val MAPE Test MAPE Val MAPE Test MAPE

AR feature MLP 2.66% 2.26% 3.20% 3.15% 5.5% 5.17%

AR feature MLP (add sample) 2.73% 2.38% 2.99% 3.20% 4.05% 3.75%

AR feature MLP (add feature) 2.89% 3.24% 2.68% 3.16% 9.89% 8.25%

AR feature GRU 2.69% 2.45% 3.94% 2.91% 6.02% 3.51%

AR feature GRU (add sample) 2.93% 2.22% 4.78% 3.36% 12.58% 3.70%

AR feature GRU (add feature) 5.09% 3.30% 4.91% 4.12% 9.52% 10.31%

The highest accuracy in the same column is indicated in bold.

6. Conclusions

This paper proposes a feature mining approach based on a generative tractive network
(GTN) to address the multi-objective time-series prediction problem in integrated energy
systems. By constructing autoregressive feature data to express time-varying patterns, such
data, although directly applicable to predictive models, can lead to decreased robustness
due to severe violations of the i.i.d condition. Therefore, they are not suitable for combining
with other feature engineering methods. However, data with such evident sequential
characteristics can be used for training generative models. Based on multi-task learning,
the GTN model proposed in this paper analyzes multi-objective time series in integrated
energy systems. The analysis results generated by the generative model are used by the
tractive discriminative model to determine whether they can map to the original time series.
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Ultimately, the generative model and the tractive discriminative model approximate an
inverse mapping relationship, and the artificially synthesized data generated by both are
highly related to the original time series. After adding artificially synthesized data, the
performance and robustness of the predictive model are both improved.
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