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Abstract: Evaluating the failure probability of a system is essential in order to assess its reliability. This
probability may significantly depend on deterministic parameters such as distribution parameters
or design parameters. The sensitivity of the failure probability with regard to these parameters
is then critical for the reliability analysis of the system or in reliability-based design optimization.
Here, we introduce a new approach to estimate the failure probability derivatives with respect to
deterministic inputs, where the bias can be controlled and the simulation budget is kept low. The
sensitivity estimate is obtained as a byproduct of a heteroscedastic polynomial regression with a
database built with simulation methods. The polynomial comes from a Taylor series expansion of the
approximated sensitivity domain integral obtained with the Weak approach. This new methodology
is applied to two engineering use cases with the importance sampling strategy.

Keywords: failure probability; reliability-based sensitivity analysis; local sensitivity; heteroscedastic
polynomial regression

MSC: 65C05; 26A24

1. Introduction

In many scientific fields, a complex system is often modeled with a function g expected
to simulate the behavior of the system. The output Y = g(s, X) of this function is the
observed response, where s ∈ Rp and X ∈ Rd denote, respectively, the deterministic inputs
and the random inputs of g. The deterministic inputs s can either be distribution parameters
of the random variable X or design parameters of g. Function g is not analytically known
but can be called for any input values (s, X) where g is defined. The failure of the system
is then characterized by a negative value of the observed response, Y, and g is referred to
as the limit state function (lsf). The estimation of the failure probability Pf = P(Y < 0)
provides crucial information about the reliability of the system but it greatly depends on
the settings of the different inputs. The study of the influence of the inputs of g on Pf is the
purpose of reliability-based sensitivity analysis (RSA) [1].

In this article, we uniquely focus on local RSA. The local method consists of computing
the derivatives of Pf (s) according to s for a fixed value of s. The local sensitivity of Pf , with
regard to the distribution parameters, provides valuable information about the influence of
the probabilistic model selected for the random inputs on the system’s failure occurrence [2].
Whereas the local sensitivity of Pf with regard to the design parameters can be of great use
for reliability-based design optimization (RBDO) [3].

The derivatives of Pf with regard to the design parameters of g necessarily lead to
surface integrals [4]. However, the derivatives of Pf , with regard to distribution parameters
of X, are either domain integrals in the original input space [5] or surface integrals if
a standardized input space is considered. Domain integrals are much easier to handle
than surface integrals; nevertheless, the literature on failure probability estimation in
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standardized spaces is more luxuriant than in the original input space [6]. The main
challenge of the estimation of the derivatives with respect to s, no matter its nature, is
to increase as little as possible the simulation budget required for the estimation of the
probability of failure Pf (s). Consequently, it is assumed that the computation of this
sensitivity reuses as much as possible the evaluations of the limit state function needed for
the computation of Pf . In other words, it is uncommon to estimate Pf and its derivatives in
different input spaces, as the limit state functions differ. In this paper, a new approach to
compute the failure probability sensitivity in the standard normal space is presented. This
new approach relies on simulation methods and a heteroscedastic polynomial regression.
In order to reuse the evaluations of the lsf g, in this article, we only focus on estimating the
failure probability Pf (s) using importance sampling [7] and the derivatives of Pf (s), with
respect to any deterministic inputs s.

The article is organized as follows. In Section 2, the local RSA background is detailed
with an emphasis on the Weak approach [8], as the proposed approach is greatly inspired
by it. Sections 3 and 4 describe the proposed algorithm. Section 3 focuses on the derivation
of the new expression of the sensitivities, while Section 4 presents the heteroscedastic
polynomial regression. Section 5 presents two numerical examples, with standard normal
inputs. The results are summarized and conclusions are drawn in Section 6.

2. Local RSA with Respect to Deterministic Inputs
2.1. Integral Expression of the Local RSA

In the standard normal space, the dependence of Pf on s = [s1, . . . , sp] is necessarily
contained in the limit state function g, while the standardized joint distribution fX is
parameter-free. The failure probability is, thus, written as follows

Pf (s) =
∫

D f (s)
fX(x)dx =

∫
Rd

ID f (s)(x) fX(x)dx, (1)

where D f (s) =
{

x ∈ Rd | g(s, x) ≤ 0
}

is the failure domain in the standard space and I is an
indicator function. Introducing an auxiliary density, h, the failure probability Pf (s) can then
be estimated by the importance sampling (IS) method [7] leading to the following estimate

P̂f (s)
IS
=

1
N

N

∑
j=1

ID f (s)

(
X(j)

) fX

(
X(j)

)
h
(

X(j)
) , (2)

where X(j) are independent and identically distributed (iid) from h. The classical Monte
Carlo method [9] is a special case of IS, where h = fX. The main advantage of IS compared
to Monte Carlo is an improved convergence speed, particularly for rare event estimation
when h is well chosen.

Assuming the gradients ∇xg(s, x) 6= 0 for all x and s on the limit state surface
{g(s, x) = 0}, the derivatives of Pf (s), with respect to s` ∈ R for ` ∈ [1, . . . , p], are
defined by the following surface integral [10]

∂Pf (s)
∂s`

= −
∫

g(s,x)=0

1
‖ ∇xg(s, x) ‖

∂g(s, x)
∂s`

fX(x)dc(x). (3)

where dc(x) stands for surface integration over the limit state surface {g(s, x) = 0}. The
resulting expression of the derivative of Pf in Equation (3) is, thus, a surface integral, which
depends on the derivatives of g with respect to s` and its gradient ∇xg.

2.2. Weak Approach: Approximation of the Indicator Function

The failure domain indicator function makes the direct differentiation of the failure
probability integral not possible. By replacing the failure domain indicator function with
a smoother function, the differentiation can be performed and results in a domain inte-
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gral [11]; it is the Weak approach. Several smooth approximations of the indicator function
have been derived in the literature [12], which are typically cumulative distribution func-
tions (cdfs) of continuous univariate variables [8]. Here, we derive the approximation
chosen in [4,11], which comes from the following limit

∀x ∈ Rd ID f (x) = lim
σ→0

Ψ
(
− g(s, x)

σ

)
, (4)

where Ψ is the standard normal univariate cdf, and σ > 0.
In the sense of distributions, the derivative of Pf , with respect to s`, can then be defined

as in [8]

∂Pf (s)
∂s`

= lim
σ→0

∫
Rd

∂Ψ(−g(s, x)/σ)

∂s`
fX(x)dx (5)

= −lim
σ→0

∫
Rd

1
σ

∂g(s, x)
∂s`

φ

(
− g(s, x)

σ

)
fX(x)dx,

where φ is the univariate standard normal probability density function (pdf). Consequently,
an approximation of the failure probability sensitivity can be obtained with the following
domain integral

∂Pf (s)
∂s`

≈ −
∫
Rd

1
σ̃

∂g(s, x)
∂s`

φ

(
− g(s, x)

σ̃

)
fX(x)dx =

∂P̃f (s, σ̃)

∂s`
(6)

where P̃f (s, σ̃) =
∫
Rd

Ψ
(
− g(s, x)

σ̃

)
fX(x)dx, (7)

for σ̃ a fixed positive value. The domain integral ∂P̃f (s, σ̃)/∂s` can then be estimated with
IS with the following estimate

̂∂P̃f (s, σ̃)

∂s`

IS

= − 1
N

N

∑
j=1

1
σ̃

∂g
(

s, X(j)
)

∂s`
φ

− g
(

s, X(j)
)

σ̃

 fX

(
X(j)

)
h
(

X(j)
) , (8)

where X(j) are iid from h. The same sample can be reused to compute both the failure
probability estimate with IS and this sensitivity estimate. However, for each observation
X(j), the derivative of the lsf, with respect to s`, has to be evaluated, which may increase
the simulation budget.

This estimate is biased since σ̃ 6= 0. The choice of σ̃ is crucial and has influence on both
the bias and the variance of the estimate [8]. Decreasing the parameter σ̃ greatly reduces the
bias. Nevertheless, past a certain point, the variance of the estimate increases for smaller σ̃
values, if N is kept constant.

The Weak approach has been applied with various advanced sampling techniques. It
has notably been associated with the sequential importance sampling (SIS) framework in [4]
and the subset sampling framework in [12], to obtain more efficient sensitivity estimates.

3. Sensitivity with Respect to Deterministic Inputs through Taylor Series Expansion

The proposed method is greatly inspired by the Weak approach, as an approximation
of the failure domain indicator function is also employed. The main idea of the proposed
approach is to use sampling methods to compute the derivative of the failure probability as
a byproduct of a heteroscedastic polynomial regression. In doing so, the bias included in
the Weak approach can be controlled.

The first step is, thus, to approximate the failure domain indicator function with a
smoother function. Then, a random variable change in the image measure is introduced.
The resulting integral is differentiable, and its derivative, with respect to s` with ` = 1, . . . , p,
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is expressed as an expected value. Next, the Taylor series expansion of the expected value is
derived and the sensitivity with respect to s` is finally identified amongst the Taylor series
coefficients. These different steps are detailed in the following sections.

3.1. Approximation of the Failure Indicator Function

As the indicator function is not differentiable, several smoother functions have been
used in the literature as surrogates, as mentioned before [8,11,12]. Here, we focus on
approximations which are continuous cumulative distribution functions Ξσ, defined with a
parameter σ > 0, which verify the following property

∀x ∈ Rd ID f (s)(x) = Iy≤0(g(s, x)) = lim
σ→0

Ξσ(−g(s, x)), (9)

where 0 is contained in the interior of the support of Ξσ. A typical example is presented in
Equation (4) with the standard normal cdf. The failure probability function Pf (s, ·) is then
defined on R+\{0}, such as

∀σ ∈ R+\{0} Pf (s, σ) =
∫
Rd

Ξσ(−g(s, x)) fX(x)dx = E fX [Ξσ(−g(s, X))], (10)

and we further assume the cdf Ξσ to be regular enough to verify the following properties:

Pf (s) = lim
σ→0

Pf (s, σ) and
∂Pf (s)

∂s`
= lim

σ→0

∂Pf (s, σ)

∂s`
. (11)

In the Weak approach framework presented in Section 2.2, the sensitivity of Pf is
obtained by differentiating Equation (10) with respect to s`, ` = 1, . . . , p, for a fixed value of
σ, denoted as σ̃. Here, we introduce a modification to the approach with a random variable
change to derive another expression of the failure probability function of Equation (10).

3.2. Change of Variable

Throughout the rest of this paper, it is assumed that the random response of the system
g(s, X) is an absolutely continuous univariate random variable. Considering the following
random variable change in the image measure: Hs = g(s, X), the failure probability function
Equation (10) becomes

∀σ ∈ R+\{0} Pf (s, σ) = E fHs
[Ξσ(−Hs)] =

∫
R

Ξσ(−h) fHs(h)dh, (12)

where fHs is the unknown density of the univariate random variable Hs. It should be noted
that the failure probability function is, thus, written as an integral defined over R rather
than Rd. Denoting ξσ, the pdf associated with the Ξσ distribution, the failure probability
function of Equation (12) can then be rewritten in the following way

∀σ ∈ R+\{0} Pf (s, σ) =
∫
R

Ξσ(−h) fHs(h)dh =
∫
R

(∫ −h

−∞
ξσ(z)dz

)
fHs(h)dh (13)

=
∫
R

(∫
R
I{z≤−h}ξσ(z)dz

)
fHs(h)dh.

Applying the theorem of Fubini to integral Equation (13) results in

∀σ ∈ R+\{0} Pf (s, σ) =
∫
R

(∫
R
I{h≤−z} fHs(h)dh

)
ξσ(z)dz =

∫
R

FHs(−z)ξσ(z)dz, (14)



Mathematics 2023, 11, 4357 5 of 19

where FHs is the unknown cdf of the univariate random variable Hs. Employing this new
expression of the failure probability function Pf (s, ·) to compute the derivative with regard
to s` with ` = 1, . . . , p gives

∀σ ∈ R+\{0}
∂Pf (s, σ)

∂s`
=
∫
R

∂FHs(−z)
∂s`

ξσ(z)dz = Eξσ

[
∂FHs(−Z)

∂s`

]
, (15)

where Z is a univariate random variable of pdf ξσ. Equation (15) is a new expression of
the failure probability derivative function in a modified Weak approach context, in which
the cdf nature of the approximation function Ξσ is taken advantage of. Instead of trying to
evaluate this expression of the derivative function at a specific value of σ, we use a Taylor
series expansion to remove the dependence in σ, as detailed in the next section.

3.3. Taylor Series Expansion

The Taylor series expansion is a powerful tool to derive the expressions of expected
values [13–15]. In our specific context, we derive the Taylor series expansion in the neigh-
borhood of 0 of function T, defined as T(z) = ∂FHs(−z)/∂s` for all z ∈ R. Assuming FHs is
Cn+2 in 0, the Taylor series expansion leads to

T(Z) = T(0) +
Z
1!

T′(0) +
Z2

2!
T′′(0) + . . . +

Zn

n!
T(n)(0) + Rn(Z), (16)

where the remainder is expressed in the integral form with [16]

Rn(Z) =
∫ Z

0

(Z− t)n

n!
T(n+1)(t)dt. (17)

Applying the expectation to both sides of the Equation (16) results in the following
equation

Eξσ [T(Z)] = T(0) +
Eξσ [Z]

1!
T′(0) +

Eξσ

[
Z2]

2!
T′′(0) + . . . +

Eξσ [Z
n]

n!
T(n)(0) +Eξσ [Rn(Z)]. (18)

The first term T(0) on the right side of the equality is equal to the derivative of the
function FHs , with respect to s`, evaluated in z = 0. This term is equal to ∂Pf (s)/∂s` since
FHs(0) = Pf (s). Therefore, the following expression of ∂Pf (s, σ)/∂s` is obtained

∀σ ∈ R+\{0}
∂Pf (s, σ)

∂s`
=

∂Pf (s)
∂s`

+
Eξσ [Z]

1!
T′(0) +

Eξσ

[
Z2]

2!
T′′(0) + . . .

+
Eξσ [Z

n]

n!
T(n)(0) +Eξσ [Rn(Z)]. (19)

From Equation (19), the derivative of Pf , with respect to s`, appears to be the constant
term of a polynomial expression of the moments of Z, where Z is a random univariate
variable of cdf Ξσ and pdf ξσ.

3.4. Combining Sampling Methods and Polynomial Regression to Derive the Failure
Probability Sensitivity

In this section, and throughout the rest of this article, we denote Pn as the polynomial
of order n, such as

∀σ ∈ R+ Pn(σ) =
∂Pf (s)

∂s`
+

Eξσ [Z]
1!

T′(0) +
Eξσ

[
Z2]

2!
T′′(0) + . . . +

Eξσ [Z
n]

n!
T(n)(0). (20)
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Consequently, one has

∀σ ∈ R+\{0}
∂Pf (s, σ)

∂s`
− Pn(σ) = Eξσ [Rn(Z)].

In order to illustrate the results derived from Equation (19), Figure 1 shows the
evolution of the functions ∂Pf (s, ·)/∂s`, P2 and P4, with a simple toy example in dimension
one, where g(s, X) = aX + b = Hs, X ∼ N (0, 1) and s = [a, b]. The continuous cdf Ξσ

selected here is the univariate centered normal cdf of variance σ2.

(a) (b)

(c) (d)

Figure 1. Illustration of the polynomials P2 and P4 for both of the derivatives of Pf . The parameters
of the toy example are set as follows: a = 2 and b = 5. In the figure, (a) displays the derivative
with respect to a while (b) displays the derivative with respect to b; (c,d) display the corresponding

absolute difference ∂Pf (s,σ)
∂s`

− Pn(σ). The failure probability is equal to 6.21× 10−3, the derivative
with respect to a is equal to 2.19× 10−2, and the derivative with respect to b is equal to 8.76× 10−3.

From the graphs, it is noticeable that for small values of σ, Pn ≈ ∂Pf (s, ·)/∂s`. The
smaller the σ, the lower the value of n needed to reach an accurate equivalence between Pn

and ∂Pf (s, ·)/∂s`.
In order to evaluate the coefficients of the polynomial Pn, one must have at least n + 1

evaluations of the function σ 7→ Pn(σ). The idea of the proposed approach is, thus, to find
the coefficient of Pn of order zero, which is the probability sensitivity, by performing a
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polynomial regression with m evaluations of
(

∂Pf (s, σl)/∂s`
)

l=1,...,m
with m ≥ n + 1 since

the two functions are equivalent for small σ. Recalling that

∀σ ∈ R+\{0}
∂Pf (s, σ)

∂s`
=
∫
Rd
−∂g(s, x)

∂s`
ξσ(−g(s, x)) fx(x)dx, (21)

is a domain integral, it can be estimated ∀σ ∈ R+ with Monte Carlo methods, and in our
specific case, with importance sampling, as in the Weak approach framework presented in
Section 2.2. It should be noted that since Pn 6= ∂Pf (s, ·)/∂s`, due to the remainder of Taylor
series expansion, a small global bias is introduced in the proposed approach.

The failure probability derivative function σ 7→ ∂Pf (s, σ)/∂s` of Equation (21) can be
computed with the following IS estimate

∀σ ∈ R+\{0}
̂∂Pf (s, σ)

∂s`

IS

= − 1
N

N

∑
j=1

∂g
(

s, X(j)
)

∂s`
ξσ

(
−g
(

s, X(j)
)) fX

(
X(j)

)
h
(

X(j)
) , (22)

where the observations X(j) are iid from h, the IS auxiliary density. These observations are
reused from the estimation of the failure probability with an IS estimate. Therefore, the only
additional simulation budget concerns the evaluation of the limit state function derivative
with respect to s` for each observation. The IS estimate is unbiased and its variance is
given by

∀σ ∈ R+\{0} Var

 ̂∂Pf (s, σ)

∂s`

IS =
1
N
Varh

(
∂g(s, X)

∂s`
ξσ(−g(s, X))

fX(X)
h(X)

)
. (23)

Depending on the pdf ξσ, the expression of this variance can be further detailed. For
instance, if ξσ is the pdf of a centered normal variable of variance σ2, then ∀y ∈ R ξσ(y) =
(1/σ)φ(y/σ), and the variance becomes

∀σ ∈ R+\{0} Var

 ̂∂Pf (s, σ)

∂s`

IS =
1

Nσ2Varh

(
∂g(s, X)

∂s`
φ

(
−g(s, X)

σ

)
fX(X)
h(X)

)
. (24)

Therefore, for a fixed N, each estimate ̂∂Pf (s, σl)/∂s`, for l = 1, . . . , m, has a different
noise. In order to identify the coefficients of the polynomial Pn, a heteroscedastic polynomial
regression must then be performed. This heteroscedastic polynomial regression is further
detailed in the next section.

4. Heteroscedastic Polynomial Regression

The main parameters of the heteroscedastic polynomial regression are the selected

degree n of the polynomial, the number m of estimates
(

̂∂Pf (s, σl)/∂s`

)
l=1,...,m

with m ≥

n+ 1, and the interval of regression [σmin, σmax], given that n and the interval are dependent.

However, the correlation between the different estimates
(

̂∂Pf (s, σl)/∂s`

)
l=1,...,m

is first

discussed, as it directly influences the regression framework.

We denote V as the m-length vector of the estimates, given by V =

(
̂∂Pf (s, σl)/∂s`

)
l=1,...,m

,

S as the Vandermonde matrix of σ of size m× (n + 1), where Sl,i = σi
l , for l = 1 . . . , m and
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i = 0, . . . , n, and α denotes the polynomial coefficients, such that the regression is written
as follows

V = Sα + ε, (25)

where ε is the m-length vector of random errors εl with expected value E fX [εl ] = 0, as the
estimates Vl are unbiased. The error’s variance Var(εl) depends on the σl cf Equation (23).
The σ-vector is denoted in ascending order: σ1 > σ2 > . . . > σm. This linear regression is
addressed in this article with linear least square methods [17,18].

4.1. Linear Least Squares Method in Our Specific Context

As previously mentioned, the observations
(

X(j)
)

j=1,...,N
needed for each estimate Vl

are reused from the failure probability estimation procedure to minimize the additional
simulation budget. However, reusing the exact same sample for each Vl results in a highly
correlated database (σl , Vl)l=1,...,m. The generalized least squares (GLS) framework extends
the generalization of the ordinary least squares (OLS) framework to situations where the
variance in the random error, denoted as εl , is not constant (heteroscedasticity) and the
estimate vector, V, is not uncorrelated. We denote Σε as the covariance matrix of the
random errors ε and Σ̂ε as its corresponding empirical estimate. The GLS estimate of the
coefficient α is then obtained with the following equations

α̂ =
(

S>Σ−1
ε S

)−1(
S>Σ−1

ε V
)

, (26)

and it is the best linear unbiased estimate [19]. It is possible to derive the covariance matrix
estimate of α̂ with the following formula:

V̂ar(α̂) =
(

S>Σ−1
ε S

)−1
. (27)

In our specific context, the covariance matrix Σε is not analytically known and has to
be estimated with the sample

(
X(j)

)
j=1,...,N

. Therefore, in Equations (26) and (27), replacing

Σε with Σ̂ε gives the final framework suited for the heteroscedastic polynomial regression
needed in our approach, called the feasible GLS (FGLS).

From Equations (26) and (27), one can notice that the inverse of the covariance matrix
is required to compute both quantities. In our specific case, this covariance matrix is
an estimation of the real covariance matrix. Therefore, each coefficient already comes
with an estimation error. All those errors combined make it very difficult to accurately

compute Σ̂ε
−1

as the conditioning number of the matrix Σ̂ε is generally very high, making
its numerical inversion challenging. Consequently, although the FGLS framework is
theoretically best suited for the proposed method, it is practically inapplicable. For this
reason, a regression framework simplification must be considered, which is detailed next.

The simplification proposed here is to decrease the correlation of the vector of estimates
V with bootstrap [20]. The logic of bootstrapping is to learn an empirical discrete cdf from
a vector of iid observations in order to generate a new sample. The new sample shares the
same property as the original sample but they are independent. Here, we apply bootstrap to
the iid observations

(
X(j)

)
j=1,...,N

already available from the failure probability estimation.

The first estimate V1 is computed with the original sample, and for each σl with l > 1,
bootstrap is employed. The resulting vector V is, thus, independent. Bootstrap does not
require any additional call to the limit state function or its derivatives.

The resulting covariance matrix Σ̂ε is, thus, assumed diagonal. The regression frame-
work is then referred to as weighted least squares (WLS). Denoting W as the diagonal
matrix, where Wl,l = 1/V̂ar(Vl), and where V̂ar(Vl) is given by Equation (23), the WLS
estimate is then written

α̂W =
(

S>WS
)−1(

S>WV
)

, (28)
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and it is the best linear unbiased estimate [19]. It is possible to derive the covariance matrix
estimate of α̂W with the following formula

V̂ar(α̂W) =
(

S>WS
)−1

. (29)

Therefore, with only one simulation run, an estimation of the variance of the sensitivity
estimate is also available. The sensitivity estimate is equal to the coefficient of order zero of
the polynomial, which is the first component of the vector α̂W , and its theoretical variance
estimate is the component V̂ar(α̂W)1,1.

4.2. Settings of the Regression Parameters

The settings presented here are the results of several tests. Before presenting the
settings, the scaling of the limit state function is first addressed, as it greatly influences the
evolution of the failure probability derivative functions σ 7→ ∂Pf (s, σ)/∂s`.

4.2.1. Scaling of the Limit State Function

Depending on the limit state function, the order of magnitude of x 7→ g(s, x) and
its derivatives, with respect to s, can significantly vary, especially in the vicinity of the
failure surface, as underlined in [4,12]. As a result, the behavior of the failure probability
derivative functions σ 7→ ∂Pf (s, σ)/∂s` can considerably vary as well. Here, general
regression settings are presented, which aim to be applied to various limit state functions.
Consequently, the following scaling is first performed.

Let
(

Y(j) = g
(

s, X(j)
))

j=1,...,N
be the lsf values vector obtained from the estimation of

the failure probability. The scaling proposed here is to divide the vector Y as well as the
vector of derivatives

(
∂g
(

s, X(j)
)

/∂s`
)

j=1,...,N
by the standard deviation δ obtained from

the negative lsf values only of Y

δ2 =
N

∑
j=1

w̄(j)
(

Y(j) − µ
)2

with µ =
N

∑
j=1

w̄(j)Y(j), (30)

where w̄(j) = w(j)/ ∑N
i=1 w(i) and w(j) = IY<0

(
Y(j)

)
. Therefore, δ represents the order of

magnitude of the lsf in the failure domain.
This division neither affects the value of the failure probability nor the failure prob-

ability sensitivity. Indeed, provided that δ > 0, we have Pf (s) = P(g(s, X) < 0) =

P
(

g(s,X)
δ < 0

)
, and the derivatives do not change. However, this division influences the

value of the coefficients of the order superior to zero in the Taylor series expansion of T.
Since these coefficients are not of interest in the proposed approach, the consequences are
negligible. Thanks to this scaling, the order of magnitude of the lsf is expected to have little
influence on the polynomial regression settings presented in the following paragraphs.

4.2.2. Choice of the Regression Interval and the Polynomial Degree

Definition of the regression interval [σmin, σmax].
The selection of the interval is crucial in the regression process, as it greatly influences

the quality of the sensitivity estimate. If the lower bound of the interval is too close to
zero, then the estimates (Vl)l=1,...,m in the vicinity of the lower bound will be very noisy
and their variance might be inaccurately estimated, as N is fixed. Consequently, the WLS
framework might lead to erroneous results. Moreover, if the upper bound of the regression
interval is too far from zero, a higher degree polynomial is needed to correctly approximate
the Taylor series expansion. The polynomial regression is then harder to achieve and
leads to a probability sensitivity of higher variance. Therefore, there is a trade-off between
the accuracy of the estimates (Vl)l=1,...,m and

(
V̂ar(Vl)

)
l=1,...,m

, and the variance of the
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sensitivity estimate obtained with the polynomial regression. In the proposed approach, it
was decided to define the interval bounds inside the interval σ ∈ [0.01, 1]. Thanks to the
scaling process mentioned above, restricting the search for the regression bounds in this
interval has proven to be efficient for the various limit state functions tested.

Within this interval, the regression bounds are set, depending on the theoretical
coefficient of variation (CV) estimate of the IS estimate V1. The CV of V1 is equal to
the ratio between the square root of its variance, given by Equation (23), and its value,
given by Equation (22). This CV is, thus, a function of σ. Choosing a CV criterion to
set the interval bounds is inspired by [4], where the optimal σ̃ of the Weak approach
framework is selected with a target CV technique. Here, the values of σmin and σmax are,
thus, respectively, the lowest and the highest values of σ, such as CV(σ) < CVtarget for
all σ ∈ [σmin, σmax]. This CV criterion ensures the regression is performed with estimates

(Vl)l=1,...,m and
(
V̂ar(Vl)

)
l=1,...,m

, which have reasonable noise. In this article, the CVtarget

is dependently set on the minimum theoretical CV estimate of the V1 estimate with

CVtarget = min
σ∈[0.01,1]

CVV1(σ) + 5%. (31)

The additional 5% ensures a sufficiently large interval and is an arbitrary value. It has
proven to be efficient after several tests. This threshold is independent of the quality of
the estimation of Pf , as it has been underlined that Pf and its derivatives do not depend
on the same quantities [8]. Furthermore, this threshold changes for each deterministic
input s` and allows the regression interval to be specifically suited for the evolution of
σ 7→ ∂Pf (s, σ)/∂s`.

Once the bounds are computed, the values of the vector (σl)l=1,...,m are set uniformly
in the interval [σmin, σmax].

Selection of the polynomial degree n and number m of estimations. The choice of
the polynomial degree n influences the global bias of the proposed approach. The higher
the degree n, the lower the bias for a fixed regression interval, as illustrated in Figure 1.
However, a high degree n induces a more intricate polynomial regression, as the polynomial
Pn is then more complex, resulting in a sensitivity estimate with higher variance. Therefore,
there is a trade-off between the value of the theoretical bias of the sensitivity estimate and
its variance.

The choice of n affects the number m of estimations Vl required for the regression,
as there are n + 1 coefficients that have to be estimated with the regression. For sim-
plification purposes, the number m of estimations of the failure probability derivatives

Vl =

(
̂∂Pf (s, σl)/∂s`

)
l=1,...,m

is set to m = n + 2, as several tests showed that an increase

in this number did not improve the quality of the sensitivity estimates.
These m estimations are obtained with bootstrap; therefore, they do not increase the

simulation budget. Consequently, several tests can be performed to assess the minimal
degree n needed for a correct sensitivity estimate, without affecting the simulation budget.
If—with a higher degree polynomial—the resulting sensitivity estimate value no longer
changes, we can assume that the estimate has reached the correct value and the bias is
controlled since it has become negligible. This control of the bias depends naturally on the
level of accuracy wanted for the estimation of the sensitivity.

In the numerical evaluations of the following section, different values of n are, thus, set
to identify the minimal degree needed to obtain a sensitivity estimate with controlled bias.
However, different model selection methods, like AIC (Akaike information criterion) and
BIC (Bayesian information criterion) [21], can be used to choose the best statistical model
from a set of candidate models. These criteria help balance the trade-off between model
complexity and goodness of fit and can, thus, be an improvement to the proposed algorithm.
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5. Numerical Investigation

The performance of the proposed approach is investigated with two numerical appli-
cations, taken from the failure probability sensitivity literature. These examples focus on
applications in a rather low-dimensional space and feature a singular failure: the cantilever
beam [4,5,8,11] and the roof truss [4,5,22,23]. As they are very common examples in the
sensitivity literature, they are relevant cases to present the proposed approach. Function g
is known analytically in both use cases but this is not a requirement to apply the proposed
algorithm as the method only calls on g and ∂g/∂sl in a point-wise manner.

In the first example, the deterministic inputs s are design parameters, while in the
second example, they are the distribution parameters of the original inputs, denoted as
Z. An isoprobabilistic transformation allows transforming the original inputs Z into the
standard normal inputs X. The limit state function in the original space is denoted as gZ
while the transformed limit state function is denoted as g.

The proposed approach is combined with various IS algorithms for the numerical
investigation. The non-parametric adaptive IS (NAIS) algorithm [24] for the cantilever
beam and the iCE-AIS algorithm [25] for the roof truss are considered in the following to
show the robustness of the proposed approach to sampling algorithms. For both algorithms,
the last generated sample of the adaptive procedure is used to compute the sensitivity with
the new approach.

For all applications, the indicator approximation function Ξσ selected is the cdf of a
centered normal random variable of variance σ2. As previously mentioned, other cdfs of
continuous univariate variables could be relevant [8]. However, the Gaussian approxima-
tion, being the most considered in practice [4,11,12], is the one selected here. The impact of
the selection of another approximation Ξσ is not studied in this paper and is left to future
work. This particular choice results in even polynomials Pn; therefore, n = 2k and the
number of Vl estimates is fixed to m = k + 2. The proposed approach is studied for three
different polynomial degrees n = 2, n = 4, and n = 6. It is compared to the Weak approach,
when σ̃ = σmin, the lower bound of the regression interval. For comparison purposes, 500
independent simulation runs are performed to calculate the statistics of the probability
estimates and the other quantities of interest.

5.1. Cantilever Beam
5.1.1. Presentation of the Application

The first example is a cantilever beam subject to biaxial bending, as illustrated in
Figure 2. This example is quite popular in sensitivity analysis [4,5,8,11] and was first
studied in [26] in an RBDO context.

Figure 2. Illustration of a cantilever beam subject to biaxial bending.

Two different limit state functions are considered for this example, both defined in
the original space Z of dimension 4. The first one g(1)Z represents yielding at the fixed
end of the beam, with s = [w, t], respectively, denoting the width and the height of the
cross-section beam

g(1)Z (s, Z) = Z3 −
(

600
wt2 Z1 +

600
w2t

Z2

)
. (32)
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The second limit state function g(2)Z restricts the maximum allowed displacement at
the tip of the beam to the value d0. Therefore, one has s = [w, t, d0]

g(2)Z (s, Z) = d0 −
4L3

Z4wt
Z3

√(
Z1

t2

)2
+

(
Z2

w2

)2
(33)

where L = 100 m. The random variables Z1 and Z2 represent the loads, Z3 is the yield
strength of the beam, and Z4 is the Young’s modulus. We assume the vector Z to be an
independent normal vector. For comparison purposes, the distribution of each random
variable is the same as in [26]; therefore, denoting µZi as the mean value and δZi as the
standard deviation, one has

(µZ1 , δZ1) = (1000, 100) (34)

(µZ2 , δZ2) = (500, 100) (35)

(µZ3 , δZ3) = (40000, 2000) (36)

(µZ4 , δZ4) = (29× 106, 1.45× 106). (37)

The isoprobabilistic transformation is quite simple in this case, as the inputs are already
independent. Therefore, Xi = (Zi − µZi )/δZi for i = 1, . . . , 4; this transformation is linear.

The design parameters are fixed as [w, t, d0] = [2.4, 3.9, 2.5], which corresponds to the
optimal reliability-based design [4].

5.1.2. Sensitivity Analysis for the First Failure of the System

As the first limit state function g(1)Z is linear and the transformation from Z to X is linear
as well, the transformed lsf g(1) is also linear in the random variables X. Consequently, the
failure probability as well as its sensitivities can be exactly determined with a FORM analy-
sis [27]. This FORM analysis gives the following reference values [4]: P(1)

f = 3.03× 10−3,

∂P(1)
f /∂w = −5.76× 10−2, and ∂P(1)

f /∂t = −3.53× 10−2.
For this first application, the NAIS algorithm is combined with the proposed method.

The mean simulation budget required for the probability estimation is near 8000. The
results are presented in Table 1, with the empirical CVs given, as well as the theoretical CV
estimates of the proposed method in parentheses.

Table 1. Comparison of the results of the polynomial regression with 3 different degrees, for the
first lsf of the cantilever beam with NAIS. The failure probability is equal to 2.97× 10−3 with an

empirical CV of 8.4%. The reference values for the sensitivity are ∂P(1)
f /∂w = −5.76× 10−2 and

∂P(1)
f /∂t = −3.53× 10−2. Empirical CVs of the proposed method are given in %, and the theoretical

CV estimates are in parentheses.

Cantilever Beam 1

Regression
2k = 2

Regression
2k = 4

Regression
2k = 6

Weak Approach
σ̃ = σmin

∂̂Pf
∂w

−5.76× 10−2 −5.74× 10−2 −5.76× 10−2 −5.76× 10−2

CV 5.1% CV 6.1% CV 7.1% CV 7.0%
(3.4%) (4.6%) (5.7%)

∂̂Pf
∂t

−3.53× 10−2 −3.52× 10−2 −3.53× 10−2 −3.53× 10−3

CV 5.1% CV 6.1% CV 7.1% CV 7.0%
(3.4%) (4.6%) (5.7%)

From Table 1, the sensitivity estimates of both the proposed approach and the Weak
approach are very close to the reference values of the failure probability sensitivities.
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For the three degrees selected and the two derivatives, the value of the estimate is quite
constant. Therefore, a polynomial of degree 2 is sufficient for correctly approximating the
coefficient of order zero of the Taylor series expansion of the function σ 7→ ∂Pf (s, σ)/∂s`.
The sensitivity estimate obtained with 2k = 2 has a smaller CV than the one obtained with
the Weak approach. Consequently, this application illustrates how the proposed method
is an improvement of the Weak approach; it results in a more precise estimate, without
any additional simulation budget. However, the theoretical CV estimates are slightly
underrated. They have large variations (above 45%, not displayed in Table 1); therefore,
they cannot be considered accurately estimated.

5.1.3. Sensitivity Analysis for the Second Failure of the System

The limit state function g(2)Z is nonlinear in all the random variables; therefore, FORM
cannot be applied to accurately compute the failure probability and its sensitivities. The reference
values used here are, thus, the ones given in [4], which are the outcomes of a large line sampling
simulation. The line sampling simulation gives the following values: P(2)

f = 2.54× 10−4,

∂P(2)
f /∂w = −8.84× 10−3, ∂P(2)

f /∂t = −2.95× 10−3 and ∂P(2)
f /∂d0 = −3.27× 10−3.

For this second application, the proposed approach is combined with the iCE-AIS
presented in [25], with a single Gaussian density as the auxiliary density. The mean
simulation budget required for the probability estimation is near 4000. The results are
presented in Table 2, with the empirical CVs given, as well as the theoretical CV estimates
of the proposed method in parentheses.

Table 2. Comparison of the results of the polynomial regression with 3 different degrees, for the
second lsf of the cantilever beam with iCE-SG. The failure probability is equal to 2.51× 10−3 with

an empirical CV of 4.5%. The reference values for the sensitivity are ∂P(2)
f /∂w = −8.84× 10−4,

∂P(2)
f /∂t = −2.95× 10−3 and ∂P(2)

f /∂d0 = −3.27× 10−3. Empirical CVs of the proposed method are
given in %, as well as the theoretical CV estimates in parentheses.

Cantilever Beam 2

Regression
2k = 2

Regression
2k = 4

Regression
2k = 6

Weak Approach
σ̃ = σmin

∂̂Pf
∂w

−8.78× 10−3 −8.82× 10−3 −8.83× 10−3 −8.93× 10−3

CV 7.3% CV 8.6% CV 9.9% CV 7.7%
(5.0%) (6.8%) (8.8%)

∂̂Pf
∂t

−2.92× 10−3 −2.94× 10−3 −2.94× 10−3 −2.98× 10−3

CV 7.4% CV 8.6% CV 9.9% CV 7.7%
(5.0%) (6.8%) (8.8%)

∂̂Pf
∂d0

−3.24× 10−3 −3.26× 10−3 −3.26× 10−3 −3.29× 10−3

CV 7.3% CV 8.6% CV 9.9% CV 7.7%
(5.0%) (6.8%) (8.8%)

From Table 2, it is noticeable that the polynomial of degree 2k = 2 leads to sensitivities
whose values are slightly different from those obtained with higher degrees, for the three
parameters. Therefore, it appears that a polynomial of degree 2 is not sufficient for accu-
rately estimating the coefficient of order zero of the Taylor series expansion of the functions
σ 7→ ∂Pf (s, σ)/∂s`.

The estimate obtained with 2k = 2 shares the same properties as the Weak approach
estimate. Their biases are quite similar along with their CVs. For 2k ≥ 4, the estimates
obtained with the proposed approach have a smaller bias than the estimates obtained with
the Weak approach, but they have a slightly higher CV. The theoretical CV estimates are
still slightly underrated. They have a moderate variation for 2k ≤ 4, with an empirical
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CV that is close to 25% (not displayed in Table 2). For 2k = 6, the variation is quite high,
i.e., 39%.

Consequently, for this application, the proposed approach brings improvement to the
Weak approach framework, as estimates with smaller biases can be obtained and the biases
are globally controlled. For 2k ≥ 4—since the values of the estimates no longer vary—it
can be assumed that the estimates have reached accurate values. Such analysis cannot be
performed with the Weak approach, where the bias is not properly managed.

5.2. Roof Truss
5.2.1. Presentation of the Application

The second example is a roof truss subject to random loading as illustrated in Figure 3.
This example is also very commonly used in sensitivity analysis [4,5,22,23], and we keep
the same framework as presented in [23]. The top boom and the compression bars are
reinforced by concrete; the bottom boom and the tension bars are made of steel.

Figure 3. Illustration of a roof truss subject to random loading.

The perpendicular deflection of the peak of the structure must not exceed 3 cm [23].
Consequently, the limit state function is defined in the original space Z of dimension 6 with
the following equation

g(3)Z (s, Z) = 0.03−
Z1Z2

2
2

(
3.81
Z4Z6

+
1.13
Z3Z5

)
(38)

where s = [µZ1 , δZ1 , . . . , µZ6 , δZ6 ], with δZi denoting the standard deviation of Zi. The
random variable Z1 represents the uniformly distributed load applied on the roof truss and
Z2 is the roof span. Z3 is the cross-section area of the bottom boom and the tension bars
made of steel, whose Young’s modulus is Z5. Z4 is the cross-section area of the top boom
and compression bars reinforced in concrete, whose Young’s modulus is Z6. We assume
that vector Z is an independent normal vector. For comparison purposes, the distribution
of each random variable is the same as in [23]. Therefore, we have

(µZ1 , δZ1) = (20000, 1400) (39)

(µZ2 , δZ2) = (12, 0.12) (40)

(µZ3 , δZ3) = (9.82× 10−4, 5.892× 10−5) (41)

(µZ4 , δZ4) = (0.04, 0.0048) (42)

(µZ5 , δZ5) = (1× 1011, 6× 109) (43)

(µZ6 , δZ6) = (2× 1010, 1.2× 109) (44)

As for the previous application, it should be noted that the normal distribution is
strictly not an appropriate choice for modeling Z2, Z3, Z4, Z5, and Z6, as they represent
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physical variables of positive support. Once more, the isoprobabilistic transformation is
simple in this case, as the inputs are already independent, resulting in Xi = (Zi − µZi )/δZi
for i = 1, . . . , 6. This transformation is linear.

5.2.2. Sensitivity Analysis of the System

The reference values of the failure probability and its sensitivities are the same as in [4],
obtained with the score function method, and combined with IS [28]. The resulting failure
probability is equal to 9.38× 10−3 and the sensitivities are equal to(

∂Pf /∂µZ1 , ∂Pf /∂δZ1

)
=
(

1.11× 10−5, 1.59× 10−5
)

(45)(
∂Pf /∂µZ2 , ∂Pf /∂δZ2

)
=
(

4.03× 10−2, 1.80× 10−2
)

(46)(
∂Pf /∂µZ3 , ∂Pf /∂δZ3

)
=
(
−1.86× 102, 2.05× 102

)
(47)(

∂Pf /∂µZ4 , ∂Pf /δZ4

)
= (−2.14, 2.56) (48)(

∂Pf /∂µZ5 , ∂Pf /δZ5

)
=
(
−1.83× 10−12, 2.00× 10−12

)
(49)(

∂Pf /∂µZ6 , ∂Pf /δZ6

)
=
(
−3.77× 10−12, 2.03× 10−12

)
(50)

For this application, the NAIS algorithm is combined with the proposed method. The
mean simulation budget required for the probability estimation is near 6000. The results
are presented in Tables 3 and 4, with the empirical CVs given; the theoretical CV estimates
of the proposed method are in parentheses.

Table 3. Comparison of the results of the polynomial regression with 3 different degrees
for the roof truss with NAIS. The failure probability is equal to 9.28 × 10−3 with an em-

pirical CV of 12.5%. The reference values for the sensitivity are
(

∂Pf /∂µZ1 , ∂Pf /∂δZ1

)
=(

1.11× 10−5, 1.59× 10−5), (
∂Pf /∂µZ2 , ∂Pf /∂δZ2

)
=

(
4.03× 10−2, 1.80× 10−2) and(

∂Pf /∂µZ3 , ∂Pf /∂δZ3

)
=

(
−1.86× 102, 2.05× 102). Empirical CVs of the proposed method

are given in %, as well as the theoretical CV estimates in parentheses.

Roof Truss, Part 1

Regression 2k = 2 Regression
2k = 4

Regression
2k = 6

Weak Approach
σ̃ = σmin

∂̂Pf
∂µZ1

1.10× 10−5 1.10× 10−5 1.10× 10−5 1.11× 10−5

CV 7.4% CV 9.0% CV 14.4% CV 8.2%
(5.2%) (7.2%) (9.2%)

∂̂Pf
∂δZ1

1.57× 10−5 1.57× 10−5 1.58× 10−5 1.58× 10−5

CV 8.2% CV 10.4% CV 15.6% CV 9.2%
(5.8%) (8.2%) (11.2%)

∂̂Pf
∂µZ2

4.01× 10−2 4.03× 10−2 4.00× 10−2 4.05× 10−2

CV 7.4% CV 9.0% CV 16.0% CV 8.3%
(5.2%) (7.2%) (9.2%)

∂̂Pf
∂δZ2

1.79× 10−2 1.88× 10−2 2.04× 10−2 1.85× 10−2

CV 18.7% CV 36.1% CV 375% CV 14.4%
(15.1%) (26.0%) (12.8%)

∂̂Pf
∂µZ3

−1.85× 102 −1.85× 102 −1.84× 102 −1.86× 102

CV 7.4% CV 9.1% CV 14.8% CV 8.3%
(5.2%) (7.2%) (9.2%)

∂̂Pf
∂δZ3

2.02× 102 2.03× 102 2.05× 102 2.03× 102

CV 10.0% CV 13.6% CV 26.1% CV 10.1%
(7.3%) (9.1%) (14.0%)
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Table 4. Comparison of the results of the polynomial regression with 3 different degrees for the roof
truss with NAIS. The failure probability is equal to 9.28× 10−3 with an empirical CV of 12.5%. The ref-

erence values for the sensitivity are
(

∂Pf /∂µZ4 , ∂Pf /δZ4

)
= (−2.14, 2.56),

(
∂Pf /∂µZ5 , ∂Pf /δZ5

)
=(

−1.83× 10−12, 2.00× 10−12) and
(

∂Pf /∂µZ6 , ∂Pf /δZ6

)
=
(
−3.77× 10−12, 2.03× 10−12). Empiri-

cal CVs of the proposed method are given in %, as well as the theoretical CV estimates in parentheses.

Roof Truss, Part 2

Regression 2k = 2 Regression
2k = 4

Regression
2k = 6

Weak approach
σ̃ = σmin

∂̂Pf
∂µZ4

−2.11 −2.11 −2.11 −2.13

CV 7.5% CV 9.0% CV 10.6% CV 8.3%
(5.4%) (7.4%) (9.6%)

∂̂Pf
∂δZ4

2.49 2.48 2.50 2.50

CV 10.7% CV 13.3% CV 19.1% CV 10.8%
(8.1%) (11.6%) (18.2%)

∂̂Pf
∂µZ5

−1.82× 10−12 −1.82× 10−12 −1.81× 10−12 −1.83× 10−12

CV 7.5% CV 9.1% CV 16.5% CV 8.3%
(5.2%) (7.2%) (9.6%)

∂̂Pf
∂δZ5

2.01× 10−12 2.02× 10−12 1.98× 10−12 2.02× 10−12

CV 10.2% CV 13.2% CV 48.5% CV 10.4%
(7.3%) (10.5%) (15.3%)

∂̂Pf
∂µZ6

−3.74× 10−12 −3.75× 10−12 −3.74× 10−12 −3.77× 10−12

CV 7.4% CV 9.3% CV 16.4% CV 8.2%
(5.3%) (7.3%) (9.2%)

∂̂Pf
∂δZ6

1.97× 10−12 2.00× 10−12 2.32× 10−12 2.02× 10−12

CV 15.2% CV 45.1% CV 320% CV 13.4%
(13.2%) (20.9%) (41.2%)

From Tables 3 and 4, the sensitivity estimates of both the proposed approach (omitting
the estimates with respect to δZ2 and δZ6 in red) and the Weak approach are very close to the
reference values. For the three degrees selected, the value of the estimate is quite constant,
except for the derivatives, with respect to δZ2 and δZ6 . Therefore, a polynomial of degree
2 is sufficient for correctly approximating the coefficient of order zero of the Taylor series
expansion of the functions σ 7→ ∂Pf (s, σ)/∂s` for s` 6= δZ2 and s` 6= δZ6 . The sensitivity
estimates obtained with 2k = 2 have a smaller CV than the ones obtained with the Weak
approach for an equivalent bias. Consequently, for this application, the proposed method
is an improvement of the Weak approach for 10 out of 12 derivatives.

5.2.3. Focus on the Derivatives with Respect to δZ2 and δZ6

The sensitivity estimates with respect to the distribution parameters δZ2 and δZ6

obtained with the proposed approach have a larger CV than those obtained with the Weak
approach, no matter the polynomial degree. For 2k ≤ 4, the estimates have a small bias
and a moderate CV. However, when 2k = 6, the bias is higher and the CV considerably
increases, reaching values above 300%. It should also be noted that the theoretical CV
estimates are meaningless, as they all have an empirical CV above 100% (not displayed
here) for the three degrees.

These poor results can be explained by the poor quality of the estimates Vl and their
variance estimates, but it is mostly due to the phenomenon of polynomial overfitting. As
previously underlined, polynomial regressions of higher degrees are harder to perform
and the resulting polynomial is more flexible than with smaller degrees. For these two
distribution parameters, the noise of each Vl is quite high and the regression interval can
be particularly narrow, as illustrated in Figure 4.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Illustration of the proposed method with 2k = 6 for the roof truss application; (a–c) illustrate
the method with respect to s` = δZ2 , while (d–f) illustrate the method with respect to s` = δZ6 . The
magenta vertical dashed lines represent the regression interval bounds; (a,d) represent the evolution
of the IS estimate according to σ (in navy blue); (b,e) show the evolution of the theoretical CV estimate
of the IS estimate and the value of the CVtarget; (c,f) represent the estimates (Vl)l=1,...,5 (displayed
with navy blue crosses) obtained with bootstrap. The resulting polynomial P̂6 is displayed in green;
the failure probability sensitivity estimate value plotted is displayed in a dotted green line.

The resulting polynomials shown in Figure 4c,f have much more fluctuations in the
regression interval than the original IS estimates shown in Figure 4a,d. For these parameters,
the polynomial regression does not smooth the noise of the IS estimates Vl . The polynomials
are too flexible and they excessively take into account the noise of each IS estimate; it is
the phenomenon of overfitting. This phenomenon does not occur for lower degrees, as the
polynomials are then less flexible. Consequently, when 2k = 6, the polynomial regression
can lead to sensitivity estimates that are very biased, which explains the large CVs.

We should note that in other studies that focused on this roof truss application, these
two distribution parameters always led to sensitivity estimates with significantly higher
CVs compared to the other distribution parameters [4,22,23].

6. Conclusions

In this article, we present a new method to compute the local sensitivity of a failure
probability, with respect to design parameters or distribution parameters, based on a
heteroscedastic polynomial regression. This approach is inspired by the recent Weak
approach framework and is presented as an improvement of the latter. The main innovation
of the proposed approach is to express the sensitivity estimate as the constant coefficient
of a Taylor series expansion, which can be recovered with a polynomial regression. The
proposed approach can be applied to various simulation methods and is presented here
with IS. Moreover, this approach is independent of the dimension of the system, the
distribution of the inputs, along with the shape of the failure domain. Indeed, after a
variable change in the integral of interest, only the scalar response of the system matters.
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One of the main outlooks of the proposed method is to improve the stability of
the resulting sensitivity estimate. Indeed, in several applications, the mean value of the
estimates is very close to the reference value but the CV can be slightly too large for the
method to be a definitive upgrade over the Weak approach. Another interesting outlook
of the proposed approach is to obtain a better estimation of the theoretical variance of the
sensitivity estimate. Indeed, with the Weak approach, the theoretical variance is already
available using the formula in Equation (23) for IS. The availability of an accurate estimation
of the theoretical variance is of great interest.
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