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Abstract: With the development of modern data collection techniques, researchers often encounter
high-dimensional data across various research fields. An important problem is to determine whether
several groups of these high-dimensional data originate from the same population. To address this,
this paper presents a novel k-sample test for equal distributions for high-dimensional data, utilizing
the Maximum Mean Discrepancy (MMD). The test statistic is constructed using a V-statistic-based
estimator of the squared MMD derived for several samples. The asymptotic null and alternative
distributions of the test statistic are derived. To approximate the null distribution accurately, three
simple methods are described. To evaluate the performance of the proposed test, two simulation
studies and a real data example are presented, demonstrating the effectiveness and reliability of the
test in practical applications.

Keywords: multi-sample test; hypothesis testing; parametric bootstrap; random permutation; Welch–
Satterthwaite χ2-approximation; chi-squared-type mixtures

MSC: 62H15

1. Introduction

Testing whether multiple samples follow the same distribution is a fundamental
challenge in data analysis, with wide-ranging applications across diverse fields. Traditional
nonparametric tests designed for comparing the distributions of two samples, such as
the Wald–Wolfowitz runs test, the Mann–Whitney–Wilcoxon test based on signed ranks,
and the Kolmogorov–Smirnov test utilizing the Empirical Distribution Function (EDF), are
well established for univariate data [1]. Extending these tests to the multivariate setting
inRp has been the focus of extensive research. This has led to the development of novel
tests based on multivariate runs, ranks, EDF, distances, and projections, as pioneered by
researchers like [2–5], among others.

In this paper, our primary focus is on addressing the multi-sample problem for equal
distributions in high-dimensional data. In contemporary data analysis, high-dimensional
datasets have become increasingly prevalent and easily accessible across various domains.
For instance, Section 5 introduces a dataset derived from a keratoconus study involving
corneal surfaces. This collaborative effort involves Ms. Nancy Tripoli and Dr. Kenneth
L. Cohen from the Department of Ophthalmology at the University of North Carolina,
Chapel Hill. The dataset comprises 150 corneal surfaces, each characterized by over
6000 height measurements. These surfaces are categorized into four distinct groups based
on their corneal shapes, prompting the question of whether these groups share a common
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underlying distribution. Consequently, there is a pressing need to develop tests that can
assess distributional equality in the context of high-dimensional data.

Mathematically, a multi-sample problem for high-dimensional data can be described
as follows. Assume that we have the following k samples of observed random elements
inRp:

yα1, . . . , yαnα

i.i.d.∼ Fα, α = 1, . . . , k, (1)

where the data dimension p can be very large and Fα, α = 1, . . . , k, are unknown cumulative
distribution functions. Of interest is to test if the k distribution functions are the same:

H0 : F1 = · · · = Fk, vs. H1 : Fα 6= Fβ for some α 6= β. (2)

When k = 2, a variety of distance-based tests designed for multivariate data, such
as those proposed by [2–5], can potentially be applied to test (2) in the context of high-
dimensional data. However, it has been demonstrated by [6] that these tests may lack
the power to effectively detect differences in distribution scales in high dimensions. In re-
sponse to this challenge, ref. [6] introduced a test based on interpoint distances, while [6]
proposed a high-dimensional two-sample run test based on the shortest Hamiltonian path.
Nevertheless, ref. [7] showed that these tests, along with a graph-based test by [8], are less
effective in detecting differences in location. To address this limitation, ref. [7] introduced
two asymptotic normal tests for both location and scale differences, based on interpoint
distances. However, it is worth noting that these tests rely on a strong mixing condition and
impose a natural ordering on the components of high-dimensional observations, limiting
their applicability. Furthermore, these tests involve complex U-statistic estimators, making
them computationally intensive. Several other approaches have also been proposed for
high-dimensional distribution testing. Ref. [9] presented a high-dimensional permutation
test using a symmetric measure of distance between data points, but it comes with high
computational costs. Refs. [10,11] proposed tests based on projections, which are generally
more effective in detecting low-dimensional distributional differences. Ref. [12] introduced
a test based on energy distance and permutation, but it is less powerful in detecting scale
differences. Refs. [13,14] proposed kernel two-sample tests based on the Maximum Mean Dis-
crepancy (MMD). Ref. [14] demonstrated the equivalence between the energy-distance-based
test and the kernel-based test, showing that the energy-distance-based test can be viewed as
a kernel test utilizing a kernel induced by the interpoint distance. The MMD leverages the
kernel trick to define a distance between the embeddings of distributions in Reproducing
Kernel Hilbert Spaces (RKHSs). It is well suited for checking distribution differences among
several high-dimensional samples and is applicable to various data types, such as vectors,
strings, or graphs. Recently, there has been further investigation into unbiased and biased
MMD-based two-sample tests for high-dimensional data by [15,16], respectively.

On the other hand, when k > 2, there are limited tests available for testing (2). One
such test is the energy test developed by [12]. This test statistic is obtained by directly
summing all pairwise energy distances, with its null distribution approximated through
permutation. However, this test has some drawbacks, including being time-consuming
and yielding p-values that may vary when applied multiple times to the same dataset, as
supported by the evidence from Figure 3 in Section 5. Another approach is presented by [17],
who extended the idea of MMD from the two-sample problem to the multi-sample problem
for equal distributions. They constructed an MMD-based test statistic capable of detecting
deviations from distribution homogeneity in several samples. However, the resulting test
statistic and its null limit distribution are very complicated in form, which restricts its
practical use. To address this limitation, ref. [18] developed a new MMD-based test for
testing (2). This test statistic is constructed using U-statistics, making it easy to conduct
and yielding accurate results.

In this paper, we maintain our focus on the MMD-based approach for testing (2).
However, unlike [18], where a U-statistic technique is employed to construct the test
statistic, we take a distinct path by constructing an L2-norm-based test statistic. To achieve
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this, we first employ a canonical feature map to transform the k original samples (1) into k
induced samples (3). Concurrently, we transform the k-sample equal distribution testing
problem (2) into a mean vector testing problem (4). This transformation facilitates the
straightforward construction of an L2-norm-based test (5) for assessing the mean vector
testing problem (4). Leveraging a kernel trick, we derive a formula for computing the
L2-norm-based test statistic using the k original samples (1).

Additionally, this paper makes several other significant contributions. Firstly, akin
to the work of [17,18], we extend the concept of MMD from two-sample problems to
the domain of multi-sample problems with equal distributions. Secondly, we derive the
asymptotic null and alternative distributions of the proposed test statistic. Thirdly, we offer
three distinct approaches for approximating the null distribution of the MMD-based test
statistic, utilizing parametric bootstrap, random permutation, and the Welch–Satterthwaite
(W–S) χ2-approximation methods. Lastly, we examine two specific scenarios in our com-
prehensive simulation studies. In the first scenario, the samples have the same mean vector
but different covariance matrices, while in the second scenario, the samples exhibit both
distinct mean vectors and covariance matrices. Our simulation results demonstrate that the
tests we propose effectively maintain precise control over size in both scenarios. However,
in terms of empirical power, they outperform (underperform) the energy test introduced
by [12] in the first (second) scenario. In other words, when the primary difference in the
distributions of the samples lies in their covariance matrices, the new tests are the preferred
choice in terms of statistical power.

The remainder of this paper is organized as follows: Section 2 presents the main results
and Section 3 introduces three methods to implement our test. In Section 4, we provide
two simulation studies. Section 5 showcases an application to the corneal surface data
mentioned earlier. Concluding remarks can be found in Section 6. Technical proofs of the
main results are included in Appendix A.

2. Main Results
2.1. MMD for Several Distributions

In this section, we show how the MMD can be defined for several distributions. LetH
be an RKHS associated with a characteristic reproducing kernel K(·, ·). For any u and v inH,
the inner product and L2-norm ofH are defined as 〈u, v〉 and ‖u‖ =

√
〈u, u〉, respectively.

Let φ(·) be the canonical feature mapping associated with K(·, ·), i.e., φ(y) = K(·, y). Using
this feature mapping and setting xαi = φ(yαi) for i = 1, . . . , nα, we obtain the following k
induced samples in the RKHSH:

xα1, . . . , xαnα , α = 1, . . . , k, (3)

which are derived from the k original samples in (1). Define µα = E(xα1) for α = 1, . . . , k,
representing the mean embeddings of the k distributions Fα, where α = 1, . . . , k.

Ref. [13] established the MMD for two distributions in a separable metric space (see,
e.g., Theorem 5 of [13]). Here, we extend it naturally for multi-sample distributions inRp.
According to the MMD of [13], for any α 6= β, where α, β = 1, . . . , k, “testing H0 : Fα = Fβ vs.
H1 : Fα 6= Fβ” based on the two samples yαi, i = 1, . . . , nα and yβi, i = 1, . . . , nβ is equivalent
to “testing H0 : µα = µβ vs. H1 : µα 6= µβ” based on the two samples xαi, i = 1, . . . , nα and
xβi, i = 1, . . . , nβ. Therefore, testing (2) using the k original samples in (1) is equivalent to
testing the following hypothesis using the k induced samples in (3):

H0 : µ1 = · · · = µk, vs. H1 : µα 6= µβ for some α 6= β. (4)

To test (4), following [19], a natural L2-norm-based test statistic using (3) is given by

Tn =
k

∑
α=1

nα‖x̄α − x̄‖2, (5)



Mathematics 2023, 11, 4374 4 of 21

where x̄α = n−1
α ∑nα

i=1 xαi and x̄ = n−1 ∑k
α=1 ∑nα

i=1 xαi denote the group and grand sample
means, respectively. Through some simple algebra, as given in Appendix A, we can express
Tn as

Tn =
k

∑
α=1

nα(n− nα)

n
‖x̄α‖2 − 2 ∑

1≤α<β≤k

nαnβ

n
〈x̄α, x̄β〉 = ∑

1≤α<β≤k

nαnβ

n
‖x̄α − x̄β‖2. (6)

Let π = (π1, . . . , πk)
> denote the weights of the k distributions F1, . . . , Fk such that

π1, . . . , πk ∈ (0, 1) and ∑k
α=1 πα = 1. Then, when we estimate π using (n1, . . . , nk)

>/n,
the test statistic Tn/n estimates the following quantity:

MMD2(F1, . . . , Fk|π) = ∑
1≤α<β≤k

παπβ‖µα − µβ‖2,

which can be naturally defined as the MMD of the k distributions F1, . . . , Fk with the weight
vector π. It is worth noting that the MMD for multiple distributions presented above is
equivalent to the one derived by [18], offering a much simpler alternative compared to the
formulation proposed by [17].

It is easy to justify that MMD2(F1, . . . , Fk|π) is indeed an MMD of the k distributions
F1, . . . , Fk in the sense that MMD2(F1, . . . , Fk|π) = 0 if and only if F1 = · · · = Fk. On the one
hand, when MMD2(F1, . . . , Fk|π) = 0, we have µ1 = · · · = µk so that for any 1 ≤ α 6= β ≤ k,
we have µα = µβ, implying that for any 1 ≤ α 6= β ≤ k, we have Fα = Fβ and hence
F1 = · · · = Fk. On the other hand, when F1 = · · · = Fk, for any 1 ≤ α 6= β ≤ k, we
have Fα = Fβ so that for any 1 ≤ α 6= β ≤ k, we have µα = µβ and hence µ1 = · · · = µk.
Therefore, we can use Tn to test the equality of k distributions based on the k induced
samples (3).

2.2. Computation of the Test Statistic

Notice that the k induced samples (3) are not directly computable, as the canonical
feature mapping φ(y) is explicitly defined through the reproducing kernel. Fortunately,
the reproducing kernel K(·, ·) and its canonical feature mapping φ(·) can be utilized with
the following useful kernel trick: K(y, y′) = 〈φ(y), φ(y′)〉. Using this, we can express the
inner product as follows:

〈xαi, xβj〉 = 〈φ(yαi), φ(yβj)〉 = K(yαi, yβj). (7)

Let Vαα = ‖x̄α‖2 = 〈x̄α, x̄α〉 and Vαβ = 〈x̄α, x̄β〉. Then, using (7), we have

Vαα =
1

n2
α

nα

∑
i=1

nα

∑
j=1

K(yαi, yαj), and Vαβ =
1

nαnβ

nα

∑
i=1

nβ

∑
j=1

K(yαi, yβj).

Therefore, using (6), we can compute Tn using any of the following useful expressions:

Tn =
k

∑
α=1

nα(n− nα)

n
Vαα − 2 ∑

1≤α<β≤k

nαnβ

n
Vαβ = ∑

1≤α<β≤k

nαnβ

n
(Vαα + Vββ − 2Vαβ). (8)

In other words, you can compute the value of Tn using the original k samples (1) and the
above expressions.

2.3. Asymptotic Null Distribution

To explore the null distribution of Tn, we can rewrite Tn as

Tn = T̃n + 2Sn +
k

∑
α=1

nα‖µα − µ̄‖2, (9)
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where µ̄ = n−1 ∑k
α=1 nαµα represents the weighted average of the mean embeddings of the

k distributions. Additionally, we have

T̃n =
k

∑
α=1

nα‖(x̄α − µα)− (x̄− µ̄)‖2, and Sn =
k

∑
α=1

nα〈(x̄α − µα)− (x̄− µ̄), µα − µ̄〉. (10)

In the expression for T̃n, you can observe that the mean embeddings of the k distributions
have been subtracted. Consequently, T̃n follows the same distribution as that of Tn under
the null hypothesis. Thus, studying the null distribution of Tn is equivalent to studying the
distribution of T̃n.

Similar to the proof of (6), we can express T̃n as follows:

T̃n = ∑k
α=1

nα(n−nα)
n ‖x̄α − µα‖2 − 2 ∑1≤α<β≤k

nαnβ

n 〈x̄α − µα, x̄β − µβ〉
= ∑1≤α<β≤k

nαnβ

n ‖(x̄α − µα)− (x̄β − µβ)‖2.
(11)

Let K̃(u, v) denote the centered version of K(u, v), defined as

K̃(u, v) = 〈φ(u)− µu, φ(v)− µv〉
= K(u, v)− Ev′ [K(u, v′)]− Eu′ [K(u′, v)] + Eu′ ,v′ [K(u′, v′)],

(12)

where µu = E[φ(u)], µv = E[φ(v)], and u′ and v′ are independent copies of u and v,
respectively. We can observe two useful properties: when u = v, we have

Eu[K̃(u, u)] = Eu ‖φ(u)− µu‖2 > 0. (13)

When u and v are independent, we have

Eu[K̃(u, v)] = Ev[K̃(u, v)] = Eu,v[K̃(u, v)] = 0. (14)

Using (12), we can express

K̃(yαi, yβj) = 〈xαi − µα, xβj − µβ〉. (15)

Let
Ṽαα = ‖x̄α − µα‖2, and Ṽαβ = 〈x̄α − µα, x̄β − µβ〉. (16)

It is evident that Ṽαα and Ṽαβ can be considered as centered versions of Vαα and Vαβ,
respectively. Consequently, by using (11) and (16), we can express

T̃n =
k

∑
α=1

nα(n− nα)

n
Ṽαα − 2 ∑

1≤α<β≤k

nαnβ

n
Ṽαβ. (17)

Utilizing (15) and performing some straightforward algebraic manipulations, we
can express

Ṽαα = 1
n2

α
∑nα

i=1 ∑nα
j=1 K̃(yαi, yαj) =

1
n2

α

[
∑nα

i=1 K̃(yαi, yαi) + 2 ∑1≤i<j≤nα
K̃(yαi, yαj)

]
, and

Ṽαβ = 1
nαnβ

∑nα
i=1 ∑

nβ

j=1 K̃(yαi, yβj), α 6= β.
(18)

Assuming that K̃(y, y′) is square-integrable, i.e., E[K̃2(y, y′)] < ∞, we can express
K̃(y, y′) using Mercer’s expansion:

K̃(y, y′) =
∞

∑
r=1

λrψr(y)ψr(y′), (19)
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where λ1, λ2, . . . represent the eigenvalues of K̃(y, y′), and ψ1(y), ψ2(y), . . . are the corre-
sponding orthonormal eigenelements, satisfying∫

K̃(y, y′)ψr(y)dF(y) = λrψr(y′), and
∫

ψr(y)ψs(y)dF(y) = δrs, r, s = 1, 2, . . . , (20)

where δrs equals 1 when r = s and 0 otherwise. Now, let us introduce the following conditions:

C1. We have yα1, . . . , yα,nα , α = 1, · · · , k i.i.d.∼ F.
C2. As n→ ∞, we have nα/n→ τα ∈ (0, 1), α = 1, . . . , k.
C3. K(y, y′) is a reproduced kernel such that Ey[K̃2(y, y)] ≤ ∞.

Condition C1 assumes that the null hypothesis is satisfied and the common distribution
function is F. Condition C2 is a regularity condition for k-sample problems and it requires
that the group sample sizes tend to ∞ proportionally. Condition C3 is required such that
K̃(y, y′) is square-integrable and expression (19) is valid.

In fact, under Condition C3, using (19) and the Cauchy–Schwarz inequality, we obtain
the following results:

E[K̃(y, y)] =
∞

∑
r=1

λr <
√

E[K̃2(y, y)] < ∞,

Ey,y′ [K̃(y, y′)]2 =
∞

∑
r=1

λ2
r < Ey,y′ [K̃(y, y)K̃(y′, y′)] = E2

y[K̃(y, y)] < ∞,
(21)

where y, y′ i.i.d.∼ F. These inequalities hold due to the square-integrability assumption
and the properties of Mercer’s expansion. Now, let us state the following theorem that
establishes the asymptotic distribution of T̃n.

Theorem 1. Under Conditions C1–C3, as n→ ∞, we have T̃n
L−→ T̃, where

T̃ d
=

∞

∑
r=1

λr Ar, Ar
i.i.d.∼ χ2

k−1. (22)

It is worth highlighting that the limit null distribution of the proposed test statistic
differs from the one derived in [18] (Theorem 1) and it offers a more straightforward
alternative compared to the limit null distribution obtained by [17] (Theorem 1). This
explains why the limit null distribution presented by [17] is not employed to approximate
the null distribution of their test statistic. However, as demonstrated in Section 3, it is
indeed feasible to utilize this distribution if desired.

2.4. Mean and Variance of T̃n

Based on (13), (14) and (18), through some simple calculation, under Condition C1,
we have

E[Ṽαα] =
1

nα
E[K̃(y, y)], E[Ṽαβ] = 0,

Var[Ṽαα] =
1

n3
α

Var[K̃(y, y)] + 2(nα−1)
n3

α
E[K̃2(y, y′)],

Var[Ṽαβ] =
1

nαnβ
E[K̃2(y, y′)], and Cov

(
Ṽαα, Ṽαβ

)
= 0, α 6= β,

(23)

where y, y′ i.i.d.∼ F.

Theorem 2. Under Condition C1, we have E(T̃n) = (k− 1)E
[
K̃(y, y)

]
, and

Var(T̃n) =

[
k

∑
α=1

(n− nα)2

n2nα

]
Var[K̃(y, y)] + 2

[
(k− 1)−

k

∑
α=1

(n− nα)2

n2nα

]
E[K̃2(y, y′)],
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where y, y′ i.i.d.∼ F.

Note that under Condition C2, we have ∑k
α=1(n− nα)2/(n2nα) ≤ ∑k

α=1 n−1
α → 0 as

n→ ∞. Then as n→ ∞, we have Var(T̃n) = 2(k− 1)E[K̃2(y, y′)][1 + o(1)].

2.5. Asymptotic Power

In this subsection, we examine the asymptotic power of the proposed test under the
following local alternative hypothesis:

H1n : µα = µ + n−(1/2−∆)hα, α = 1, . . . , k, (24)

where 0 < ∆ ≤ 1/2 and hα, α = 1, . . . , k are constant elements in the RKHSH such that

0 <
k

∑
α=1

nα

n
‖hα − h̄‖2 ≤ Bh < ∞ with h̄ =

1
n

k

∑
α=1

nαhα,

and
k

∑
α=1

σ2
α > 0, where σ2

α = E
[
〈xα1 − µα, hα − h̄〉

]2, α = 1, . . . , k.

It is important to note that when ∆ = 1/2, the local hypothesis (24) simplifies into a fixed
alternative hypothesis H1 : µα = µ + hα for α = 1, . . . , k. However, when 0 < ∆ < 1/2,
Equation (24) represents a strict local alternative hypothesis. In this case, as n → ∞,
the strict local hypothesis tends to converge toward the null hypothesis. Detecting a strict
local alternative hypothesis becomes exceedingly challenging in such scenarios. A test is
typically considered root-n-consistent if it can detect a strict local alternative hypothesis
with a probability approaching 1 as n→ ∞. A root-n-consistent test is considered effective
because it achieves the best possible detection rate for a local alternative hypothesis as
n grows.

Through (9) and (24), Tn can be written as

Tn = T̃n + 2Sn + n2∆
k

∑
α=1

nα

n
‖hα − h̄‖2, (25)

where

Sn = n−(1/2−∆)
k

∑
α=1

nα〈x̄α − µα, hα − h̄〉.

Theorem 3. Assume that |K(y, y′)| ≤ BK for all y, y′ ∈ Rp for some BK < ∞. Then,
we have Var(T̃n) ≤ 32(k − 1)B2

K and Var(Sn) = n2∆ ∑k
α=1 nασ2

α /n, where ∑k
α=1 nασ2

α /n ≤
4BKBh < ∞.

Theorem 4. Assume that |K(y, y′)| ≤ BK for all y, y′ ∈ Rp for some BK < ∞. Then, under

Condition C2 and the local alternative hypothesis (24), as n→ ∞, we have (a) T̃n/
√

Var(Sn)
P−→ 0;

(b) Sn/
√

Var(Sn)
L−→ N (0, 1); and (c)

Pr(Tn ≥ Cε) = Φ

[
n∆ ∑k

α=1 τα‖hα−h∗‖2

2
√

∑k
α=1 τασ∗2α

]
[1 + o(1)] −→ 1,

where Cε denotes the upper 100ε percentile of T̃n with ε being the given significance level, τα;
α = 1, . . . , k are defined in Condition C2; h∗ = ∑k

α=1 ταhα; σ∗2α = E[〈xα1 − µα, hα − h∗〉]2;
and Φ(·) denotes the cumulative distribution of N (0, 1).

Theorem 4 shows that the proposed test is indeed a root-n-consistent test.
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3. Methods for Implementing the Proposed Test

In this section, we will outline three different approaches for approximating the null
distribution of Tn (8) in order to conduct the proposed test. These methods include a
parametric bootstrap approach, a random permutation technique, and a χ2-approximation
method. We will evaluate and compare their performance in the next section.

3.1. Parametric Bootstrap Method

Theorem 1 reveals that the asymptotic null distribution of Tn takes the form of a
chi-squared-type mixture denoted as T̃ (22). The coefficients of this mixture are determined
by the unknown eigenvalues λr, r = 1, 2, . . . of K̃(y, y′), where y, y′ are independently and
identically distributed according to the common distribution function F representing the
k distributions when the null hypothesis is valid. Consequently, in order to estimate the
asymptotic null distribution of Tn, it is essential to consistently estimate λr, r = 1, 2, . . . .
This consistency can be achieved by utilizing the empirical eigenvalues of the centered
Gram matrix, as suggested by [20], to construct a reliable estimator for T̃ (22).

Let us recall that n = ∑k
α=1 nα represents the total sample size. We pool the k sam-

ples (1) and denote it as
y1, . . . , yn. (26)

Under the null hypothesis, y1, . . . , yn are independently and identically distributed from
the common distribution F. Let K represent the n × n Gram matrix, where the (i, j)th
entry is defined as K(yi, yj) for i, j = 1, . . . , n. Additionally, let 1n denote a vector of ones
with dimensions n× 1, and In denote the identity matrix of size n× n. Then, the matrix
Pn = In − 1n1>n /n is a projection matrix of size n× n with rank n− 1.

Now, define K̃n = PnKPn, commonly referred to as the centered Gram matrix. Its
(i, j)th entry is given by

K̃n(yi, yj) = K(yi, yj)− n−1
n

∑
v=1

K(yi, yv)− n−1
n

∑
u=1

K(yu, yj) + n−2
n

∑
u=1

n

∑
v=1

K(yu, yv), (27)

where i, j = 1, . . . , n. As n approaches infinity, for any fixed i and j, we can observe that,
by the law of large numbers:

K̃n(yi, yj)
L−→ K̃(yi, yj) = K(yi, yj)− Ey′ [K(yi, y′)]− Ey[K(y, yj)] + Ey,y′ [K(y, y′)].

Let v1, . . . , vq be all the non-zero eigenvalues of K̃n that can be obtained via an eigen-
decomposition of K̃n. Set λ̂r = vr/n, r = 1, . . . , q. Then, following [20], we can show that
under Condition C3, the distribution of T̃ can be consistently estimated by

̂̃T =
q

∑
r=1

λ̂r Ar, Ar
i.i.d.∼ χ2

k−1. (28)

The parametric bootstrap method can be described as follows. Let us choose a large
value for N, for example, N = 1000. Using expression (28), we can obtain a samplễT(1)

, . . . , ̂̃T(N)
of ̂̃T by independently generating Ar, r = 1, . . . , q a total of N times. Now,

let Tobs represent the observed test statistic calculated using (8) based on the k samples (1).
Using the parametric bootstrap method, we can conduct the proposed test by calculating

the approximate p-value, which is given by N−1 ∑N
i=1 I{̂̃T(i)

≥ Tobs}, where I{S} is an
indicator function that takes 1 when S is a true event and 0 otherwise.



Mathematics 2023, 11, 4374 9 of 21

3.2. Random Permutation Method

We can also approximate the null distribution of Tn using a random permutation
method. Let `1, . . . , `n represent a random permutation of the indices 1, . . . , n from the
pooled sample (26). Consequently, the sequence

y`1 , . . . , y`n , (29)

forms a permutation of the pooled sample (26). To create permuted samples, we utilize
the first n1 observations in the permuted pooled sample (29) as the first permuted sample,
the next n2 observations as the second permuted sample, and so on, until we obtain k
permuted samples. These permuted samples are denoted as

y∗αi, i = 1, . . . , nα; α = 1, . . . , k. (30)

The permutated test statistic, denoted as T∗n , is calculated using (8) but with the k samples (1)
replaced by the k permuted samples (30).

The random permutation method proceeds as follows. Let N be a sufficiently large
number, for instance, N = 1000. Suppose we repeat the permutation process described
above N times, resulting in N permutated test statistics denoted as T∗(i)n , i = 1, . . . , N.
Then, we can use the empirical distribution of T∗(i)n , i = 1, . . . , N to approximate the null
distribution of Tn. Recall that Tobs represents the test statistic computed using (8) based on
the k original samples (1). Following the random permutation method, the proposed test can
be conducted by calculating the approximated p-value, given by N−1 ∑N

i=1 I{T∗(i)n ≥ Tobs}.

3.3. Welch–Satterthwaite χ2-Approximation Method

The parametric bootstrap method and the random permutation method are effective
for controlling size but can be computationally intensive, particularly with large total
sample sizes. To address this issue, we can utilize the well-known Welch–Satterthwaite (W–
S) χ2-approximation method [21,22]. This method is known to be reliable for approximating
the distribution of a chi-squared-type mixture. Theorem 1 demonstrates that the asymptotic
null distribution of Tn is a chi-squared-type mixture T̃ (22).

The core concept of the W–S χ2-approximation method is to approximate the null

distribution of Tn using that of a random variable of the form: W d
= βχ2

d, where β and d are
unknown parameters. These parameters can be determined by matching the means and
variances of T̃n and W, where T̃n, defined in (10), has the same distribution as Tn under the
null hypothesis. Specifically, the mean and variance of W are βd and 2β2d, respectively,
while the mean and variance of T̃n are given in Theorem 2. Equating the means and
variances of T̃n and W, we obtain

β =
Var(T̃n)

2 E(T̃n)
and d =

2 E2(T̃n)

Var(T̃n)
. (31)

To implement the W–S χ2-approximation method, we need to consistently estimate E(T̃n)
and Var(T̃n) based on the pooled sample (26) from the k samples (1). According to
Theorem 2, these estimates can be obtained as follows:

Ê(T̃n) = (k− 1)Ê[K̃(y, y)], and

V̂ar(T̃n) =
[
∑k

α=1
(n−nα)2

n2nα

]
V̂ar[K̃(y, y)] + 2

[
(k− 1)−∑k

α=1
(n−nα)2

n2nα

]
Ê[K̃2(y, y′)],
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where

Ê[K̃(y, y)] = n−1 ∑n
i=1 K̃n(yi, yi),

V̂ar[K̃(y, y)] = (n− 1)−1 ∑n
i=1

{
K̃n(yi, yi)− n−1 ∑n

j=1 K̃n(yj, yj)
}2

, and

Ê[K̃2(y, y′)] = 2
n(n−1) ∑1≤i<j≤n

[
K̃n(yi, yj)

]2,

with K̃n(yi, yj) being defined in (27). Substituting these estimators into (31), we obtain

β̂ =
V̂ar(T̃n)

2Ê(T̃n)
and d̂ =

2
(

Ê(T̃n)
)2

V̂ar(T̃n)
.

Let χ2
d̂
(α∗) denote the upper 100α∗ percentile of χ2

d̂
, where α∗ is the given significance

level, and let Tobs denote the observed test statistic computed using (8) based on the k
samples (1). Then, through the W–S χ2-approximation method, the proposed test can be
conducted via rejecting the null hypothesis when Tobs > β̂χ2

d̂
(α∗) or when the approximated

p-value Pr
(

χ2
d̂
> Tobs/β̂

)
is less than α∗.

4. Simulation Studies

In this section, we delve into intensive simulation studies aimed at assessing the perfor-
mance of the test we propose when compared to the energy test introduced by [12], which
we denote as TSR. Our proposed test employs the parametric bootstrap, the random per-
mutation, and the W–S χ2-approximation methods as described in Section 3. For simplicity,
we refer to the resulting tests as TPB, TRP, and TWS, respectively.

For simplicity, we opt for the Gaussian Radial Basis Function (RBF) kernel, denoted as
K(·, ·), which is defined as follows:

K(y, y′) = exp
(
−‖y− y′‖2

2σ2

)
.

Here, σ2 is referred to as the kernel width. It is worth noting that the Gaussian RBF kernel
described above is bounded by 1, ensuring that Condition C3 is always met. Following the
approach outlined in [20], we set σ to be equal to the median distance between observed
vectors in the pooled sample (26).

We also employ the Average Relative Error (ARE) introduced by [23] to evaluate
the overall effectiveness of a test in maintaining its nominal size. The ARE is calculated
as follows: ARE = 100M−1 ∑M

i=1 |α̂i
∗ − α∗|/α∗, where α̂i

∗, i = 1, . . . , M represents the
empirical sizes observed across M different simulation settings. A smaller ARE value
indicates the better performance of a test in terms of size control. In this simulation study,
we set the nominal size to α∗ = 5%.

4.1. Simulation 1

We set k = 3 for simplicity. We generate the k = 3 samples (1) as follows. We set

y1i = µ + Γ(u1i + δ1v1i), i = 1, . . . , n1,
y2i = µ + Γ(u2i + δ2v2i), i = 1, . . . , n2,
y3i = µ + Γu3i, i = 1, . . . , n3,

where uαi, i = 1, . . . , nα; α = 1, 2, 3 i.i.d.∼ Np(0, Ip), while vαi = (vα,i1, . . . , vα,ip)
>, i =

1, . . . , nα; α = 1, 2 are generated using the following three models:

Model 1. vα,ir, i = 1, . . . , nα; α = 1, 2; r = 1, . . . , p i.i.d.∼ N (0, 1).
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Model 2. vα,ir = uα,ir/
√

2, i = 1, . . . , nα; α = 1, 2; r = 1, . . . , p with uα,ir, i = 1, . . . , nα;

α = 1, 2; r = 1, . . . , p i.i.d.∼ t4.

Model 3. vα,ir = (uα,ir − 1)/
√

2, i = 1, . . . , nα; α = 1, 2; r = 1, . . . , p with uα,ir, i = 1, . . . , nα;

α = 1, 2; r = 1, . . . , p i.i.d.∼ χ2
1.

It is important to note that δ1 and δ2 play pivotal roles as tuning parameters that
govern the similarity of the distributions among the three generated samples. Specifically,
when both δ1 and δ2 are set to zero (δ1 = δ2 = 0), the three samples generated from the
three models exhibit identical distributions. If at least one of δi, where i can be 1 or 2,
is non-zero, the samples still share the same mean vector but differ in their covariance
matrices. Furthermore, it is worth mentioning that the test’s power increases as both δ1 and
δ2 increase.

We set µ as h(1, . . . , p)>/
√

∑
p
i=1 i2 and Γ as a

[
(1− ρ)Ip + ρJp

]
, where Jp denotes a ma-

trix of ones with dimensions p× p. To assess the performance of the considered tests across
a range of dimensionality settings, we examine three cases: p = 10, p = 100, and p = 500.
For each of these cases, we consider three sets of sample sizes (n1, n2, n3): (20, 30, 40),
(80, 120, 160), and (160, 240, 320). Additionally, we investigate three levels of correlation:
ρ = 0.1, ρ = 0.5, and ρ = 0.9. These three values of ρ correspond to samples with varying
degrees of correlation, ranging from nearly uncorrelated to moderately correlated and
highly correlated. Notably, correlation increases as ρ grows. For simplicity, we set h = 2
and a = 1.5 across all three models.

In the case of the parametric bootstrap and random permutation methods, as well
as the energy test, we use a total of N = 1000 replicates for computing the p-values at
each simulation run, as described in Sections 3.1 and 3.2. It is worth noting that the W–S
χ2-approximation method, which does not require generating replicates, is the least time-
consuming among the methods considered. The empirical sizes and powers are computed
based on 1000 simulation runs.

Table 1 provides an overview of the empirical sizes of TPB, TRP, TWS, and TSR, with the
last row displaying the associated ARE values for the three different ρ values. Several
observations can be made based on this table: Firstly, for nearly uncorrelated samples
(ρ = 0.1), TWS exhibits a slight tendency to be liberal, with an ARE value of 16.22 that
is marginally higher than the ARE values of the other three tests. Secondly, when the
generated samples are moderately correlated (ρ = 0.5) or highly correlated (ρ = 0.9),
all four tests demonstrate fairly similar empirical sizes and ARE values, making them
comparable in terms of size control. Finally, it is seen that the influence of sample sizes on
size control is relatively minor, even though, in theory, a larger total sample size should
result in better size control.

Figure 1 displays the empirical powers of all four tests in scenarios where all three
generated samples have the same mean vectors, but they differ from each other in covari-
ance matrices. Several conclusions can be drawn regarding these power values: Firstly,
for ρ = 0.1, 0.5, and 0.9, TPB, TRP, and TWS exhibit similar empirical powers. This suggests
that these three tests perform comparably, regardless of whether the data are nearly uncor-
related, moderately correlated, or highly correlated. Secondly, it is seen that under similar
settings, as expected, the empirical powers of the tests generally increase with larger sample
sizes. Finally, the empirical powers of TSR consistently rank the lowest among all four tests.
This indicates that TSR is less powerful compared to the other three tests in these scenarios.
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Table 1. Empirical sizes (in %) of Simulation 1.

ρ = 0.1 ρ = 0.5 ρ = 0.9

Model p (n1, n2, n3) TPB TRP TWS TSR TPB TRP TWS TSR TPB TRP TWS TSR

(20, 30, 40) 4.0 4.5 5.2 4.9 4.4 4.0 4.7 4.1 5.7 5.5 6.1 5.9
10 (80, 120, 160) 4.9 5.0 5.6 5.3 5.8 5.7 6.0 5.2 4.2 4.1 4.3 4.8

(160, 240, 320) 5.1 5.1 5.2 4.9 4.0 4.2 4.4 3.9 4.6 5.4 4.9 4.3
(20, 30, 40) 4.8 5.2 6.5 4.8 4.2 4.6 4.3 4.7 5.9 5.6 6.1 5.9

1 100 (80, 120, 160) 4.6 4.4 4.9 3.9 4.8 5.1 5.3 5.3 5.1 5.3 5.3 5.5
(160, 240, 320) 5.8 5.6 6.9 5.5 4.7 4.5 4.5 4.2 4.6 4.3 5.0 4.5
(20, 30, 40) 5.0 5.4 5.8 4.9 4.3 4.4 4.7 4.8 3.8 4.4 4.5 4.5

500 (80, 120, 160) 4.9 5.3 5.8 4.3 5.0 5.2 5.3 5.4 5.0 5.3 5.5 5.3
(160, 240, 320) 6.2 6.2 7.0 5.7 6.4 6.2 6.4 6.4 4.8 4.4 5.0 5.2

(20, 30, 40) 4.9 5.5 6.6 5.7 4.4 4.5 5.0 4.9 5.6 5.0 5.7 5.6
10 (80, 120, 160) 5.6 5.6 6.4 5.8 3.6 3.5 4.0 4.5 5.4 5.3 5.3 4.9

(160, 240, 320) 5.7 5.8 6.8 6.3 4.9 5.5 5.8 5.2 5.3 5.5 5.7 5.1
(20, 30, 40) 4.9 5.1 5.9 5.0 5.4 5.5 5.5 5.3 3.9 4.5 4.7 4.3

2 100 (80, 120, 160) 5.5 5.6 6.6 5.5 4.5 4.3 4.9 3.8 5.8 5.6 5.7 5.6
(160, 240, 320) 5.1 5.3 5.6 4.9 6.4 6.5 6.8 7.0 5.0 4.8 4.8 4.1
(20, 30, 40) 5.0 5.1 5.4 5.5 5.9 5.8 6.0 6.6 5.0 5.2 5.3 5.5

500 (80, 120, 160) 4.8 4.3 5.4 5.2 5.7 5.6 5.7 5.1 4.1 3.9 4.0 3.9
(160, 240, 320) 4.2 4.3 5.0 4.9 4.6 4.4 4.8 4.4 5.4 5.7 5.4 5.9

(20, 30, 40) 4.2 5.0 5.6 4.8 5.4 6.0 6.5 5.7 4.9 4.9 5.5 4.8
10 (80, 120, 160) 4.9 5.0 5.5 4.9 4.9 4.4 5.0 5.0 5.2 5.1 5.4 5.4

(160, 240, 320) 4.5 4.6 5.5 4.9 5.0 5.0 5.4 5.0 6.0 5.9 5.8 5.8
(20, 30, 40) 4.1 4.4 5.1 4.7 5.0 5.5 5.8 4.5 5.0 5.0 5.4 4.4

3 100 (80, 120, 160) 3.1 3.5 4.0 4.5 4.8 5.2 5.0 4.4 5.0 5.0 5.0 5.0
(160, 240, 320) 4.7 4.5 5.4 5.0 4.8 4.8 5.1 4.5 4.6 4.6 4.8 3.9
(20, 30, 40) 4.9 4.7 5.4 6.0 5.0 4.6 5.4 4.5 4.1 4.1 4.5 3.9

500 (80, 120, 160) 5.6 5.8 6.1 5.5 4.3 4.2 4.5 4.7 4.8 5.0 5.1 5.2
(160, 240, 320) 5.0 4.8 5.5 6.0 4.4 4.5 4.6 4.5 5.5 5.4 5.6 6.0

ARE 9.04 9.33 16.22 8.67 10.67 12.52 11.56 11.70 9.26 8.74 9.19 11.56

Figure 1. Simulation 1. The empirical powers (in %) of TPB, TRP, TWS, and TSR under different cases
of (p, n1, n2, n3, δ1, δ2): 1. (10, 20, 30, 40, 1.2, 0.6), 2. (10, 80, 120, 160, 0.75, 0.375), 3. (10, 160, 240, 320,
0.65, 0.325), 4. (100, 20, 30, 40, 1.3, 0.65), 5. (100, 80, 120, 160, 0.85, 0.425), 6. (100, 160, 240, 320, 0.72,
0.36), 7. (500, 20, 30, 40, 1.65, 0.825), 8. (500, 80, 120, 160, 1, 0.5), 9. (500, 160, 240, 320, 0.8, 0.4).
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4.2. Simulation 2

Certainly, it should be acknowledged that the MMD-based tests TPB, TRP, and TWS
may not consistently demonstrate superior performance when compared to the energy-
distance-based test TSR as in Simulation 1. To illustrate this point, in the context of this
simulation study, we keep the same experimental framework as described in Simulation 1.
However, we now introduce a new collection of three models, which are defined as follows:

Model 4. vα,ir, i = 1, . . . , nα; α = 1, 2; r = 1, . . . , p i.i.d.∼ N (0.5, 1).

Model 5. vα,ir = uα,ir/
√

2 + 0.5, i = 1, . . . , nα; α = 1, 2; r = 1, . . . , p with uα,ir, i = 1, . . . , nα;

α = 1, 2; r = 1, . . . , p i.i.d.∼ t4.

Model 6. vα,ir = (uα,ir − 1)/
√

2 + 0.5, i = 1, . . . , nα; α = 1, 2; r = 1, . . . , p with uα,ir,

i = 1, . . . , nα; α = 1, 2; r = 1, . . . , p i.i.d.∼ χ2
1.

Please be aware that vα,ir, where i ranges from 1 to nα, α takes values 1 and 2, and r
ranges from 1 to p, is adjusted to ensure that E(vα,ir) = 0.5 and Var(vα,ir) = 1 across all
three models. When both δ1 and δ2 are set to 0, the three generated samples follow the same
distributions as in Simulation 1. Consequently, this implies that the empirical sizes of all
four tests in Simulation 2 will be similar to those observed in Simulation 1. However, when
at least one of δi (where i takes values 1 and 2) is non-zero, the three samples exhibit distinct
mean vectors and covariance matrices, differing from those observed in Simulation 1. As a
result, our focus should be on calculating the empirical powers of all four tests based on
Models 4–6.

Figure 2 presents the empirical powers of all four tests based on Models 4–6, offering
several noteworthy insights. First, it is evident that TPB, TRP, and TWS demonstrate similar
empirical powers. This implies that these three tests exhibit comparable performance
regardless of whether the generated data follow a normal or non-normal distribution.
Second, it is also observed that under similar settings, the empirical powers of the tests
generally increase with larger sample sizes. Lastly, when ρ takes on values of 0.5 and 0.9,
the empirical powers of TSR surpass those of the other three tests. However, when ρ = 0.1,
the empirical powers of all four tests are generally comparable. This indicates that, in the
scenarios under consideration, TSR demonstrates greater effectiveness compared to the
other three tests when the correlation coefficient ρ is relatively high.

From these two simulation studies, it can be inferred that the proposed MMD-based
tests TPB, TRP, and TWS may outperform the energy-distance-based test TSR when the
differences in distributions are primarily in covariance matrices, while the reverse could
be true when the differences in distribution involve both mean vectors and covariance
matrices. Notably, the MMD-based test TWS generally requires less computational effort
compared to the bootstrap or permutation-based tests TPB, TRP, and TSR.
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Figure 2. Simulation 2. The empirical powers (in %) of TPB, TRP, TWS, and TSR under different cases
of (p, n1, n2, n3, δ1, δ2): 1. (10, 20, 30, 40, 0.37, 0.185), 2. (10, 80, 120, 160, 0.195, 0.097), 3. (10, 160, 240,
320, 0.18, 0.09), 4. (100, 20, 30, 40, 0.142, 0.071), 5. (100, 80, 120, 160, 0.068, 0.034), 6. (100, 160, 240, 320,
0.044, 0.022), 7. (500, 20, 30, 40, 0.06, 0.03), 8. (500, 80, 120, 160, 0.028, 0.014), 9. (500, 160, 240, 320,
0.022, 0.011).

5. Application to the Corneal Surface Data

The corneal surface data are briefly mentioned in Section 1. They were acquired during
a keratoconus study, a collaborative project involving Ms. Nancy Tripoli and Dr. Kenneth
L. Cohen from the Department of Ophthalmology at the University of North Carolina,
Chapel Hill. This dataset comprises 150 observations with each corneal surface having
more than 6000 height measurements. It can be categorized into four distinct groups: a
group of 43 healthy corneas (referred to as the normal cornea group), a group of 14 corneas
with unilateral suspect characteristics, a group of 21 corneas with suspect map features,
and a group of 72 corneas clinically diagnosed with keratoconus. It is important to note
that the corneal surfaces within the normal, unilateral suspect, and suspect map groups
exhibit similar shapes, but they significantly differ from the corneal surfaces observed in
the clinical keratoconus group (refer to Figure 1 in [24] for visualization). In the process
of reconstructing a corneal surface, ref. [24] utilized the Zernike regression model to fit
the height measurements associated with the corneal surface. The height of the corneal
surface at a specific radius r and angle θ is denoted as h(r, θ), while ĥ(r, θ) represents the
height estimated through the fitted model within the predefined region of interest. This
region of interest spans from r = 0 to r = r0 and from θ = 0 to θ = 2π, with r0 being a
predetermined positive constant. To naturally represent each corneal surface, a feature
vector is constructed, consisting of values ĥ(ri, θj), where i ranges from 1 to K and j ranges
from 1 to L. These values are obtained by evaluating the fitted corneal surface ĥ(r, θ) at
a grid of points defined as ri = r0i/K and θj = 2π j/L for i = 1, . . . , K and j = 1, . . . , L.
For simplicity, we choose to set K = 20 and L = 100, resulting in a feature vector with
dimensions of 2000 for each corneal surface.
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For simplicity, we put the fitted feature vectors for the complete corneal surface
dataset collectively into a feature matrix with dimensions of 150× 2000. In this matrix,
each row corresponds to a feature vector representing a corneal surface. Specifically,
the initial 43 rows of the feature matrix correspond to observations from the normal group,
sequentially followed by 14 rows from the unilateral suspect group, 21 rows from the
suspect map group, and lastly, 72 rows from the clinical keratoconus group.

Our objective is to examine whether there are significant differences in the distributions
among various corneal surface groups, referred to as multi-sample problems for the equality
of distributions for high-dimensional data, given that the high-dimensional feature vectors
represent the observations of the corneal surface data. In this application, we employ
TPB, TRP, TWS, and TSR to address these problems. For both the parametric bootstrap
and random permutation methods, as well as the energy test, we perform a total of
N = 10,000 replicates to compute the associated p-values. For simplicity, we denote the
normal, unilateral suspect, suspect map, and clinical keratoconus groups as NOR, UNI,
SUS, and CLI, respectively.

Table 2 displays the results obtained from the application of four statistical tests,
namely TPB, TRP, TWS, and TSR, to assess the equality of distributions among different
corneal surface groups. A careful examination of these results yields several noteworthy
insights. To begin with, when considering the comparison among the corneal surface
groups labeled “NOR vs. UNI vs. SUS vs. CLI”, it is evident that all four tests reject the null
hypothesis. This rejection signifies that there exists at least one significant difference among
the distributions of these four corneal surface groups. Consequently, further investigation is
warranted to identify which specific group or groups differ from the others. Secondly, it is
important to highlight the outcome for the comparison involving “NOR vs. UNI vs. SUS”.
In this case, none of the four tests reject the null hypothesis at the 5% significance level.
This outcome indicates that the normal, unilateral suspect, and suspect map groups share a
similar distribution pattern. Thirdly, across the remaining three comparisons, all four tests
consistently reject the null hypothesis. These results align with the observations depicted in
Figure 1 of [24], which illustrates the distinctiveness of corneal surfaces within the clinical
keratoconus group when compared to the other three groups. Fourthly, when focusing
on the comparison “NOR vs. UNI vs. SUS”, it is worth noting that the p-values obtained
from TPB, TRP, and TWS are quite similar, suggesting their comparable performance. This
consistency in p-values is also reflected in the empirical sizes presented in Table 1. Lastly,
when analyzing the cases involving CLI, it becomes evident that the p-values generated by
TSR consistently exhibit larger values compared to those produced by the other three tests.
This discrepancy implies that TSR may have a lower sensitivity in detecting distribution
differences when compared to the other tests, indicating the potentially reduced statistical
power in this real data example.

Table 2. p-values (in %) for testing the distribution equality of corneal surface groups.

Method

Case TPB TRP TWS TSR

NOR vs. UNI vs. SUS vs. CLI 0 0 0.00004 0.09
NOR vs. UNI vs. SUS 31.2 32.3 33.3 38.9
NOR vs. UNI vs. CLI 0.02 0 0.0012 0.25
NOR vs. SUS vs. CLI 0 0 0.00001 0.01
UNI vs. SUS vs. CLI 0.01 0 0.0012 0.24

Notice that the test TPB is bootstrap-based and the tests TRP and TSR are permutation-
based. This means that their p-values are obtained via bootstrapping or permutating numer-
ous random samples to compute the associated p-values as described in Sections 3.1 and 3.2.
Thus, the p-values of these tests are random, i.e., they are different at different instances.
However, the p-value of TWS remains fixed. In order to investigate this clearly, we per-
formed 500 iterations of TPB, TRP, TWS, and TSR on the case “NOR vs. UNI vs. SUS”.
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The boxplots of the corresponding p-values of the four tests are presented in Figure 3. It
is evident that the p-values obtained from TWS remain fixed, whereas those derived from
TPB, TRP, and TSR exhibit variability. This contrast underscores the fact that p-values result-
ing from bootstrap-based or permutation-based tests indeed differ across various instances.

Figure 3. Boxplots of p-values of TPB, TRP, TWS, and TSR when applied to the case “NOR vs. UNI vs.
SUS” of the corneal surface data 500 times.

6. Concluding Remarks

Testing whether multiple high-dimensional samples adhere to the same distribution is
a common area of research interest. This paper introduces and investigates a novel MMD-
based test to address this question. The null distribution of this test is approximated using
three methods: parametric bootstrap, random permutation, and the W–S χ2-approximation
approach. Results from two simulation studies and a real data application demonstrate that
the proposed test exhibits effective size control and superior statistical power compared to
the energy test introduced by [12] when the differences among sample distributions are
primarily related to covariance matrices rather than mean vectors. Thus, the proposed
test is generally well suited for conducting multi-sample equal distribution testing on
high-dimensional data. We particularly recommend its use in scenarios where distribution
differences are associated with covariance matrices. Conversely, when distribution differ-
ences predominantly pertain to means, the energy test is a more powerful choice. However,
in practice, determining whether distribution differences are related to means or covariance
matrices can be challenging. Therefore, we suggest considering both the new test and the
energy test as viable options. Nevertheless, it is important to note that implementing the
proposed test comes with certain challenges. Both the parametric bootstrap and random
permutation methods can be computationally intensive, leading to variable p-values across
different applications. In contrast, the W–S χ2-approximation method offers computational
efficiency and produces fixed p-values. However, its accuracy is limited as it solely relies
on matching two cumulants of the test statistic under the null hypothesis.

An intriguing question arises naturally: Can we enhance the accuracy of the proposed
test by matching three cumulants of the test statistic? Recent work by [18] suggests that
this is indeed possible. However, deriving the third cumulant of the test statistic presents
a current challenge and requires further investigation. Another aspect to consider is
the choice of kernel width. While the paper opts for simplicity by utilizing the median
distance between observed vectors in the pooled sample, it is worth exploring the kernel
width choice recommended by [18] to potentially enhance the test’s statistical power. These
avenues for future research promise exciting developments and warrant further exploration.
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Appendix A. Technical Proofs

Proof of (6). We have

Tn = ∑k
α=1 nα‖x̄α − x̄‖2

= ∑k
α=1 nα

(
‖x̄α‖2 − 2〈x̄α, x̄〉+ ‖x̄‖2)

= ∑k
α=1 nα‖x̄α‖2 − n‖x̄‖2

= ∑k
α=1 nα‖x̄α‖2 −∑k

α=1 ∑k
β=1

nαnβ

n 〈x̄α, x̄β〉
= ∑k

α=1
nα(n−nα)

n ‖x̄α‖2 − 2 ∑1≤α<β≤k
nαnβ

n 〈x̄α, x̄β〉
= ∑k

α 6=β
nαnβ

n ‖x̄α‖2 − 2 ∑1≤α<β≤k
nαnβ

n 〈x̄α, x̄β〉
= ∑1≤α<β≤k

nαnβ

n (‖x̄α‖2 + ‖x̄β‖2 − 2〈x̄α, x̄β〉)
= ∑1≤α<β≤k

nαnβ

n ‖x̄α − x̄β‖2.

Proof of Theorem 1. Under Condition C1, we have F1 = · · · = Fk = F. Let y, y′ i.i.d.∼ F.
Under Condition C3, we have Mercer’s expansion (19). Through (14) and (20), we have

λr Ey[ψr(y)] =
∫
X

Ey K̃(y, y′)ψr(y′)dF(y′) = 0.

This, together with (20), implies that

E[ψr(y)] = 0 whenever λr 6= 0 and Var[ψr(y)] =
∫
X

ψ2
r (y)dF(y) = 1. (A1)

Set zr,αi = ψr(yαi), i = 1, . . . , nα; α = 1, . . . , k. Under Condition C1, we have yαi
i.i.d.∼ F.

It follows that for a fixed r = 1, 2, . . . , zr,αi, i = 1, . . . , nα; α = 1, . . . , k are i.i.d. with
mean 0 and variance 1. For different r, zr,αi, i = 1, . . . , nα; α = 1, . . . , k are uncorrelated.
Then, through (18) and (19), we have

Ṽαα = 1
n2

α
∑nα

i=1 ∑nα
j=1

(
∑∞

r=1 λrzr,αizr,αj
)
= ∑∞

r=1 λr

(
1

n2
α

∑nα
i=1 ∑nα

j=1 zr,αizr,αj

)
= ∑∞

r=1 λr z̄2
r,α, and

Ṽαβ = 1
nαnβ

∑nα
i=1 ∑

nβ

j=1

(
∑∞

r=1 λrzr,αizr,βj
)
= ∑∞

r=1 λr z̄r,α z̄r,β,

https://tandf.figshare.com/articles/dataset/Linear_hypothesis_testing_with_functional_data/6063026/1?file=10914914
https://tandf.figshare.com/articles/dataset/Linear_hypothesis_testing_with_functional_data/6063026/1?file=10914914
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where z̄r,α = n−1
α ∑nα

i=1 zr,αi, α = 1, . . . , k; r = 1, 2, . . . . Through (17), we have

T̃n = ∑∞
r=1 λr

(
∑k

α=1
nα(n−nα)

n z̄2
r,α − 2 ∑1≤α<β≤k

nαnβ

n z̄r,α z̄r,β

)
= ∑∞

r=1 λr

[
∑k

α=1 nα(z̄r,α − z̄r)2
]

= ∑∞
r=1 λr An,r,

where An,r = ∑k
α=1 nα(z̄r,α − z̄r)2, r = 1, 2, . . . and z̄r = n−1 ∑k

α=1 nα z̄r,α.
Let ϕX(t) = E(eitX) denote the characteristic function of a random variable X. Set

T̃(q)
n = ∑

q
r=1 λr An,r. Then, we have |ϕT̃n

(t) − ϕ
T̃(q)

n
(t)| ≤ |t|

[
E(T̃n − T̃(q)

n )2]1/2. For any
given r = 1, 2, . . . , through the central limit theorem, under Conditions C2 and C3, as n→
∞, we have

√
nα z̄r,α

L−→ N(0, 1), α = 1, . . . , k. Set wn,r = [
√

n1z̄r,1, . . . ,
√

nk z̄r,k]
>. Then,

as n → ∞, we have wn,r
L−→ wr ∼ Nk(0, Ik) and wr, r = 1, 2, . . . are independently

identically distributed. Set δn,k = [
√

n1/n, . . . ,
√

nk/n]>. Under Condition C2, we have
δn,k → δk = [

√
τ1, . . . ,

√
τk]
>. Thus, Gn = Ik − δn,kδ>n,k → G = Ik − δkδ>k . Both Gn and G

are idempotent matrices with rank k− 1. It follows that

An,r = w>n,rGnwn,r
L−→ Ar = w>r Gwr ∼ χ2

k−1, (A2)

which is a chi-squared distribution with k − 1 degrees of freedom and Ar, r = 1, 2, . . .
are independent. It follows that as n → ∞, we have Var(An,r) = 2(k− 1)[1 + o(1)] and
E(An,r) = (k− 1)[1 + o(1)]. Therefore, as n→ ∞, we have

E(T̃n − T̃(q)
n )2 = E

(
∑∞

r=q+1 λr An,r

)2

= Var
(

∑∞
r=q+1 λr An,r

)
+ E2

(
∑∞

r=q+1 λr An,r

)
≤

[
∑∞

r=q+1
√

Var(λr An,r)
]2

+
[
∑∞

r=q+1 E(λr An,r)
]2

= (k2 − 1)
(

∑∞
r=q+1 λr

)2
[1 + o(1)].

It follows that

|ϕT̃n
(t)− ϕ

T̃(q)
n
(t)| ≤ |t|(k2 − 1)1/2

(
∞

∑
r=q+1

λr

)
[1 + o(1)]. (A3)

Let t be fixed. Under Condition C3 and (21), as q→ ∞, we have ∑∞
r=q+1 λr → 0. Thus,

for any given ε > 0, there exist N1 and Q1, depending on |t| and ε, such that as n > N1 and
q > Q1, we have

|ϕT̃n
(t)− ϕ

T̃(q)
n
(t)| ≤ ε. (A4)

For any fixed q > Q1, through (A2), as n→ ∞, we have T̃(q)
n

L−→ T̃(q) d
= ∑

q
r=1 λr Ar, Ar

i.i.d.∼
χ2

k−1. Thus, there exists N2, depending on q and ε, such that as n > N2, we have

|ϕ
T̃(q)

n
(t)− ϕT̃(q)(t)| ≤ ε. (A5)

Recall that T̃ = ∑∞
r=1 λr Ar, Ar

i.i.d.∼ χ2
k−1. Along the same lines as those for prov-

ing (A4), we can show that there exists Q2, depending on |t| and ε, such that as q > Q2,
we have

|ϕT̃(q)(t)− ϕT̃(t)| ≤ ε. (A6)

It follows from (A4)–(A6) that for any n ≥ max(N1, N2) and q ≥ max(Q1, Q2), we have∣∣ϕT̃n
(t)− ϕT̃(t)

∣∣ ≤ ∣∣ϕT̃n
(t)− ϕ

T̃(q)
n
(t)
∣∣+ ∣∣ϕ

T̃(q)
n
(t)− ϕT̃(q)(t)

∣∣+ ∣∣ϕT̃(q)(t)− ϕT̃(t)
∣∣ ≤ 3ε.
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The convergence in distribution of T̃n to T̃ follows as we can let ε→ 0.

Proof of Theorem 2. Under Condition C1, let y, y′ i.i.d.∼ F. Then, through (23), we have
E(Ṽαα) = n−1

α E[K̃(y, y)] and E(Ṽαβ) = 0. Thus, we have

E(T̃n) =
k

∑
α=1

nα(n− nα)

n

{
n−1

α E[K̃(y, y)]
}
= (k− 1)E[K̃(y, y)].

Through (23) again, we have

Var(T̃n) = ∑k
α=1

[
nα(n−nα)

n

]2
Var(Ṽαα) + 4 ∑1≤α<β≤k

( nαnβ

n

)2
Var(Ṽαβ)

= ∑k
α=1

n2
α(n−nα)2

n2

{
1

n3
α

Var[K̃(y, y)] + 2(nα−1)
n3

α
E[K̃2(y, y′)]

}
+ 4 ∑1≤α<β≤k

n2
αn2

β

n2

{
1

nαnβ
E[K̃2(y, y′)]

}
= ∑k

α=1
(n−nα)2

n2nα
Var[K̃(y, y)] + 2

[
∑k

α=1
(n−nα)2(nα−1)

n2nα
+ 2 ∑1≤α<β≤k

nαnβ

n2

]
E[K̃2(y, y′)]

= ∑k
α=1

(n−nα)2

n2nα
Var[K̃(y, y)] + 2

[
(k− 1)−∑k

α=1
(n−nα)2

n2nα

]
E[K̃2(y, y′)].

Proof of Theorem 3. First, through (12), we have |K̃(y, y)|, |K̃(y, y′)| ≤ 4BK for all y,
y′ ∈ Rp. Thus, we have

Var[K̃(y, y)] ≤ E[K̃2(y, y)] ≤ 16B2
K, and E[K̃2(y, y′)] ≤ 16B2

K.

Then, through Theorem 2, we have

Var(T̃n)

=
[
∑k

α=1
(n−nα)2

n2nα

]
Var[K̃(yα1, yα1)] + 2

[
(k− 1)−∑k

α=1
(n−nα)2

n2nα

]
E[K̃2(yα1, yβ1)]

≤ 16B2
K

[
∑k

α=1
(n−nα)2

n2nα

]
+ 2 · 16B2

K

[
(k− 1)−∑k

α=1
(n−nα)2

n2nα

]
= 16B2

K

[
2(k− 1)−∑k

α=1
(n−nα)2

n2nα

]
≤ 32B2

K(k− 1).

Finally, since x̄α, α = 1, . . . , k are independent, we have

Var(Sn) = n−(1−2∆)
k
∑

α=1
n2

α ·
σ2

α
nα

= n2∆
k
∑

α=1

nα
n σ2

α .

Furthermore, through the Cauchy–Schwarz inequality, we have

∑k
α=1

nα
n σ2

α = ∑k
α=1

nα
n E
[
〈xα1 − µα, hα − h̄〉

]2
≤ ∑k

α=1
nα
n E
(
‖xα1 − µα‖2)‖hα − h̄‖2

≤ ∑k
α=1

nα
n ‖hα − h̄‖2 E[K̃(yα1, yα1)]

≤ 4BK ∑k
α=1

nα
n ‖hα − h̄‖2

≤ 4BKBh < ∞.

Proof of Theorem 4. Under the given conditions, through Theorems 2 and 3, we have

E(T̃n) = (k− 1)E[K̃(yα1, yα1)], and Var(T̃n) ≤ 32B2
K(k− 1),

and as n→ ∞,

Var(Sn) = n2∆
k

∑
α=1

τασ2
α [1 + o(1)], (A7)
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where τα, α = 1, . . . , k are given in Condition C2, It follows that as n → ∞, we have
E(T̃n)/

√
Var(Sn) → 0 and Var(T̃n)/ Var(Sn) → 0. Thus, through the Markov inequality,

as n→ ∞, we have

Pr

(∣∣∣∣∣ T̃n√
Var(Sn)

∣∣∣∣∣ > ε

)
= Pr

( T̃n√
Var(Sn)

)2

> ε2

 ≤ 1
ε2 ·

E(T̃2
n)

Var(Sn)
→ 0,

for all ε > 0. Therefore, we have T̃n/
√

Var(Sn)
P−→ 0 and (a) is proved. To prove (b), notice

that through the central limit theorem, as nα → ∞, we have

uα =
√

nα〈x̄α − µα, hα − h̄〉/σα
L−→ N (0, 1), α = 1, . . . , k.

Since x̄α, α = 1, . . . , k are independent and Sn = n∆ ∑k
α=1
√

nα/nσαuα, we have

Sn/
√

Var(Sn)
L−→ N (0, 1). To prove (c), notice that as n → ∞, through (25), (a) and

(b), we have

Tn − n2∆ ∑k
α=1

nα
n ‖hα − h̄‖2

2
√

Var(Sn)
=

T̃n

2
√

Var(Sn)
+

Sn√
Var(Sn)

L−→ N (0, 1).

Thus, as n→ ∞, and through (A7), we have

Pr(Tn ≥ Cε) = Pr
[

Tn−n2∆ ∑k
α=1

nα
n ‖hα−h̄‖2

2
√

Var(Sn)
≥ Cε−n2∆ ∑k

α=1
nα
n ‖hα−h̄‖2

2
√

Var(Sn)

]
= 1−Φ

(
Cε

2n∆
√

∑k
α=1

nα
n σ2

α

− n2∆ ∑k
α=1

nα
n ‖hα−h̄‖2

2n∆
√

∑k
α=1

nα
n σ2

α

)
[1 + o(1)]

= 1−Φ

(
− n∆ ∑k

α=1 τα‖hα−h∗‖2

2
√

∑k
α=1 τασ∗2α

)
[1 + o(1)]

= Φ

(
n∆ ∑k

α=1 τα‖hα−h∗‖2

2
√

∑k
α=1 τασ∗2α

)
[1 + o(1)]

→ 1,

where h∗ = ∑k
α=1 ταhα and σ∗2α = E[〈xα1 − µα, hα − h∗〉]2. Thus, the theorem is proved.
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