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Abstract: In the theory of portfolio selection, there are few methods that effectively address the
combined challenge of insider information and model uncertainty, despite numerous methods
proposed for each individually. This paper studies the problem of the robust optimal investment
for an insider under model uncertainty. To address this, we extend the Itô formula for forward
integrals by Malliavin calculus, and use it to establish an implicit anticipating stochastic differential
game model for the robust optimal investment. Since traditional stochastic control theory proves
inadequate for solving anticipating control problems, we introduce a new approach. First, we employ
the variational method to convert the original problem into a nonanticipative stochastic differential
game problem. Then we use the stochastic maximum principle to derive the Hamiltonian system
governing the robust optimal investment. In cases where the insider information filtration is of the
initial enlargement type, we derive the closed-form expression for the investment by using the white
noise theory when the insider is ’small’. When the insider is ’large’, we articulate a quadratic backward
stochastic differential equation characterization of the investment. We present the numerical result
and conduct an economic analysis of the optimal strategy across various scenarios.

Keywords: Malliavin calculus; forward integral; robust optimal investment; insider information;
model uncertainty; stochastic maximum principle; white noise theory
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1. Introduction

The optimal investment problem is a fundamental topic in financial mathematics,
originally introduced by Merton [1,2]. Its primary objective is to choose an investment
strategy π that maximizes the expected terminal utility as follows

max
π

E[U(Xπ
T )], (1)

where U(Xπ
T ) is the terminal utility, and T > 0 is some fixed terminal time. In continuous-

time financial models, there are three conventional methods, rooted in classical Itô theory
(see [3]), for addressing this problem: the martingale method, the dynamic programming
method and the stochastic maximum principle (see [1,2,4]). Extended models and related
problems have been explored over the past decades (see [5–7]).

Recently, there is a growing emphasis on the optimization problem of insider trading.
That is, the investor who owns additional future information. In this setting, we naturally
suppose the investment process π is adapted to the insider information filtration {Ht} ,
which might contain the natural filtration {Ft} of the noise W. In other words, the relevant
Itô stochastic differential equations (SDEs) should be replaced by anticipating SDEs, which
implies that the above methods may not be directly applicable.
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Pikovski and Karatzas [8] was the first to study the optimization problem of insider
trading. They assumed the insider information is hidden in a random variable Y from the
beginning of filtrations. Thus, the insider information filtration is of the initial enlargement
type, i.e.,

Ht =
⋂
s>t

(Fs ∨Y). (2)

They employed the technique of enlargement of filtration to address the issue (see [9]). The
critical point is that W is indeed a semi-martingale with respect to the new filtration {Ht}.
Biagini and Øksendal [10] developed a method based on the theory of forward integrals
to deal with the more general filtration {Ht}. Kohatsu-Higa and Sulem [11] dug into the
large insider-trading problem and derived a characterization theorem for the solution.
Many other extensions could be found in, for example, [9,12–15], which are all based on
the forward integral.

Although numerous insider-trading problems have been explored, the foundational
theory of forward integrals, especially the Itô formula, remains incomplete. As a result in
insider-trading models, certain conditions, such as the forward integrability of parameter
processes, are both abstract and demanding to validate. In this context, Malliavin calcu-
lus offers a natural avenue for investigating the properties of forward integrals. This is
facilitated by the comprehensive nature of its theory and its connection to the Skorohod
integral (see [11,16–19]). To the best of our knowledge, only Nualart [19] used the Malliavin
calculus to derive the Itô formula for forward integrals. However, the forward integral in
his research is defined using Riemann sums, which necessitate an additional continuity
condition. This condition may not be directly applicable to insider trading, as it contradicts
the càglàd nature of the investment process π.

Most of the existing works in the literature on finance, including the articles men-
tioned above, presume that the parameters in models are accurate and the investors are
ambiguity-neutral. However, as pointed out by Chen and Epstein [20], the risk-based mod-
els that constitute the paradigm have well documented empirical failures. Thus, a model
uncertainty setup should be considered. In this situation, the investor is ambiguity-averse.
She might not believe the model is accurate by empirical statistics, which forces her to
choose the robust optimal investment under the worst-case probability. As a consequence,
the optimization problem (1) becomes the following stochastic differential game (SDG)
problem (see [20])

max
π

min
θ

EQθ

[
U(Xπ

T ) +
∫ T

0
g(θs)ds

]
, (3)

where Qθ is the prior probability measure to describe the model uncertainty parametrized
by θ, and g is viewed as a step adopted to penalize the difference between Qθ and original
reference probability P. We refer to [7,20–23] for further studies.

When we combine insider trading with model uncertainty, the nonanticipative SDG
problem (3) becomes an anticipating SDG problem. Directly applying the forward integral
method is infeasible, as it lacks relevant results for the variation associated with the other
controlling process θ. An et al. [24] introduced a generalized stochastic maximum principle
for the anticipating SDG problem using Malliavin calculus. However, the result is limited
to the controlled Itô-Lévy processes due to the intricacies of Malliavin derivative. Peng
et al. [14] used the Donsker δ functional technique in withe noise theory to transform the
anticipating SDG problem into a nonanticipative SDG problem. Subsequently, they applied
the stochastic maximum principle to resolve the problem. However, no closed form of
solution was obtained since the problem could only be reduced to a nested linear backward
stochastic differential equation (BSDE). Moreover, the filtration {Ht} in their research
adheres to the special type (2), and the prior probability Qθ is not exact a probability
measure when θ(y) = θ(Y).
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Inspired by these prior studies, this paper focuses on resolving the optimization
challenge related to insider trading amid model uncertainty. The main contributions are
as follows.

• On the aspect of basic mathematical theory, we enhance some properties of the forward
integral using the Malliavin calculus, and extend the Itô formula for forward integrals
by Malliavin calculus.

• We establish an implicit anticipating SDG model for the robust optimal investment
strategy of an insider, and introduce a new approach combing the stochastic maximum
principle with the variational method. In fact, we deduce the semi-martingale property
of W with respect to {Ht} by taking the variation with respect to π. This allows us to
transform the anticipating SDG problem into a nonanticipative one, which could be
solved by the stochastic maximum principle.

• When the insider information is of the initial enlargement type, we are the first to
derive the closed-form expression for the robust optimal investment strategy in the
small insider case. In cases of large insider influence, we developed a quadratic BSDE
characterization for the strategy. The core technique here involves the Donsker δ
functional in the white noise theory, which is essentially different from that in [14]. In
fact, the white noise technique in [14] was employed initially to convert the anticipating
problem into a nonanticipative one with respect to the natural filtration {Ft}. In
contrast, our approach consistently centers on problems with respect to the larger
filtration {Ht}. We use the white noise methods ultimately to tackle the realm of
generalized nonanticipative BSDE problems.

• We introduce the conception of the ‘critical information time’, which is the minimum
amount of insider information needed by an ambiguity-averse investor to offset the
loss in optimal expected utility arising from model uncertainty. Numerical experi-
ments demonstrates that the impact of model uncertainty becomes more pronounced
as the mean rate of return increases or the volatility decreases.

This paper is organized as follows. In Section 2, we introduce the basic theory of the
Malliavin calculus and derive the Itô formula for forward integrals by Skorohod integrals.
In Section 3, we formulate the robust optimization problem of insider trading. We give the
initial characterization of the robust optimal investment strategy in Section 4 and the final
characterization in Section 5. In Sections 6 and 7, we examine two cases: one for the small
insider and the other for the large insider. The situation in which the insider information
filtration is of the initial enlargement type is also considered in the two sections. Simulation
and economic analysis are performed in Section 9. We summarize our conlusions in
Section 10.

2. The Forward Integral by Malliavin Calculus

Malliavin theory is a new frontier field in stochastic analysis, which essentially involves
an infinite-dimensional differential analysis on the Wiener space. In addition to addressing
a vast array of problems at the intersection of probability theory and analysis, Malliavin
theory has also proven to be highly successful in the field of finance (see [25–28]).

In this section, we briefly introduce the basic theory of the Skorohod integral in Malli-
avin calculus (see [19,29,30]). Subsequently, we leverage this understanding to enhance
the theory of the forward integral. The main result of this section is that we extend certain
propositions and derive the Itô formula for the forward integral via Malliavin calculus to
suit our specific context.

2.1. The Basic Theory of Malliavin Calculus

Consider a filtered probability space (Ω,FT , {Ft}0≤t≤T ,P), on which a standard
Brownian motion W = {Wt}0≤t≤T is defined. Here, {Ft}0≤t≤T is the P-augmentation of
the filtration generated by W, which satisfies the usual condition (see [3]). We also denote
by H the real Hilbert space L2([0, T]). Then (Ω,FT ,P; H) is an irreducible Gaussian space
(see [29]).



Mathematics 2023, 11, 4378 4 of 38

We denote by C∞
p (Rn) the set of all infinitely continuously differentiable functions ϕ

such that ϕ and all of its partial derivatives have polynomial growth. For a given separable
Hilbert space E, denote by S(Ω; E) the class of E-valued smooth random variables such
that X ∈ S has the form

X =
m

∑
j=1

ϕj

(∫ T

0
hj,1(s)dWs, · · · ,

∫ T

0
hj,nj(s)dWs

)
ej,

where m, nj ∈ N+, ϕj ∈ C∞
p (Rnj), hj,l ∈ H, and ej ∈ E for l = 1, · · · , nj and j = 1, · · · , m.

Note that S(Ω; E) is dense in Lp(Ω; E) for p ≥ 1. The Malliavin gradient Dt of the E-valued
smooth random variable X is defined as the H ⊗ E-valued random variable DtX give by

DtX :=
m

∑
j=1

nj

∑
l=1

∂ϕj

∂xl

(∫ T

0
hj,1(s)dWs, · · · ,

∫ T

0
hj,nj(s)dWs

)
hj,l(t)⊗ ej.

For k = 2, 3, · · · , the k-iteration of the operator Dt can be defined in such a way that for
X ∈ S(Ω; E), Dk

t X is a random variable with values in H⊗k ⊗ E.
We can check that Dk

t is a closable operator from S(Ω; E) ⊂ Lp(Ω; E) to Lp(Ω; H⊗k ⊗
E) for k ∈ N+ and p ≥ 1. Denote by Dk,p(Ω; E) the closure of the class of smooth random
variables S(Ω, E) with respect to the graph norm (see [31])

‖X‖Dk,p(Ω;E) : =

[
‖X‖p

Lp(Ω;E) +
k

∑
j=1
‖Dj

tX‖
p
Lp(Ω;H⊗j⊗E)

] 1
p

.

Then (D1
t , · · · , Dk

t )
′ is a closed dense operator with dense domain Dk,p(Ω; E), which is a

Banach space under the norm ‖ · ‖Dk,p(Ω;E) and even a Hilbert space when p = 2. In addi-

tion, we define Dk,∞(Ω; E) :=
⋂

p≥1 Dk,p(Ω; E) and D∞,∞(Ω; E) :=
⋂

k∈N+

⋂
p≥1 Dk,p(Ω; E),

which are both locally convex space (see [29,31]).
When E = R, k = 1 and p = 2, we define

δ : L2(Ω× [0, T])→ L2(Ω)

with domain Dom δ as the adjoint of the closed dense operator

Dt : L2(Ω)→ L2(Ω× [0, T]).

We call δ the Malliavin divergence operator. Denote by L2
a(Ω × [0, T]) the set of all Ft-

adapted processes u ∈ L2(Ω× [0, T]). Then we have L2
a(Ω× [0, T]) ⊂ Dom δ, and when

u ∈ L2
a(Ω× [0, T]), δu corresponds to the Itô integral

∫ T
0 utdWt. In this perspective, we call

δu the Skorohod integral of u, and use
∫ T

0 utdWt to represent it without causing ambiguity.
There are rich properties of Dt and δ (see [19]). Some of them can be found in Appendix A.

2.2. The Skorohod Integral

When u is Skorohod integrable (i.e., u ∈ Dom δ), a natural question is that whether∫ t
0 usdWs := δ(us1[0,t](s)) makes sense for a fixed t ∈ [0, T]. Unfortunately, us1[0,t](s) is

not Skorohod integrable in general. However, since D1,2(Ω; H) ⊂ Dom δ (see Lemma A3),∫ t
0 usdWs is well-defined for u ∈ D1,2(Ω; H) by the chain rule (Lemma A1), and we can

obtain more useful results in the subspaces of D1,2(Ω; H).

Definition 1. Define by L1,2 the space D1,2(Ω; H), which is isomorphic to L2([0, T]; D1,2(Ω))
(see [19]). For every k ∈ N+ and any p ≥ 2, define by Lk,p the space Lp([0, T]; Dk,p(Ω)), which is
a subspace of Dk,p(Ω; H).
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Definition 2. Let u ∈ L1,2, and let q ∈ [1, 2]. We say that u ∈ L1,2,q− (resp. u ∈ L1,2,q+) if
there exists a (unique) process in Lq(Ω× [0, T]), denoted by D−u (resp. D+u), such that

lim
ε→0+

∫ T

0
sup

(s−ε)∨0≤t<s
E(|Dsut − (D−u)s|q) = 0.

(resp. lim
ε→0+

∫ T

0
sup

s<t≤(s+ε)∧T
E(|Dsut − (D+u)s|q) = 0)

In particular, if u ∈ L1,2,q− ∩ L1,2,q+, we say that u ∈ L1,2,q, and define ∇u := D−u + D+u,
which is also in Lq(Ω× [0, T]).

Remark 1. In the earlier theory of the Skorohod integral, the space L1,2,C was utilized (see [29,32]),
allowing the existence of (D−u)s := limε→0+ Dsus−ε and (D+u)s := limε→0+ Dsus+ε in L2(Ω)
uniformly in s. However, this approach was considered overly restrictive. It couldn’t adequately
characterize convergence in Lq(Ω) and made certain proofs for sufficiency challenging. Furthermore,
in our discussion of the forward integral in Section 2.3, we do not assume the existence of D+u,
which might not be feasible for a càglàd process in financial problems. As a result, we analyze within
the more general spaces of L1,2,q− and L1,2,q+ rather than relying on L1,2,C introduced in [19], the
second edition of [32].

Similar to the Itô formula in classical Itô theory (as described in [3]), there exists a
version of the Itô formula for the Skorohod integral. However, before presenting this
formula, a localization technique is required, akin to the approach of the local martingale
in Itô theory.

Definition 3. If L is a class of random variables (or random fields), we denote by Lloc the set of
random variables (or random fields) X such that there exists a sequence {(Ωn, Xn)} ⊂ F × L with
the following properties:

(i) Ωn ↑ Ω, a.s.
(ii) Xn = X a.s. on Ωn.

Moreover, we can easily check that Lloc is a linear space if L is a linear space.

Due to the local properties of Dt and δ (Lemmas A4 and A5), the extensions of
Dk

t : Dk,p
loc(Ω; E) → Lp

loc(Ω; H⊗k ⊗ E) (p ≥ 1) and δ : L1,2
loc → L2

loc(Ω) are well-defined,
provided that E is a separable Hilbert space. The localizations for D−, D+ and ∇ follow a
similar approach. The next proposition demonstrates that the Skorohod integral is also an
extension of the generalized Itô integral in the sense of localization.

Proposition 1 (Proposition 1.3.18, [19]). Let u be a measurable Ft-adapted process such that∫ T
0 u2

t dt < ∞, a.s. Then u belongs to (Dom δ)loc and δu is well-defined. Moreover, δu coincides
with the Itô integral of u (with respect to the local martingale W). Thus, we can keep use of the
notation

∫ T
0 utdWt := δu without ambiguity when u ∈ (Dom δ)loc and δu is well-defined.

Now we can give the Itô formula for the Skorohod integral.

Theorem 1 (Theorem 3.2.2, [19]). Consider a process of the form Xt = X0 +
∫ t

0 usdWs +
∫ t

0 vsds,
where X0 ∈ D1,2

loc (Ω), u ∈ (L2,2 ∩ L1,4)loc, and v ∈ L1,2
loc . Then Xt is continuous and X ∈ L1,2,2

loc
by Lemma A6 and A7, respectively. Moreover, if f ∈ C2(R), then f ′(Xt)ut ∈ L1,2

loc and we have

f (Xt) = f (X0) +
∫ t

0
f ′(Xs)dXs +

1
2

∫ t

0
f ′′(Xs)u2

s ds +
∫ t

0
f ′′(Xs)(D−X)susds. (4)
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2.3. The Forward Integral

The Skorohod integral process
∫ t

0 usdWs is anticipating, meaning it is not adapted
to the filtration Ft. There is another anticipating integral called the forward integral,
which was introduced by [33] and defined by [16]. This type of integral has been studied
before and applied to insider trading in financial mathematics (see [10,34]). However, the
sufficiency of the forward integrability and some related properties may be hard to obtain
without the help of Malliavin calculus (see [11,17,18]). Given that some results in the above
literature can be overly limiting in scope, we will study the forward integral by Malliavin
calculus here completely. All proofs in this subsection can be found in Appendix B.

Definition 4. Let u ∈ L2(Ω× [0, T]). The forward integral of u is defined by∫ T

0
utd−Wt := lim

ε→0+
ε−1

∫ T

0
ut

(
W(t+ε)∧T −Wt

)
dt, (5)

if the limit exists in probability, in which case u is called forward integrable and we write u ∈
Dom δ−. If the limit exists also in Lp(Ω), we write u ∈ Domp δ−.

Remark 2. The forward integral is also an extension of the Itô integral. In other words, if there is a
filtration {Et}0≤t≤T satisfying the usual condition such that Et ⊃ Ft and W is a semi-martingale
with respet to {Et}, t ∈ [0, T], then

∫ T
0 utd−Wt =

∫ T
0 utdWt for every Et-adapted process u such

that u is Itô integrable with respect to W. We refer to [9] for the proof.

It is worth noting that, akin to the Skorohod integral, the forward integrability of
us1[0,t](s) for t ∈ [0, T] cannot be inferred from that of u, which might be ignored in some
literature. However, by Malliavin calculus, we can provide the sufficient condition for the
aforementioned issue and elucidate the relationship between the Skorohod integral and
the forward integral as the following two propositions, which has not been proved in our
specific context.

Proposition 2. Let u ∈ L1,2,1−. Then for all t ∈ [0, T], we have us1[0,t](s) ∈ Dom1 δ− and

∫ t

0
usd−Ws =

∫ t

0
usdWs +

∫ t

0
(D−u)sds. (6)

Remark 3. In [11], the condition limε→0+
1
ε

∫ t
t−ε usds = ut in L1,2 which makes (6) hold is

surplus (see Lemma A9), and the use of Dt+ is limiting by Remark 1. In [17], the condition u ∈ LF

requires the existence of the second derivative of u. In [19], the forward integral is defined by
Riemann sums, and (6) needs an extra continuous condition which is contradict to the nature of the
càglàd process in insider trading theory .

Remark 4. Proposition 2 illustrates that the forward integral can be extended to a linear operator
δ− from L1,2,1−

loc into L1
loc(Ω) as well.

Proposition 3. Let u be a process in L1,2,2− and be L2-bounded. Consider an Ft-adapted process
σ ∈ L1,2, which is L2-bounded and left-continuous in the norm L2(Ω). Assume further that σ and
Dsσt are bounded. Then uσ ∈ L1,2,1−, and for all t ∈ [0, T], we have∫ t

0
usσsd−Ws =

∫ t

0
usσsdWs +

∫ t

0
(D−u)sσsds. (7)

Remark 5. In [18], the condition that ensures the validity of Equation (7) necessitates the introduc-
tion of additional spaces and norms, leading to a rather complex proof. Furthermore, the constraints
of the L1,2,C space are overly limiting in this context.
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The Itô formula for the forward integral was first proved in [34] without Malliavin
calculus. Here we use the Itô formula for the Skorohod integral (Theorem 1) to derive it,
which can be viewed as an extension of [34]. Let L f represent the linear space of processes
u ∈ L2,2 ∩ L1,4 ∩ L1,2,1− that are left-continuous in L2(Ω), L2-bounded, and for which
(D−u) ∈ L1,2. Then we have the following theorem.

Theorem 2. Consider a process of the form Xt = X0 +
∫ t

0 usd−Ws +
∫ t

0 vsds, where X0 ∈
D1,2

loc (Ω), u ∈ L f
loc, and v ∈ L1,2

loc . Then Xt is continuous and X ∈ L1,2,2
loc . Moreover, if f ∈ C2(R),

then f ′(Xt)ut ∈ L1,2,1−
loc and

f (Xt) = f (X0) +
∫ t

0
f ′(Xs)usd−Ws +

∫ t

0
f ′(Xs)vsds +

1
2

∫ t

0
f ′′(Xs)u2

s ds. (8)

3. Model Formulation

In this section, we will set up the model for insider trading under model uncertainty,
and transform it into an implicit anticipating SDG problem.

We assume that all uncertainties arise from the filtered probability space (Ω,F , {Ft},P),
on which a standard Brownian motion W is defined. Here, {Ft}t≥0 is the P-augmentation
of the filtration generated by W, and F = F∞. We fix a terminal time T > 0. Suppose all
filtrations introduced in this section satisfy the usual condition.

3.1. Insider-Trading Model

Consider an investor who can invest in the financial market containing a risk-free asset
(bond) B and a risky asset (stock) S. The price processes of the two assets are governed by
the following anticipating SDEs{

dBt = rtBtdt, 0 ≤ t ≤ T,

dSt = µ(t, πt)Stdt + σtStd−Wt, 0 ≤ t ≤ T,
(9)

with constant initial values 1 and S0 > 0, respectively. Here, the coefficients rt, µ(t, x), and
σt are all Ft-adapted measurable stochastic processes for fixed x ∈ R, and µ(t, ·) is C1 for
every t ∈ [0, T].

Assume the investor is a large investor and has access to insider information charac-
terized by another filtration {Ht}0≤t≤T with

Ft ⊂ Ht, 0 ≤ t ≤ T. (10)

Her investment strategy π could influence the mean rate of return µ of the risky asset. As a
result, µ partly depends on π (see [9,11]).

The investment strategy πt is defined as an Ht-adapted càglàd process, which is
L2-bounded and belons to L1,2,2−. It represents the proportion of the investor’s total wealth
Xt invested in the risky asset St at time t. Since µ(t, πt) is not adapted to Ft, the stochastic
integral in (9) should be interpreted as the forward integral (see [9,19]).

We make some assumptions on the coefficients:

• r ∈ L1,2. For each investment strategy π, µ(·, π)− 1
2 σ2 ∈ L1,2. σ ≥ ε > 0 for some

positive constant ε, and σ ∈ L f ;

• σ and Dsσt are bounded.

Given the conditions stated above, we can resolve the anticipating SDEs (9) by em-
ploying the Itô formula for forward integrals, as illustrated below (see Theorem 2)

St = S0 exp

{ ∫ t

0

(
µ(s, πs)−

1
2

σ2
s

)
ds +

∫ t

0
σsdWs

}
, (11)
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which is no more an Ft-semi-martingale, but anHt-adapted process.
Note that the investment strategy π of the investor can take negative values, which

should be interpreted as engaging in short-selling of the risky asset. The wealth process
Xπ , associated with π, is governed by the following anticipating SDE (see [19]):

dXπ
t =[rt + (µ(t, πt)− rt)πt]Xπ

t dt + σtπtXπ
t d−Wt, 0 ≤ t ≤ T, (12)

with constant initial value X0 > 0. We can solve the anticipating SDE (12) by applying
the Itô formula for forward integrals. Before that, we impose the following admissible
conditions on π.

Definition 5. We define A1 as the set of all investment strategies π satisfying the following
conditions:

(i) σπ ∈ L f ;

(ii) (µ(·, π)− r)π − 1
2 σ2π2 ∈ L1,2;

(iii)
∫ T

0 |rt + (µ(t, πt)− rt)πt|dt +
∫ T

0 |σtπt|2dt < ∞.

Let π ∈ A1. By Theorem 2, the solution of (12) is given by

Xπ
t = X0 exp

{ ∫ t

0

[
rs + (µ(s, πs)− rs)πs −

1
2

σ2
s π2

s

]
ds +

∫ t

0
σsπsd−Ws

}
. (13)

3.2. Model Uncertainty Setup

Consider a model uncertainty setup. Assume that the investor is ambiguity-averse,
implying that she is concerned about the accuracy of statistical estimation, and possible
misspecification errors. Thus, a family of parametrized prior probability measures {Qθ}
equivalent to the original probability measure P is assumed to exist in the real world. How-
ever, since the investor has insider information filtration {Ht} under which W might not
be a semi-martingale, a generalization for the construction of {Qθ} needs to be considered
by means of the forward integral.

Definition 6. We define A2 as the set of all Ht-adapted càglàd processes θt satisfying the
following conditions:

(i) θ ∈ L1,2,1−;

(ii)
∫ t

0 θsd−Ws is a continuousHt-semi-martingale, and the local martingale part (in the canonical

decomposition)
(∫ t

0 θsd−Ws

)M
satisfies the Novikov condition, i.e.,

E
[

exp

{
1
2

〈(∫ ·
0

θsd−Ws

)M
〉

t

}]
< ∞, ∀t ∈ [0, T].

For θ ∈ A2, the Doléans-Dade exponential εθ
t is the uniqueHt-martingale with initial

value 1 governed by

dεθ
t = εθ

t d
(∫ t

0
θsd−Ws

)M
, 0 ≤ t ≤ T. (14)

Thus, we have εθ
T > 0 and

∫
Ω εθ

TdP = 1, which induces a probability Qθ equivalent to

P such that dQθ

dP = εθ
T . All such Qθ form a set of prior probability measures.
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3.3. Robust Optimal Investment Problem

Taking into account the extra insider information and model uncertainty, the optimiza-
tion problem for the investor can be formulated as an implicit anticipating (zero-sum) SDG.
In other words, we need to solve the following problem.

Remark 6. The local martingale part
(∫ t

0 θsd−Ws

)M
in controlled system (14) could not be

expressed analytically in general. Thus, the problem is implicit.

Definition 7. Define A′1 as the subset of A1 such that E| ln Xπ
T |2 < ∞ for all π ∈ A′1. Define A′2

as the subset of A2 such that E
[
|εθ

T |2 +
∫ T

0 |g(θs)|2ds
]
< ∞ for all θ ∈ A′2.

Problem 1. Select a pair (π∗, θ∗) ∈ A′1 ×A′2 such that

V := J(π∗, θ∗) = sup
π∈A′1

inf
θ∈A′2

J(π, θ) = inf
θ∈A′2

sup
π∈A′1

J(π, θ), (15)

where the performance function J is given by

J(π, θ) := EQθ

[
ln Xπ

T +
∫ T

0
g(θs)ds

]
= E

[
εθ

T ln Xπ
T +

∫ T

0
εθ

s g(θs)ds
]

,

and the penalty function g : R→ R is a Fréchet differentiable convex function. We call V the value
(or the robust optimal expected utility) of Problem 1.

4. Initial Characterization of Investment: Variational Method

We use the variational method to give a first characterization of the optimal solution
of Problem 1. Before that, we introduce the following notations.

Let π ∈ A′1 denote

mπ
t :=

∫ t

0

(
µ(s, πs)− rs +

∂

∂x
µ(s, πs)πs − σ2

s πs

)
ds +

∫ t

0
σsdWs (16)

with t ∈ [0, T].

Assumption 1. If (π∗, θ∗) ∈ A′1 ×A′2 is optimal for Problem 1, then for all bounded α ∈ A′1,
there exists some δ > 0 such that π∗ + yα ∈ A′1 for all |y| < δ. Moreover, the following family of
random variables {

εθ∗
T (Xπ∗+yα

T )−1 d
dy

Xπ∗+yα
T

}
y∈(−δ,δ)

is P-uniformly integrable, where d
dy Xπ∗+yα

T exists and the interchange of differentiation and integral

with respect to ln Xπ∗+yα
T in (13) is justified.

Assumption 2. Let αs = ϑ1(t,t+h](s) for fixed 0 ≤ t < t + h ≤ T, where ϑ is anHt-measurable
bounded random variable in D∞,∞(Ω). Then we have α ∈ A′1.

Theorem 3. Suppose (π∗, θ∗) ∈ A′1 ×A′2 is optimal for Problem 1 under Assumptions 1 and 2.
Then mπ∗

t is an (Ht,Qθ∗)-martingale.

Proof. Suppose that the pair (π∗, θ∗) ∈ A′1 ×A′2 is optimal. Then for any bounded α ∈ A′1
and |y| < δ, we have J(π∗ + yα, θ∗) ≤ J(π∗, θ∗), which implies that y = 0 is a maxi-
mum point of the function y 7→ J(π∗ + yα, θ∗). Thus, we have d

dy J(π∗ + yα, θ∗)|y=0 = 0
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once the differentiability is established. Thanks to Assumption 1, we can deduce by
Proposition 3 that

d
dy

J(π∗ + yα, θ∗)|y=0

=E
{

εθ∗
T

[ ∫ T

0
αs

(
µ(s, π∗s )− rs +

∂

∂x
µ(s, π∗s )π

∗
s − σ2

s π∗s

)
ds +

∫ T

0
αsσsd−Ws

]}

=E
{

εθ∗
T

[ ∫ T

0
αs

(
µ(s, π∗s )− rs +

∂

∂x
µ(s, π∗s )π

∗
s − σ2

s π∗s

)
ds +

∫ T

0
αsσsdWs

+
∫ T

0
(D−α)sσsds

]}
=0.

Now fix 0 ≤ t < t + h ≤ T. By Assumption 2, we can choose α ∈ A′1 of the form

αs = ϑ1(t,t+h](s), 0 ≤ s ≤ T,

where ϑ ∈ D∞,∞(Ω) is anHt-measurable bounded random variable. Then we have

(D−ϑ1(t,t+h])s = Dsϑ1(t,t+h](s).

By Lemma A2 we have

EQθ∗

{
ϑ

[ ∫ t+h

t

(
µ(s, π∗s )− rs +

∂

∂x
µ(s, π∗s )π

∗
s − σ2

s π∗s

)
ds +

∫ t+h

t
σsdWs

]}
= 0.

Since this holds for all such ϑ, we can conclude that

EQθ∗
[
mπ∗

t+h −mπ∗
t
∣∣Ht

]
= 0.

Hence, mπ∗
t is anHt-martingale under the probability measure Qθ∗ .

Moreover, we have the following result under the original probability measure P.
Unless otherwise stated, all statements are back to P from now on.

Theorem 4. Suppose (π∗, θ∗) ∈ A′1 ×A′2 is optimal for Problem 1 under Assumptions 1 and 2.
Then the following stochastic process

m̂π∗ ,θ∗
t := mπ∗

t −
∫ t

0
εθ∗

s d
〈
(εθ∗)−1, mπ∗〉

s, 0 ≤ t ≤ T, (17)

is anHt-local martingales. Here, 〈·, ·〉 represents the covariance process (see [3]). We assume that〈
(εθ∗)−1, mπ∗

〉
t is absolutely continuous.

Proof. If (π∗, θ∗) ∈ A′1 × A′2 is optimal, then by Theorem 3 we know that mπ∗
t is an

(Ht,Qθ∗)-martingale. The conclusion is an immediate result from the Girsanov theorem
(see [35]).
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Further, since m̂π∗ ,θ∗
t is anHt-local martingale, we can deduce from (16) that

∫ t
0 σsdWs

is a continuousHt-semi-martingale. Multiplying both sides of (17) by σ−1
t and integrating,

we have ∫ t

0
σ−1

s dm̂π∗ ,θ∗
s =Wt +

∫ t

0
σ−1

s

(
µ(s, π∗s )− rs +

∂

∂x
µ(s, π∗s )π

∗
s − σ2

s π∗s

)
ds

−
∫ t

0
σ−1

s εθ∗
s d
〈
(εθ∗)−1, mπ∗〉

s.

Since 〈m̂π∗ ,θ∗〉t =
〈∫ ·

0 σsdWs
〉

t =
∫ t

0 σ2
s ds, we have 〈W〉t = t. Thus, by the Lévy theorem

(see [3]), the canonical decomposition of the continuousHt-semi-martingale Wt can be given
as Wt = WH(t) +

∫ t
0 φsds, where WH(t) is anHt-Brownian motion and φt is a measurable

Ht-adapted process. Moreover, by Remark 2, we have
∫ t

0 σsdWs =
∫ t

0 σsdWH(s)+
∫ t

0 σsφsds.
In summary, we give the following theorem.

Theorem 5 (semi-martingale Decomposition). Suppose (π∗, θ∗) ∈ A′1 ×A′2 is optimal for
Problem 1 under Assumptions 1 and 2. Then we have the following decomposition

Wt = WH(t) +
∫ t

0
φsds, 0 ≤ t ≤ T, (18)

where WH(t) is anHt-Brownian motion, φt is a measurableHt-adapted process satisfying∫ T

0
|φt|dt < ∞.

Moreover, by the uniqueness of the canonical decomposition of a continuous semi-martingale, π∗

solves the following equation

0 =
∫ t

0

(
µ(s, π∗s )− rs +

∂

∂x
µ(s, π∗s )π

∗
s − σ2

s π∗s

)
ds +

∫ t

0
σsφsds

−
∫ t

0
εθ∗

s d
〈
(εθ∗)−1, mπ∗〉

s, 0 ≤ t ≤ T.
(19)

Further, by Theorem 5 and Remark 2, the dynamic of theHt-martingale εθ
t (see (14))

can be rewritten as

dεθ
t = εθ

t d

( ∫ t

0
θsdWH(s)

)
, 0 ≤ t ≤ T, (20)

for θ ∈ A′2. By the Itô formula for Itô integrals (see [3]), we have

(εθ
t )
−1 = 1 +

∫ t

0
(εθ

s)
−1θ2

s ds−
∫ t

0
(εθ

s)
−1θsdWH(s). (21)

For the optimal pair (π∗, θ∗), by Theorem 5, we can easily calculate the covariation
process of (εθ∗

t )−1 and mπ∗
t as follows

〈
(εθ∗)−1, mπ∗〉

t = −
∫ t

0
(εθ∗

s )−1θ∗s σsds. (22)

By substituting (22) into (19) in Theorem 5 we have the following theorem.
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Theorem 6. Suppose (π∗, θ∗) ∈ A′1 ×A′2 is optimal for Problem 1 under Assumptions 1 and 2.
Then π∗ solves the following equation

0 =µ(t, π∗t )− rt +
∂

∂x
µ(t, π∗t )π

∗
t − σ2

t π∗t + σtφt + σtθ
∗
t , 0 ≤ t ≤ T. (23)

5. Final Characterization of Investment: Stochastic Maximum Principle

In the previous section, we give the characterization of π∗ for the optimal pair (π∗, θ∗)
by using the maximality of J(π∗, θ∗) with respect to π. Thus, we obtain the relationship
between π∗ and θ∗ (see (23)). However, we have not used the minimality of J(π∗, θ∗) with
respect to θ. Thus, we need the other half characterization of θ∗.

It is very difficult to give a direct characterization of θ∗ due to the implicit nature
of the controlled process εθ

t (see (14)). Fortunately, under Assumptions 1 and 2, we can
decompose Wt into WH(t) and

∫ t
0 φsds with respect to the filtration {Ht} using Theorem 5.

Consequently, we transform the implicit anticipating SDE (14) with εθ
t into an explicit

nonanticipative SDE (20). Furthermore, we can transform the anticipating SDE (12) with
Xπ

t into a nonanticipative SDE as follows

dXπ
t = [rt + (µ(t, πt)− rt)πt + σtπtφt]Xπ

t dt + σtπtXπ
t dWH(t), 0 ≤ t ≤ T. (24)

Since (20) and (24) can be viewed as classical SDEs with respect to theHt-Brownian
motion WH(t), Problem 1 becomes a nonanticipative SDG problem with respect to the
filtration {Ht}0≤t≤T . Consequently, we can apply the stochastic maximum principle to
resolve our problem.

Before delving into our methodology, we establish the following assumptions.

Assumption 3. If (π∗, θ∗) ∈ A′1 ×A′2 is optimal for Problem 1, then for all bounded β ∈ A′2,
there exists some δ > 0 such that θ∗ + yβ ∈ A′2 for all |y| < δ. Moreover, the following family of
random variables {

d
dy

ε
θ∗+yβ
T ln Xπ∗

T

}
y∈(−δ,δ)

is P-uniformly integrable, and the following family of random fields{
d

dy
ε

θ∗+yβ
t g(θ∗ + yβ) + ε

θ∗+yβ
t g′(θ∗ + yβ)β

}
y∈(−δ,δ)

is m× P-uniformly integrable, where m is the Borel-Lebesgue measure on [0, T], and d
dy ε

θ∗+yβ
t

exists.

Assumption 4. If (π∗, θ∗) ∈ A′1 ×A′2 is optimal for Problem 1 under Assumptions 1–3, then for
all bounded (α, β) ∈ A′1 ×A′2, we can define ψ̃π∗

t := d
dy Xπ∗+yα

t |y=0 and ψθ∗
t := d

dy ε
θ∗+yβ
t |y=0

by Assumptions 1 and 3. Assume the following SDEs hold:

dψ̃π∗
t =

[
∂

∂x
µ(t, π∗t )π

∗
t αt + (µ(t, π∗t )− rt)αt + σtφtαt

]
Xπ∗

t dt + σtαtXπ∗
t dWH(t)

+ ψ̃π∗
t

[
rt + (µ(t, π∗t )− rt)π

∗
t + σtπ

∗
t φt

]
dt + ψ̃π∗

t σtπ
∗
t dWH(t), 0 ≤ t ≤ T,

ψ̃π∗
0 = 0;

{
dψθ∗

t = εθ∗
t βtdWH(t) + ψθ∗

t θ∗t dWH(t), 0 ≤ t ≤ T,

ψθ∗
0 = 0.
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Assumption 5. Let βs = ξ1(t,t+h](s), 0 ≤ s ≤ T, for fixed 0 ≤ t < t + h ≤ T, where the
random variable ξ is of the form 1At for anyHt-measurable set At. Then β ∈ A′2.

Now we define the Hamiltonian H : [0, T]×R×R×R×R×R2 ×R2 ×Ω→ R by

H(t, x, ε, π, θ, p, q, ω) :=g(θ)ε + [rt + (µ(t, π)− rt)π + σtπφt]xp1 + σtπxq1 + εθq2,

where p =

(
p1
p2

)
, and q =

(
q1
q2

)
. It is obvious that H is differentiable with respect to x, ε,

π and θ. The corresponding BSDE system for the adjoint pair (pt, qt) is given bydp1(t) = −
∂H
∂x

(t)dt + q1(t)dWH(t), 0 ≤ t ≤ T,

p1(T) = εθ
T(Xπ

T )
−1,

(25)

and dp2(t) = −
∂H
∂ε

(t)dt + q2(t)dWH(t), 0 ≤ t ≤ T,

p2(T) = ln Xπ
T ,

(26)

where pi(t) is a continuousHt-semi-martingale, and qi(t) is anHt-adapted process with
the following integrability∫ T

0

[∣∣∂H
∂x

(t)
∣∣+ ∣∣∂H

∂ε
(t)
∣∣+ |qi(t)|2

]
dt < ∞,

i = 1, 2. Here, H(t) := H(t, Xπ
t , εθ

t , πt, θt, pt, qt, ω), etc.
We give a necessary maximum principle and a sufficient maximum principle to

characterize the optimal pair (π∗, θ∗) ∈ A′1 ×A′2.

Theorem 7. Suppose (π∗, θ∗) ∈ A′1 ×A′2 is optimal for Problem 1 under Assumptions 1–5, and
(p∗, q∗) is the corresponding adjoint pair satisfying BSDEs (25) and (26). Then (π∗, θ∗) solves the
following equations (the Hamiltonian system)

∂H∗

∂π
(t) = 0, 0 ≤ t ≤ T, (27)

and
∂H∗

∂θ
(t) = 0, 0 ≤ t ≤ T, (28)

given the following integrability conditions

E
{ ∫ T

0
(ψ̃π∗

t )2d
〈

p∗1
〉

t +
∫ T

0
p∗1(t)

2d
〈
ψ̃π∗〉

t

}
< ∞,

and

E
{ ∫ T

0
(ψθ∗

t )2d
〈

p∗2
〉

t +
∫ T

0
p∗2(t)

2d
〈
ψθ∗〉

t

}
< ∞,

for all bounded (α, β) ∈ A′1 ×A′2. Here, H∗(t) := H(t, Xπ∗
t , εθ∗

t , π∗t , θ∗t , p∗t , q∗t , ω), etc.

Proof. Suppose that the pair (π∗, θ∗) ∈ A′1 ×A′2 is optimal. Then for any bounded β ∈ A′2
and |y| < δ, we have J(π∗, θ∗ + yβ) ≥ J(π∗, θ∗), which implies that y = 0 is a minimum
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point of the function y 7→ J(π∗, θ∗ + yβ). By Assumptions 3 and 4 and Itô formula for Itô
integrals, we have

d
dy

J(π∗, θ∗ + yβ)|y=0

=E
[

ψθ∗
T ln Xπ∗

T +
∫ T

0
ψθ∗

s g(θ∗s )ds +
∫ T

0
εθ∗

s g′(θ∗s )βsds

]

=E
[

ψθ∗
T p∗2(T) +

∫ T

0
ψθ∗

s g(θ∗s )ds +
∫ T

0
εθ∗

s g′(θ∗s )βsds

]

=E
[ ∫ T

0
ψθ∗

s dp∗2(s) +
∫ T

0
p∗2(s)dψθ∗

s +
〈

p∗2 , ψθ∗〉
T +

∫ T

0
ψθ∗

s g(θ∗s )ds +
∫ T

0
εθ∗

s g′(θ∗s )βsds

]

=E
[ ∫ T

0
q∗2(s)ε

θ∗
s βsds +

∫ T

0
εθ∗

s g′(θ∗s )βsds

]
= E

[ ∫ T

0

∂H∗

∂θ
(s)βsds

]
= 0.

By Assumption 5 and the same procedure in Theorem 3, we can deduce that ∂H∗
∂θ (t) = 0,

t ∈ [0, T]. By similar arguments, we can conclude that ∂H∗
∂π (t) = 0, t ∈ [0, T].

Theorem 8. Assume that the semi-martingale decomposition (18) holds. Let (π∗, θ∗) ∈ A′1 ×A′2
with the corresponding pair (p∗, q∗) satisfying BSDE (25) and (26). Suppose (u∗, v∗) satisfies
the Hamiltonian system (27) and (28). Then (u∗, v∗) is optimal for Problem 1 given the following
integrability conditions

E
{ ∫ T

0

(
|p∗1(t)σt(πtXπ

t − π∗t Xπ∗
t )|2 + |q∗1(t)X̃t|2

)
dt

}
< ∞, (29)

and

E
{ ∫ T

0

(
|ε̃tq2(t)|2

)
dt +

∫ T

0
|p∗2(t)|2d〈ε̃〉t

}
< ∞, (30)

for all (π, θ) ∈ A′1 ×A′2. Here, we introduce the following denotations{
π̃t = πt − π∗t , X̃t = Xπ

t − Xπ∗
t , H1(t) = H(t, Xπ

t , εθ∗
t , πt, θ∗t , p∗t , q∗t , ω),

θ̃t = θt − θ∗t , ε̃t = εθ
t − εθ∗

t , H2(t) = H(t, Xπ∗
t , εθ

t , π∗t , θt, p∗t , q∗t , ω).

Proof. For π ∈ A′1, by the Itô formula and Taylor formula, we have that

J(π, θ∗)− J(π∗, θ∗) =E
[
εθ∗
(

ln Xπ
T − ln Xπ∗

T

)]
≤ E

[
[εθ∗ X̃T/Xπ∗

T

]
= E

[
p∗1(T)X̃T

]
=E
[∫ T

0
p∗1(t)dX̃t +

∫ T

0
X̃tdp∗1(t) + 〈p∗1 , X̃〉T

]
=E
[∫ T

0

(
H1(t)− H∗(t)− X̃t

∂H∗

∂x
(t)
)

dt
]
= E

[∫ T

0

∂H∗

∂π
(t)π̃tdt

]
=0,

which induces that supu∈A′1
J(u, v∗) = J(u∗, v∗). Similarly, we have infv∈A′2 J(u∗, v) =

J(u∗, v∗). Thus, we have

inf
v∈A′2

sup
u∈A′1

J(u, v) ≤ sup
u∈A′1

J(u, v∗) ≤ J(u∗, v∗)

≤ inf
v∈A′2

J(u∗, v) ≤ sup
u∈A′1

inf
v∈A′2

J(u, v).
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Since infv∈A′2 supu∈A′1
J(u, v) ≥ supu∈A′1

infv∈A′2 J(u, v), we have

J(u∗, v∗) = inf
v∈A′2

sup
u∈A′1

J(u, v) = sup
u∈A′1

inf
v∈A′2

J(u, v).

Then (u∗, v∗) is optimal for Problem 1.

Combining Theorems 7 and 8 with conclusions in Section 4, we can derive the total
characterization of the optimal pair (π∗, θ∗) as the following theorem.

Theorem 9. Suppose (π∗, θ∗) ∈ A′1 × A′2 is optimal for Problem 1 with the corresponding
pair (p∗, q∗) satisfying BSDEs (25) and (26) under the conditions in Theorem 7. Then (π∗, θ∗)
solves Equations (23), (27) and (28). Conversely, if the semi-martingale decomposition (18) holds,
(π∗, θ∗) ∈ A′1 ×A′2 with the corresponding pair (p∗, q∗) satisfying (25) and (26), and (u∗, v∗)
satisfies Hamiltonian system (27) and (28). Then (u∗, v∗) is optimal for Problem 1 given the
integrability conditions (29) and (30).

Remark 7. By combining equation (28) with equation (23), we could derive the optimal pair
(π∗, θ∗). This combined method consistently provides a more comprehensive characterization of
(π∗, θ∗) compared to relying solely on the Hamiltonian system (27) and (28). This is because the
relationship between π∗ and θ∗ can be explicitly defined by equation (23). For instance, when the
mean rate of return µ is dependent on π∗, as in the case of a large investor, obtaining the solution
(π∗, θ∗) using only (27) and (28) is particularly challenging due to the non-homogeneous nature of
Xπ in such situations (see Section 7).

The robust optimal investment π∗t can be obtained from the Hamiltonian system (27)
and (28). In the following two sections, we will explore two typical scenarios involving a
small insider and a large insider to derive the expression for π∗t in more detail.

6. The Small Insider Case

In this section, we will deduce a generalized linear BSDE that the robust optimal
investment π∗t entails in the case of a small insider. Subsequently, we will calculate the
closed form of π∗t based on this equation by white noise theory.

We assume that the mean rate of return function µ(t, x) = µ0(t) for some Ft-adapted
measurable processes µ0(t), which means the insider’s strategy could not influence the
market. Thus, she is a small insider.

Put ιt = µ0(t)−rt
σt

and φ̃t = ιt + φt. Assume further the penalty function g is of the
quadratic form, i.e., g(θ) = 1

2 θ2. Then we have by the Girsanov theorem that

E
[∫ T

0
εθ∗

s g(θ∗s )ds
]
= EQθ∗

[∫ T

0
g(θ∗s )ds

]
= EQθ∗

[∫ T

0
θ∗s dWH(s)− ln εθ∗

T

]
= EQθ∗

[∫ T

0
(θ∗s )

2ds− ln εθ∗
T

]
= 2EQθ∗

[∫ T

0
g(θ∗s )ds

]
−EQθ∗

[
ln εθ∗

T

]
,

which implies that

E
[∫ T

0
εθ∗

s g(θ∗s )ds
]
= EQθ∗

[
ln εθ∗

T

]
= E

[
εθ∗

T ln εθ∗
T

]
. (31)

We make the following assumption.
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Assumption 6. Suppose the following integrability condition holds∫ T

0
|φ̃t|2dt < ∞.

In order to calculate the robust optimal investment, we give the following lemmas.

Lemma 1. Assume that µ(t, x) = µ0(t) for some Ft-adapted measurable process µ0(t), and
g(θ) = 1

2 θ2. Suppose (π∗, θ∗) ∈ A′1 × A′2 is optimal for Problem 1 under the conditions in
Theorem 7. Suppose Assumption 6 holds. Then we have

εθ∗
T =

1
E
[
(Xπ∗

T )−1|H0
]
Xπ∗

T
. (32)

Proof. Utilizing the Hamiltonian system (28) in Theorem 7, we have

∂H∗

∂θ
(t) = θ∗t + q∗2(t) = 0, (33)

Substituting (33) into the adjoint BSDE (26) with respect to p∗2(t), we havedp∗2(t) =
(θ∗t )

2

2
dt− θ∗t dWH(t), 0 ≤ t ≤ T,

p∗2(T) = ln Xπ∗
T .

(34)

The SDE (20) of εθ∗
t implies that

d ln εθ∗
t = − (θ∗t )

2

2
dt + θ∗t dWH(t). (35)

By comparing (34) with (35), the solution of the BSDE (34) can be given as

p∗2(t) = p∗2(0)− ln εθ∗
t . (36)

Substituting the terminal condition in (34), i.e., p∗2(T) = ln Xπ∗
T , into (36) with t = T,

we have
ln
(
εθ∗

T Xπ∗
T
)
= c∗2 , (37)

where c∗2 := p∗2(0). Since εθ∗
t is anHt-martingale, we have

εθ∗
t = E

[
εθ∗

T |Ht

]
= E

[
ec∗2 (Xπ∗

T )−1∣∣Ht

]
(38)

by (37). Considering that εθ∗
0 = 1, we obtain

ec∗2 =
1

E
[
(Xπ∗

T )−1|H0
] . (39)

Substituting (39) into (37), we obtain

εθ∗
T =

1
E
[
(Xπ∗

T )−1|H0
]
Xπ∗

T
. (40)
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Lemma 2. Assume the conditions in Lemma 1 hold. Then we have

Xπ∗
T =

1√
c∗3Π∗(0, T)

, (41)

where c∗3 := c∗1E
[
(Xπ∗

T )−1|H0

]
, c∗1 := p∗1(0), and

Π∗(t1, t2) := exp

{
−
∫ t2

t1

rsds−
∫ t2

t1

φ̃sdWH(s)−
1
2

∫ t2

t1

φ̃2
s ds

}
. (42)

Proof. Utilizing the Hamiltonian system (27) in Theorem 7, we have

∂H∗

∂π
(t) = (µ0(t)− rt + σtφt)Xπ∗

t p∗1(t) + σtXπ∗
t q∗1(t) = 0, (43)

which implies that
(µ0(t)− rt + σtφt)p∗1(t) + σtq∗1(t) = 0. (44)

Substituting (44) into the adjoint BSDE (25) with respect to p∗1(t) yields{
dp∗1(t) = −rt p∗1(t)dt− φ̃t p∗1(t)dWH(t), 0 ≤ t ≤ T,

p∗1(T) = εθ∗
T (Xπ∗

T )−1.
(45)

Then the unique solution of (45) is given by

p∗1(t) = c∗1Π∗(0, t). (46)

Substituting (46) into (45) with t = T, we have

Xπ∗
T =

εθ∗
T

c∗1Π∗(0, T)
. (47)

Combining (47) with (32), we have

Xπ∗
T =

1√
c∗3Π∗(0, T)

. (48)

Lemmas 1 and 2 give the terminal values of the controlled process εθ∗
t and Xπ∗

t . Thus,
we can apply the generalized BSDE method to our solution.

Put z∗t = σtπ
∗
t Xπ∗

t . Then we have

π∗t =
z∗t

σtXπ∗
t

. (49)

Combining SDE (24) with (49) leads to the following generalized linear BSDE
dXπ∗

t = − fL(t, Xπ∗
t , z∗t , ω)dt + z∗t dWH(t), 0 ≤ t ≤ T,

Xπ∗
T =

1√
c∗3Π∗(0, T)

, (50)

where the generator (or the driver) fL : [0, T]×R×R×Ω→ R is given by

fL(t, x, z, ω) = −rtx− φ̃tz. (51)
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Remark 8. Note that the filtration {Ht} in (50) is not necessarily the filtration generated by the
noise, which is different from the assumption in the classical theory of BSDEs.

It’s worth noting that the terminal value condition in (50) is implicit, as the H0-
measurable random variable c∗3 is dependent on Xπ∗

T .
Inspired by the classical theory of linear BSDE, we can deduce the expression for c∗3

from the following lemma.

Lemma 3. Assume the conditions in Lemma 1 hold. Suppose the following integrability
condition holds

E
[(∫ T

0
Π∗(0, t)2

(
z∗t − φ̃tXπ∗

t

)2
dt
) 1

2

+ (Xπ∗
T )2

]
< ∞. (52)

Then we have

Xπ∗
t =

X0E
[√

Π∗(t, T)|Ht

]
E
[√

Π∗(0, T)|H0

]√
Π∗(0, t)

, (53)

and
Xπ∗

T =
X0

E
[√

Π∗(0, T)|H0

]√
Π∗(0, T)

. (54)

Proof. By the Itô formula for Itô integrals, we have

d
(

Π∗(0, t)Xπ∗
t

)
= Π∗(0, t)dXπ∗

t + Xπ∗
t dΠ∗(0, t) + d

〈
Xπ∗ , Π∗(0, ·)

〉
t

= Π∗(0, t)
(

z∗t − φ̃tXπ∗
t

)
dWH(t).

(55)

By the Burkholder–Davis–Gundy inequality (see [3]) and the integrability condition (52),
we deduce that Π∗(0, t)Xπ∗

t is anHt-martingale. Taking the expectation in (55), we have

Xπ∗
t =

1√
c∗3
E
[

Π∗(t, T)√
Π∗(0, T)

|Ht

]
. (56)

Substituting (56) into the initial value condition Xπ∗
0 = X0 with t = 0 yields

1√
c∗3

=
X0

E
[√

Π∗(0, T)|H0

] . (57)

Combining (56) with (57), we obtain (53) and (54).

From Lemma 3, we can characterize the robust optimal investment by a generalized
linear BSDE.

Theorem 10. Assume the conditions in Lemma 3 hold. Then π∗ and Xπ∗
t are given by (49)–(53),

respectively. θ∗ is given by

θ∗t =
z∗t

Xπ∗
t
− φ̃t. (58)
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Here, Π∗ is given by (42), and (Xπ∗ , z∗) solves the following generalized linear BSDE with respect
to {Ht} 

dXπ∗
t = − fL(t, Xπ∗

t , z∗t , ω)dt + z∗t dWH(t), 0 ≤ t ≤ T,

Xπ∗
T =

X0

E
[√

Π∗(0, T)|H0

]√
Π∗(0, T)

. (59)

Generator fL : [0, T]×R×R×Ω→ R is given by

fL(t, x, z, ω) = −rtx− φ̃tz. (60)

The value V is given by

V = ln X0 − 2E
[

lnE(
√

Π∗(0, T)|H0)

]
. (61)

Furthermore, suppose that {Ht}0≤t≤T is the augmentation of the natural filtration of WH(t),
the right hand of the terminal value condition in (59) is L2-integrable, and r and φ̃ are bounded.
Then (59) is a classical linear BSDE with a unique strong solution, and z∗ is given by

z∗t = DtXπ∗
t (62)

under mild conditions.

Proof. θ∗t can be calculated by Equation (23) in Theorem 6. Substituting Xπ∗
T in Lemma 3

into (50) yields the BSDE (59). By Lemma 1 and the terminal value condition in (59), we
can calculate the value of Problem 1 as follows

V = E
[
εθ∗

T ln
(

εθ∗
T Xπ∗

T

)]
= E

[
−εθ∗

T lnE[(Xπ∗
T )−1|H0]

]
= −E

[
E
[
εθ∗

T lnE[(Xπ∗
T )−1|H0]

∣∣H0

]]
= −E

[
lnE[(Xπ∗

T )−1|H0]E
[
εθ∗

T
∣∣H0

]]
= −E

[
lnE[(Xπ∗

T )−1|H0]
]
= ln X0 − 2E

[
lnE(

√
Π∗(0, T)|H0)

]
.

Further, if the filtration {Ht}0≤t≤T is the augmentation of the natural filtration of WH(t),
thenH0 is generated by the trivial σ-algebra and all P-negligible sets. By [6] (Theorem 4.8),
the linear BSDE (59) has a unique strong solution (Xπ∗ , z∗). In other words, Xπ∗

t is a

continuous Ht-adapted process with E
[
sup0≤t≤T |Xπ∗

t |2
]
< ∞, z∗t is a measurable Ht-

adapted process with E
[∫ T

0 |z
∗
t |2dt

]
< ∞, and (Xπ∗ , z∗) satisfies the BSDE (59). Under

mild conditions, we can obtain the formulae for z∗t as follows (see [36] (Proposition 3.5.1))

z∗t = DtXπ∗
t ,

where Dt is the Malliavin gradient operator from the Sobolev space D1,2(Ω) to L2(Ω×
[0, T]).

Remark 9. If the filtration {Ht}0≤t≤T in Theorem 10 is not the augmentation of the natural
filtration of WH(t), or the coefficients of the generator fL are not necessarily bounded, we refer
to [37–41] for further results. In those cases, the existence and uniqueness of the solution to the
BSDE (59) still hold under mild conditions when a general martingale representation property
was assumed, or a transposition solution was considered, or a stochastic Lipschitzs condition
was considered.
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6.1. Without Insider Information

If the investor has no insider information, i.e.,Ht = Ft, we have φ = 0.
Assume further that all the parameter processes are assumed to be deterministic

bounded functions. Then we can derive the closed-form expression for the investment as
the following corollary.

Corollary 1. Assume the conditions in Lemma 3 hold. Assume further that Ht = Ft and all
parameter processes are deterministic bounded functions. Then (π∗, θ∗) is given by

π∗t =
µ0(t)− rt

2σ2
t

,

θ∗t = −µ0(t)− rt

2σt
.

(63)

The value V is given by

V = ln X0 +
∫ T

0
rtdt +

1
4

∫ T

0

(
µ0(t)− rt

σt

)2

dt. (64)

Proof. By Theorem 10, we have

z∗t = DtXπ∗
t

=
X0E

[
Dt
√

Π∗(t, T)|Ft

]
E
√

Π∗(0, T)
√

Π∗(0, t)
− 1

2

X0E
[√

Π∗(t, T)|Ft

]
E
√

Π∗(0, T)Π∗(0, t)
3
2

D1
t Π∗(0, t)

=
1
2

X0E
[√

Π∗(t, T)|Ft

]
E
√

Π∗(0, T)
√

Π∗(0, t)
ιt.

Then (π∗, θ∗) can be calculated by (49) and (58). Moreover, the value of Problem 1 can be
calculated by (61) as follows

V = ln X0 − ln
(
E
√

Π∗(0, T)
)2

= ln X0 +
∫ T

0
rtdt +

1
4

∫ T

0

(
µ0(t)− rt

σt

)2

dt.

6.2. Insider Information of Initial Enlargement Type

Next, we give a particular case to derive the closed-form expression for the robust
optimal investment. Assume that the filtration is of initial enlargement type, i.e.,

Ht =
⋂
s>t

(Fs ∨Y0) :=
⋂
s>t

(
Fs ∨

∫ T0

0
ϕudWu

)
, 0 ≤ t ≤ T, (65)

for some T0 > T, and all the parameter processes are assumed to be deterministic bounded
functions. Here, ϕt is some deterministic function satisfying ‖ϕ‖2

[s,t] :=
∫ t

s ϕ2
udu < ∞ for

all 0 ≤ s ≤ t ≤ T0, and ‖ϕ‖2
[T,T0]

> 0.
In this situation, each Ht-adapted process xt has the form xt = x1(t, Y0, ω) for some

function x1 : [0, T] × R×Ω → R such that x1(t, y) is Ft-adapted for every y ∈ R. For
simplicity, we write x instead of x1 in the sequel. To get the explicit expression for φt and
solve the generalized linear BSDE (59) in Theorem 10, we need to introduce some white
noise techniques (see [9,13,29]).



Mathematics 2023, 11, 4378 21 of 38

Definition 8 (Donsker δ functional). Let Y : Ω → R be a random variable, which belongs
to the distribution space (S)−1 (see [29] for the definition). Then a continuous linear operator
δ·(Y) : R→ (S)−1 is called a Donsker δ functional of Y if it has the property that∫

R
f (y)δy(Y)dy = f (Y)

for all Borel measurable functions f : R→ R such that the integral converges in (S)−1.

The following lemma gives a sufficient condition for the existence of the Donsker δ
functional. The proof can be found in [9].

Lemma 4. Let Y : Ω → R be a Gaussian random variable with mean µ̄ and variance σ̄2 > 0.
Then its Donsker δ functional δy(Y) exists and is uniquely given by

δy(Y) =
1√

2πσ̄2
exp�

{
− (y−Y)�2

2σ̄2

}
∈ (S)′ ⊂ (S)−1,

where (S)′ is the Hida distribution space, and � denotes the Wick product. We refer to [29] for
relevant definitions.

By Lemma 4 and the Lévy theorem, the Donsker δ functional of Y0 in (65) is given by

δy(Y0) =
1√

2π‖ϕ‖2
[0,T0]

exp�
{
− (y−Y0)

�2

2‖ϕ‖2
[0,T0]

}
,

and we have

Gt := E[δy(Y0)|Ft] =
1√

2π‖ϕ‖2
[t,T0]

exp

{
−

(y−
∫ t

0 ϕsdWs)2

2‖ϕ‖2
[t,T0]

}
.

Using the Donsker δ functional technique, we can obtain the explicit expression for φ
by the following lemma, which was first proposed by Draouil and Øksendal [42].

Lemma 5 (Enlargement of filtration). Suppose Y is an FT0 -measurable random variable for some
T0 > T and belongs to (S)′. The Donsker δ functional of Y exists and satisfies E[δ·(Y)|Ft] ∈
L2(m× P) and E[Dtδ·(Y)|Ft] ∈ L2(m× P), where Dt is the (extended) Hida–Malliavin deriva-
tive (see [9]). Assume further thatHt =

⋂
s>t(Fs ∨Y), which satisfies the usual condition, and W

is anHt-semi-martingale with the decomposition (18). Then we have

φt =
E[Dtδy(Y)|Ft]|y=Y

E[δy(Y)|Ft]|y=Y
.

If {Ht} is of the form (65), we have by Lemma 5 that

φt = φt(Y0) =
Y0 −

∫ t
0 ϕsdWs

‖ϕ‖2
[t,T0]

ϕt. (66)

In order to transform the generalized BSDE (59) into a classical BSDE, we need to
rewrite Π∗(0, t) and Xπ∗

T as functions of Y0.



Mathematics 2023, 11, 4378 22 of 38

Lemma 6. Assume the conditions in Lemma 3 hold. Assume further that {Ht} is given by (65)
and all parameter processes are deterministic bounded functions. Then we have

Π∗(t1, t2) =
Gt1

Gt2

Π∗a(t1, t2)
∣∣
y=Y0

, (67)

where

Π∗a(t1, t2) := exp

{
−
∫ t2

t1

rsds−
∫ t2

t1

ιsdWs −
1
2

∫ t2

t1

ι2s ds

}
(68)

is an Ft-adapted semi-martingale. Moreover, the terminal value Xπ∗
T is given by

Xπ∗
T = c̃∗3(y)

√
GT

Π∗a(0, T)

∣∣∣∣∣
y=Y0

, (69)

where c̃∗3(y) := X0

E
[√

Π∗(0,T)|H0

]
(y)
√

G0
is a Borel measurable function with respect to y.

Proof. Substituting (66) into (42) and using the Itô formula, we can rewrite the expression
for Π∗(t1, t2), 0 ≤ t1 ≤ t2 ≤ T, as follows

Π∗(t1, t2) = Π∗(t1, t2, y)|y=Y0

= exp
{
−
∫ t2

t1

φs(Y0)dWs +
1
2

∫ t2

t1

φs(Y0)dy
}

Π∗a(t1, t2)

=
Gt1

Gt2

Π∗a(t1, t2)
∣∣
y=Y0

.

From the terminal value condition of Xπ∗
T in (59), we have

Xπ∗
T = Xπ∗

T (y)|y=Y0 =
X0

E
[√

Π∗(0, T)|H0
]
(y)

√
GT

G0Π∗a(0, T)

∣∣∣∣∣
y=Y0

= c̃∗3(y)

√
GT

Π∗a(0, T)

∣∣∣∣∣
y=Y0

.

By Definition 8, the generalized linear BSDE (59) with respect to {Ht} can be
rewritten as ∫

R
Xπ∗

t (y)δy(Y0)dy =
∫
R

Xπ∗
T (y)δy(Y0)dy

+
∫
R

∫ T

t

[
−rsXπ∗

s (y)− ιsz∗s (y)
]
dsδy(Y0)dy

−
∫
R

∫ T

t
z∗s (y)dWsδy(Y0)dy.

(70)

It is obvious that (59) holds if and only if (Xπ∗
t (y), z∗t (y)) is the solution of the follow-

ing classical linear BSDE with respect to the natural filtration {Ft} for each y
dXπ∗

t (y) = − f̄L(t, Xπ∗
t (y), z∗t (y))dt + z∗t (y)dWt, 0 ≤ t ≤ T,

Xπ∗
T (y) = c̃∗3(y)

√
GT

Π∗a(0, T)
,

(71)
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where the generator f̄L : [0, T]×R×R2 → R is given by

f̄L(t, x, z) = −rtx− ιtz. (72)

Utilizing the classical theory of linear linear BSDEs, we can calculate the robust optimal
investment, as stated in the following theorem.

Theorem 11. Assume the conditions in Lemma 6 hold. Then (π∗, θ∗) is given by
π∗t =

ιt
2σt

+
Y0 −

∫ t
0 ϕsdWs +

1
2

∫ T
t ϕsιsds

σt

(
‖ϕ‖2

[t,T0]
+ ‖ϕ‖2

[T,T0]

) ϕt,

θ∗t = −1
2

ιt +
Y0 −

∫ t
0 ϕsdWs +

1
2

∫ T
t ϕsιsds(

‖ϕ‖2
[t,T0]

+ ‖ϕ‖2
[T,T0]

) ϕt −
Y0 −

∫ t
0 ϕsdWs

‖ϕ‖2
[t,T0]

ϕt.

(73)

Proof. By [6] (Theorem 4.8), the unique strong solution of (71) is given by

Xπ∗
t (y) = E

[
Π∗a(t, T)c̃∗3(y)

√
GT

Π∗a(0, T)

∣∣∣∣Ft

]
. (74)

As per the initial value condition Xπ∗
0 (y) = X0, the Borel measurable function c̃∗3(y) in (74)

is given by

c̃∗3(y) =
X0

E
√

Π∗a(0, T)GT
=

X0

E
[√

Π∗(0, T)|H0
]
(y)
√

G0
. (75)

The last equation in (75) is the definition of c̃∗3(y). Substituting (75) into (74), we obtain

Xπ∗
t (y) =

X0E
[√

Π∗a(t, T)GT |Ft

]
E
√

Π∗a(0, T)GT
√

Π∗a(0, t)
. (76)

By [36] (Proposition 3.5.1), we have

z∗t (y) = DtXπ∗
t (y)

=
X0E

[
Dt
√

Π∗a(t, T)GT |Ft

]
E
√

Π∗a(0, T)GT
√

Π∗a(0, t)
− 1

2

X0E
[√

Π∗a(t, T)GT |Ft

]
E
√

Π∗a(0, T)GTΠ∗a(0, t)
3
2

DtΠ∗a(0, t)

=
1
2

X0E
[√

Π∗a(t, T)GT

(
y−

∫ T
0 ϕsdWs

)∣∣Ft

]
‖ϕ‖2

[T,T0]
E
√

Π∗a(0, T)GT
√

Π∗a(0, t)
ϕt +

1
2

X0E
[√

Π∗a(t, T)GT |Ft

]
E
√

Π∗a(0, T)GT
√

Π∗a(0, t)
ιt.

Substituting the above equation into (49), we obtain the robust optimal investment strategy

π∗t = π∗t (y)|y=Y0

=
ιt

2σt
+

1
2

E
[
Π̃∗a(t, T)

√
GT

(
y−

∫ T
0 ϕsdWs

)∣∣Ft

]
σt‖ϕ‖2

[T,T0]
E
[
Π̃∗a(t, T)

√
GT |Ft

] ϕt

∣∣∣∣∣
y=Y0

,

where

Π̃∗a(0, t) := exp

{
−
∫ t

0

ιs
2

dWs −
1
8

∫ t

0
ι2s ds

}
.

Then, by the Girsanov theorem, WQ(t) := Wt +
∫ t

0
ιs
2 ds is an Ft-Brownian motion under

the new equivalent probability measure Q defined by dQ = Π̃∗a(0, T)dP. Thus, by the
Bayes rule (see [3]), we can rewrite the robust optimal investment strategy as follows
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π∗t =
1
2

EQ
[√

GT

(
y−

∫ T
0 ϕsdWs

)∣∣Ft

]
σt‖ϕ‖2

[T,T0]
EQ
[√

GT |Ft
] ϕt

∣∣∣∣∣
y=Y0

+
ιt

2σt

=
1
2

ϕt

σt‖ϕ‖2
[T,T0]

{
y−

EQ
[

exp
{
− (y− ĨT+ι̃T)

2

4‖ϕ‖2
[T,T0 ]

}(
ĨT − ι̃T

)∣∣Ft

]
EQ
[

exp
{
− (y− ĨT+ι̃T)2

4‖ϕ‖2
[T,T0 ]

}∣∣Ft

] }∣∣∣∣∣
y=Y0

+
ιt

2σt
,

where ι̃t := 1
2

∫ t
0 ϕsιsds, t ∈ [0, T], and Ĩt :=

∫ t
0 ϕsdWQ(s). On the other hand, the con-

ditional Q law of ĨT , given Ft, is normal with mean Ĩt and variance ‖ϕ‖2
[t,T] due to the

Markov property of Itô diffusion processes (see [3]). Thus, the above formula leads to

π∗t =
1
2

ϕt

σt‖ϕ‖2
[T,T0]

{
y + ι̃T −

∫
R

x√
2π‖ϕ‖2

[t,T]

exp
{
− (y−x+ι̃T)

2

4‖ϕ‖2
[T,T0 ]

− (x−z)2

2‖ϕ‖2
[t,T]

}
dx∫

R
1√

2π‖ϕ‖2
[t,T]

exp
{
− (y−x+ι̃T)2

4‖ϕ‖2
[T,T0 ]

− (x−z)2

2‖ϕ‖2
[t,T]

}
dx

}∣∣∣∣∣ z= Ĩt
y=Y0

+
ιt

2σt

=
Y0 −

∫ t
0 ϕsdWs +

1
2

∫ T
t ϕsιsds

σt

(
‖ϕ‖2

[t,T0]
+ ‖ϕ‖2

[T,T0]

) ϕt +
ιt

2σt
.

By Theorem 10, we have

θ∗t = −1
2

ιt +
Y0 −

∫ t
0 ϕsdWs +

1
2

∫ T
t ϕsιsds(

‖ϕ‖2
[t,T0]

+ ‖ϕ‖2
[T,T0]

) ϕt −
Y0 −

∫ t
0 ϕsdWs

‖ϕ‖2
[t,T0]

ϕt.

When ϕ = 1, the investor possesses the insider information WT0 regarding the future
price of the risky asset. This leads us to the following corollary.

Corollary 2. Suppose the conditions in Lemma 6 hold. Assume further that ϕ = 1 in (65) . Then
(π∗, θ∗) is given by

π∗t =
µ0(t)− rt

2σ2
t

+
WT0 −Wt +

1
2

∫ T
t

µ0(s)−rs
σs

ds
σt(T0 − t + T0 − T)

,

θ∗t = −µ0(t)− rt

2σt
+

WT0 −Wt +
1
2

∫ T
t

µ0(s)−rs
σs

ds
(T0 − t + T0 − T)

−
WT0 −Wt

T0 − t
.

The value V is given by

V = ln X0 +
∫ T

0
rtdt +

1
4

∫ T

0

(
µ0(t)− rt

σt

)2

dt +
1
2

ln
(

1− T2

(2T0 − T)2

)−1

+
T

2(2T0 − T)
+

1
4(2T0 − T)

(∫ T

0

µ0(t)− rt

σt
dt
)2

.

Proof. We have

E(
√

Π∗(0, T)|H0) =

(
E

√
Π∗a(0, T)

GT
G0

)∣∣∣∣∣
y=Y0
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by (75). Substituting the above equation into (61), we can calculate by Girsanov theorem
that

V = ln X0 − 2E

(lnE

√
Π∗a(0, T)

GT
G0

)∣∣∣∣∣
y=Y0


= ln X0 +

∫ T

0
rtdt +

1
4

∫ T

0

(
µ0(t)− rt

σt

)2

dt− 2E

(lnEQ

√
GT
G0

)∣∣∣∣∣
y=Y0


= ln X0 +

∫ T

0
rtdt +

1
4

∫ T

0

(
µ0(t)− rt

σt

)2

dt +
1
2

ln
(

1− T2

(2T0 − T)2

)−1

+
T

2(2T0 − T)
+

1
4(2T0 − T)

(∫ T

0

µ0(t)− rt

σt
dt
)2

7. The Large Insider Case

In this section, we will deduce a generalized quadratic BSDE that the robust optimal
investment π∗t entails in the case of a large insider, and transform it into a classical quadratic
BSDE using the white noise theory.

Assume that the mean rate of return µ(t, x) = µ0(t) + ρtx for some Ft-adapted
measurable processes µ0(t) and ρt with 0 ≤ ρt <

1
2 σ2

t . Note that the insider is ’small’ when
ρt = 0.

Put ιt =
µ0(t)−rt

σt
, σ̃t = σt − 2ρt

σt
, and φ̃t = ιt + φt. Assume further the penalty function

g is given by g(θ) = 1
2 θ2. Then we have

E
[∫ T

0
εθ∗

s g(θ∗s )ds
]
= E

[
εθ∗

T ln εθ∗
T

]
. (77)

If we follow the method in Section 6, the terminal condition in BSDE (50) will depend
on z∗t , which makes the BSDE (50) irregular and very hard to solve. The reason is that
SDE (24) for Xπ∗

t is not homogeneous if ρt 6= 0.
However, we could use a generalized quadratic BSDE to characterize the robust

optimal investment.

Theorem 12. Assume that µ(t, x) = µ0(t) + ρtx for some Ft-adapted measurable processes µ0(t)
and ρt with 0 ≤ ρt ≤ 1

2 σ2
t , and g(θ) = 1

2 θ2. Suppose (π∗, θ∗) ∈ A′1×A′2 is optimal for Problem 1
under the conditions in Theorem 7. Then (π∗, θ∗) is given by

π∗t =
z∗t + φ̃t

σt + σ̃t
,

θ∗t =
σ̃tz∗t − σtφ̃t

σt + σ̃t
,

(78)

where L∗t := ln
(
εθ∗

t Xπ∗
t
)

and z∗t solve the following generalized quadratic BSDE with respect
to {Ht} {

dL∗t = − fQ(t, z∗t , ω)dt + z∗t dWH(t), 0 ≤ t ≤ T,

L∗T = c∗2 .
(79)

Here, the generator fQ : [0, T]×R×Ω→ R is given by

fQ(t, z, ω) =
z2

4
− φ̃t

2
z− rt −

φ̃2
t

4
− (σt − σ̃t)

4(σt + σ̃t)
(z + φ̃t)

2, (80)
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and theH0-measurable random variable c∗2 can be determined by L∗0 = ln X0 under some integra-
bility conditions (see Remark 10). The value V is given by

V = EL∗T . (81)

Furthermore, if {Ht}0≤t≤T is the augmentation of the natural filtration of WH(t), and c∗2 , φ̃,
r, σ and σ̃ are bounded, then the quadratic BSDE (79) has a unique strong solution and z∗ is
given by

z∗t = DtL∗t (82)

under mild conditions, where c∗2 can be determined by traversing all constants such that the condition
L∗0 = ln X0 holds.

Remark 10. In fact, integrating (79) from t to T yields L∗T − L∗t = −
∫ T

t fQ(s, z∗s , ω)ds +∫ T
t z∗s dWH(s). Taking conditional expectation and assuming the Itô integrals are L2-martingales,

we get L∗t = E
[∫ T

t fQ(s, z∗s , ω)ds + L∗T
∣∣Ht

]
. Taking t = 0 and using the initial value condition

we have c∗2 = ln X0 −E
[∫ T

0 fQ(s, z∗s , ω)ds
∣∣H0

]
.

Proof. By a similar procedure in Section 6 with respect to the Hamiltonian system (28), we
have (see (37))

ln
(
εθ∗

T Xπ∗
T
)
= c∗2 , (83)

where c∗2 = p∗2(0) is anH0-measurable random variable. Combining the Itô formula for Itô
integrals with the expressions for εθ∗

t and Xπ∗
t yields the following SDE

d ln
(
εθ∗

t Xπ∗
t
)
=[rt + (µ0(t)− rt)π

∗
t + σtπ

∗
t φt]dt

− 1
2

[
(σtπ

∗
t )

2 + (θ∗t )
2 − σt(σt − σ̃t)(π

∗
t )

2
]
dt

+ (σtπ
∗
t + θ∗t )dWH(t).

(84)

Put L∗t = ln
(
εθ∗

t Xπ∗
t
)

and z∗t = σtπ
∗
t + θ∗t . From (23) in Theorem 6, we obtain

θ∗t = σ̃tπ
∗
t − φ̃t. (85)

Then we have 
π∗t =

z∗t + φ̃t

σt + σ̃t
,

θ∗t =
σ̃tz∗t − σtφ̃t

σt + σ̃t
.

(86)

Combining SDE (84) with (83) and (86) yields the BSDE (79). By (77) and (83), the value V
can be calculated by

V = E
[
εθ∗

T ln
(

εθ∗
T Xπ∗

T

)]
= Ec∗2 = EL∗T . (87)

If the filtration {Ht} is the augmentation of the natural filtration of WH(t), then c∗2 is
a constant. Suppose that c∗2 , φ̃, r, σ and σ̃ are bounded. Then, by [43] (Theorem 4.1),
the quadratic BSDE (79) has a unique strong solution (L∗, z∗). In other words, L∗t is a
bounded continuous Ht-adapted process, z∗t is a measurable Ht-adapted process with
E
∫ T

0 |z
∗
t |2dt < ∞ and

∫ t
0 z∗s dWH(s) is an Ht-BMO-martingale (see [44]), and (L∗, z∗)

satisfies the BSDE (79). Under mild conditions on the Malliavin derivative, we can calculate
z∗t by (82) (see Corollary 5.1 in [43]).

Remark 11. If the filtration {Ht}0≤t≤T in Theorem 12 is not the augmentation of the natural
filtration of WH(t), or the coefficients of the generator fQ is not necessarily bounded, we refer
to [13,37–40] for further results. Meanwhile, the H0-measurable random variable c∗2 can be
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determined by traversing allH0-measurable random variable such that the condition L∗0 = ln X0
holds. Moreover, if H0 is generated by a random variable F and all P-negligible sets, then by the
monotone class theorem of functional forms (see [44]), there exists a Borel measurable function f
such that c∗2 = f (F), a.s. Thus, c∗2 can be determined by traversing all Borel measurable functions
f such that the initial value condition L∗0 = ln X0 holds.

7.1. Without Insider Information

If the investor has no insider information, i.e.,Ht = Ft, we have φ = 0.
Assume further that all the parameter processes are assumed to be deterministic

bounded functions. Then we can deduce the following corollary.

Corollary 3. Assume the conditions in Theorem 12 hold. Assume further that Ht = Ft and all
parameter processes are deterministic bounded functions. Then (π∗, θ∗) is given by

π∗t =
z∗t + ιt
σt + σ̃t

,

θ∗t =
σ̃tz∗t − σtιt

σt + σ̃t
,

(88)

where L∗t := ln
(
εθ∗

t Xπ∗
t
)

and z∗t solve the following classical quadratic BSDE with respect to {Ft}
dL∗t = − fQ(t, z∗t , ω)dt + z∗t dWt, 0 ≤ t ≤ T,

L∗T = ln X0 −E
[∫ T

0
fQ(s, z∗s , ω)ds

]
.

(89)

Here, the generator fQ : [0, T]×R×Ω→ R is given by

fQ(t, z, ω) =
z2

4
− ιt

2
z− rt −

ι2t
4
− (σt − σ̃t)

4(σt + σ̃t)
(z + ιt)

2. (90)

The value V is given by
V = ln X0 −E

[∫ T

0
fQ(s, z∗s , ω)ds

]
. (91)

Proof. The result is an immediate consequence of Theorem 12.

7.2. Insider Information of Initial Enlargement Type

Next, we consider a particular case when the filtration is of initial enlargement
type, i.e.,

Ht =
⋂
s>t

(Fs ∨Y0) :=
⋂
s>t

(
Fs ∨

∫ T0

0
ϕudWu

)
, 0 ≤ t ≤ T, (92)

for some T0 > T, and all the parameter processes are assumed to be deterministic bounded
functions. Here, ϕt is some deterministic function satisfying ‖ϕ‖2

[s,t] :=
∫ t

s ϕ2
udu < ∞ for

all 0 ≤ s ≤ t ≤ T0, and ‖ϕ‖2
[T,T0]

> 0.
By the Donsker δ functional δy(Y0) and a similar procedure in Section 6.2, we have

φt = φt(y)|y=Y0 =
y−

∫ t
0 ϕsdWs

‖ϕ‖2
[t,T0]

ϕt

∣∣∣∣∣
y=Y0

. (93)

Then we have the following theorem.
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Theorem 13. Assume the conditions in Theorem 12 hold. Assume further that {Ht} is given
by (92) and all parameter processes are deterministic bounded functions. Then (π∗, θ∗) is given
by (78), where (L∗(y), z∗(y)) solves the classical quadratic BSDE{

dL∗t (y) = − f̄Q(t, z∗t (y), y, ω)dt + z∗t (y)dWt, 0 ≤ t ≤ T,

L∗T(y) = c∗2(y).
(94)

Here, the generator f̄Q : [0, T]×R×R×Ω→ R is given by

f̄Q(t, z, y, ω) =
z2

4
− ιt − φt(y)

2
z− rt −

(ιt + φt(y))2

4
− (σt − σ̃t)

4(σt + σ̃t)
(z + ιt + φt(y))

2,

(95)
φt(y) is given by (93), and theH0-measurable random variable c∗2 can be determined by traversing
all Borel measurable functions c∗2(y) such that L∗0 = ln X0. Moreover, the value V is given by

V = E(L∗T(y)|y=Y0). (96)

Proof. The result is an immediate consequence of Theorem 12.

8. Optimal Investment Without Model Uncertainty

We focus on the specific scenario that excludes model uncertainty. The findings in this
section are also documented in [9]. Nonetheless, we retain this section to maintain the cohe-
siveness of this paper and facilitate the numerical experiments in the subsequent section.

When there is no model uncertainty, that is, A′2 = {(0)}, Problem 1 degenerates to the
following anticipating stochastic control problem.

Problem 2. Select π∗ ∈ A′1 such that

Ṽ := J̃(π∗) = sup
π∈A′1

J̃(π), (97)

where J̃(π) := E
[
ln Xπ

T
]
. We call Ṽ the value (or the optimal expected utility) of Problem 2.

Suppose that µ(t, x) = µ0(t) + ρtx for some Ft-adapted measurable processes µ0(t)
and ρt with 0 ≤ ρt <

1
2 σ2

t . Put ιt =
µ0(t)−rt

σt
, σ̃t = σt − 2ρt

σt
, and φ̃t = ιt + φt.

By Theorem 6 in the initial characterization of the solution, we can easily obtain the
following result.

Theorem 14. Assume that µ(t, x) = µ0(t) + ρtx for some Ft-adapted measurable processes µ0(t)
and ρt with 0 ≤ ρt <

1
2 σ2

t , and no model uncertainty is considered. Suppose π∗ ∈ A′1 is optimal
for Problem 2 under Assumptions 1 and 2. Then π∗ is given by

π∗t =
µ0(t)− rt

σtσ̃t
+

φt

σ̃t
. (98)

The value Ṽ is given by

Ṽ = ln X0 +E
∫ T

0
rtdt +

1
2
E
∫ T

0

σt

σ̃t

(
µ0(t)− rt

σt
+ φt

)2

dt. (99)

Proof. Since A′2 = {0}, which implies that θ∗ = 0 in Theorem 6, we have that

π∗t =
φ̃t

σ̃t
=

µ0(t)− rt

σtσ̃t
+

φt

σ̃t
. (100)

Substitute (100) into (97). Then (99) is a result from (23) and tedious calculation.
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8.1. Without Insider Information

If the investor has no insider information, i.e.,Ht = Ft, we have φ = 0.
Assume further that all the parameter processes are assumed to be deterministic

bounded functions. Then we can deduce the following corollary.

Corollary 4. Suppose that the conditions in Theorem 14 hold. Assume further thatHt = Ft and
all parameter processes are deterministic bounded functions. Then the optimal investment π∗ is
given by

π∗t =
µ0(t)− rt

σtσ̃t
. (101)

The value Ṽ is given by

Ṽ = ln X0 +
∫ T

0
rtdt +

1
2

∫ T

0

σt

σ̃t

(
µ0(t)− rt

σt

)2

dt. (102)

Proof. The corollary is an immediate consequence of Theorem 14.

8.2. Insider Information of Initial Enlargement Type

We consider the particular case when the filtration is of initial enlargement type, i.e.,

Ht =
⋂
s>t

(
Fs ∨WT0

)
, 0 ≤ t ≤ T, (103)

for some T0 > T, and all the parameter processes are assumed to be deterministic
bounded functions.

The enlargement of filtration technique can be applied to give the explicit expression
for φ in (98). We give the following lemma, the proof of which can be found in [9] (p. 327).

Lemma 7 (Enlargement of filtration). The process Wt, t ∈ [0, T], is a semi-martingale with
respect to the filtration {Ht} given by (103). Its semi-martingale decomposition is

Wt = WH(t) +
∫ t

0

WT0 −Ws

T0 − s
ds, 0 ≤ t ≤ T,

where WH(t), t ∈ [0, T], is anHt-Brownian motion.

From Lemma 7, we can easily deduce the following corollary.

Corollary 5. Suppose that the conditions in Theorem 14 hold. Assume further that Ht is given
by (103) and all parameter processes are deterministic bounded functions. Then the optimal
investment π∗ is given by

π∗t =
µ0(t)− rt

σtσ̃t
+

WT0 −Wt

σ̃t(T0 − t)
. (104)

The value Ṽ is given by

Ṽ = ln X0 +
∫ T

0
rtdt +

1
2

∫ T

0

σt

σ̃t

(
µ0(t)− rt

σt

)2

dt +
1
2

∫ T

0

σt

σ̃t

1
T0 − t

dt. (105)

Proof. By Lemma 7, theHt-adapted process φt in the semi-martingale decomposition is of
the form

φt =
WT0 −Wt

T0 − t
, 0 ≤ t ≤ T.

The result is an immediate consequence of Theorem 14.
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9. Numerical Analysis

In this section, we present numerical experiments for Sections 6 and 8 by comparing
the optimal terminal expected utilities (i.e., the values) of six types of investors under
varying parameters.

The six types of investors are as follows. R_I_S and R_NI_S are small robust (i.e.,
ambiguity-averse) investors under model uncertainty, with and without access to in-
sider information, respectively. NR_I_S and NR_NI_S are small investors using an ac-
curate model, with and without access to insider information, respectively. NR_I_L and
NR_NI_L are large investors using an accurate model, with and without access to insider
information, respectively.

In our experiments, we follow the usual parameters selection in simulation without
loss of generality (see [45–47]). We set r = 0.02, X0 = 1, T = 1, ρ = 1

4 σ2 for all examples.
As pointed out by [48], a risky asset typically has a volatility between 15% and 60%. Thus,
we set σ = 0.2, 0.35, 0.5 and µ0 ∈ [0.04, 0.2]. As the insider information time T0 exceeds T,
we set T0 ∈ (1, 100].

Figure 1 shows the values of six types of investors under varying T0.

Figure 1. Values of six types of investors under varying T0 (µ0 = 0.15, σ = 0.35).

When the insider information time T0 is close to the terminal time T, NR_I_L has
a significantly highest value, followed by NR_I_S and R_I_S. This implies that insider
information has a substantial positive impact on the value. Without insider information,
high influence on the financial market has a positive impact on the value, while model
uncertainty has a negative impact. However, neither impact is significant.

As the insider information time T0 increase , the additional information of the insider
decrease and the profit from insider trading decays. By Corollaries 4 and 5 in Section 8, the
insider information rent of NR_I_L or NR_I_S is given by

∆Ṽ =
1
2

∫ T

0

σt

σ̃t

1
T0 − t

dt.

By Corollaries 1 and 2 in Section 6, the insider information rent of R_I_S is given by

∆Vi =
1
2

ln
(

1− T2

(2T0 − T)2

)−1

+
T

2(2T0 − T)
+

1
4(2T0 − T)

(∫ T

0

µ0(t)− rt

σt
dt
)2

.

Thus, the insider information rent is inversely proportional to T0. If T0 is 10 times larger
than T, the value of insider trading is economically insignificant.

Figure 2 illustrates the requisite insider information for R_I_S to offset the value loss
arising from model uncertainty under varying µ0 and σ.
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Figure 2. Insider information T∗0 needed for R_I_S to compensate for the loss of value due to model
uncertainty with different µ0 and σ.

On one hand, the insider information rent is represented as ∆Vi. On the other hand,
robust investment mitigates the risk associated with model uncertainty at the cost of
expected utility, which can be calculated by Corollaries 1 and 4 as follows

∆Vr =
1
4

∫ T

0

(
µ0(t)− rt

σt

)2

dt.

The minimum amount of insider information required for R_I_S could be quantified by the
value T0 that satisfies the following equation

∆Vi = ∆Vr.

Denote the above T0 by T∗0 . We refer to T∗0 as the critical information time.
Furthermore, the impact of model uncertainty becomes more pronounced as the mean

rate of return µ0 increases or the volatility σ decreases.
Figure 3 displays the (robust) optimal investment strategies π∗t for three types of

insiders, each associated with varying current risky asset prices St at time t = 0.5. We only
show the curves of insiders since the strategy of investors without insider information will
be trivial on the assumption of constant model parameters.

As risk Wt increases, all types of insiders will inevitably reduce their position in the
risky asset. When we consider WT0 = Wt, if becomes apparent that all types of insiders will
maintain their positions in the risky asset, primarily due to the positive drift term µ0(t).

Figure 3. Investment strategies π∗t in the risky asset for three types of insiders with different St

(µ0 = 0.08, σ = 0.35, t = 0.5).

Among all insiders, R_I_S is dramatically less aggressive, and the derivative of π∗t with
respect to Wt is −1

σt(T0−t+t0−T) . Concerned about the risks associated with model uncertainty,
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R_I_S responds less vigorously to changes in the disparity between market conditions and
insider information. In contrast, NR_I_L is the most aggressive, with the derivative of π∗t
with respect to Wt being −1

σ̃t(T0−t) . For NR_I_S, the derivative of π∗t is −1
σt(T0−t) .

10. Conclusions

In this paper, we enhance certain properties of forward integrals and extend the
Itô formula for forward integrals, which was originally proposed by [34], through the
application of Malliavin calculus.

We use the anticipating Itô formula to transform robust optimal investment problem
for an insider under model uncertainty into an implicit anticipating SDG model. This
represents a significant expansion of the model originally introduced by [14].

Given that traditional stochastic control theory cannot not be directly applied to solve
the anticipating SDG problem, we introduce a new method. First, we utilize the variational
method to establish the semi-martingale property of the noise in relation to the insider
information filtration. Subsequently, we convert the anticipating SDG problem into a nonan-
ticipative SDG problem, enabling us to make use of the stochastic maximum principle.

We consider two scenarios where the insider is categorized as ‘small’ and ‘large’, and
provide the corresponding BSDEs to characterize the robust optimal investment strategies.
In the small insider case, we derive the closed-form expression for the strategy when insider
information filtration is of the initial enlargement type. The core technique here involves
the Donsker delta functional in the white noise theory. It’s worth noting that a similar
issue in [14] remains unsolved, as the approach presented in [14] only leads to a nested
linear BSDE, which is hard to solve. In the large insider case, the strategy is involved in a
quadratic BSDE.

We use numerical experiments to compare the optimal expected utilities among
various investor types. The results highlight the substantial positive impact of insider
information on utility. Additionally, a strong influence in the market also contributes
positively to utility, while model uncertainty exerts a negative influence.

For further work, since the quadratic BSDE corresponding to the robust optimal
investment strategy for a large insider has no analytical solution at present, we could only
resort to the numerical methods. Moreover, extending the optimization problem to other
models, like the jump-diffusion model and the fractional Brownian motion model (see [49]),
is also a subject of ongoing research.
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Appendix A. Some Results in Malliavin Calculus

The following lemma is the chain rule of Dt, which is an extension of Lemma A.1
in [50].
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Lemma A1. Let X = (X1, · · · , Xn) ∈ D1,p(Ω;Rn) and f ∈ C1(Rn) for some n ∈ N+ and
p ≥ 1. Assume that

‖ f (X)‖Lp(Ω) +

∥∥∥∥∥ n

∑
l=1

∂ f
∂xl

(X) · DtXl

∥∥∥∥∥
Lp(Ω;H)

< ∞. (A1)

Then f (X) ∈ D1,p(Ω) and Dt f (X) = ∑n
l=1

∂ f
∂xl

(X) · DtXl .

Proof. The proof is similar with that of Lemma A.1 in [50].

The following two lemmas with respect to δ are the multiplication formula, and the
boundedness property, respectively.

Lemma A2. (Proposition 1.3.3, [19]) Let X ∈ D1,2(Ω) and u ∈ Dom δ. Suppose that Xu ∈
L2(Ω; H). Then Xu ∈ Dom δ and we have

δ(Xu) = Xδu−
∫ T

0
DtX · utdt, (A2)

provided the right-hand side of (A2) is square integrable.

Lemma A3. (Proposition 1.3.1, [19]) D1,2(Ω; H) ⊂ Dom δ. Moreover, δ is bounded from
D1,2(Ω; H) into L2(Ω).

The following two lemmas characterize the local properties of Dt and δ.

Lemma A4. (Proposition 3.8, [29]) Let X be a random variable in the space D1,1 such that X = 0
a.s. on some set A ∈ F . Then DX = 0 a.s. on A.

Lemma A5. (Proposition 3.9, [29]) Let u ∈ L1,2 and A ∈ F , such that u = 0 a.a. on [0, T]× A.
Then δu = 0 a.s. on A.

When u ∈ L2
a(Ω× [0, T]), its Itô integral

∫ t
0 usdWs is a continuous process (see [3]). A

similar result in the context of the Skorohod integral can be provided by the following lemma.

Lemma A6. (Proposition 3.2.2, [19]) Let u ∈ L1,p, p > 2. Then the Skorohod integral
∫ t

0 usdWs
is continuous (in the sense of modification).

Similar to semi-martingales (or Itô processes) in Itô theory, here we provide a parallel
characterization within the context of the Skorohod integral.

Lemma A7. (Proposition 3.1.1, [19]) Consider a process of the form Xt = X0 +
∫ t

0 usdWs +∫ t
0 vsds, where X0 ∈ D1,2(Ω), u ∈ L2,2, and v ∈ L1,2. Then we have X ∈ L1,2,2, and (D−X)s =

DsX0 +
∫ s

0 DsurdWr +
∫ s

0 Dsvrdr (resp. (D+X)s = us + DsX0 +
∫ s

0 DsurdWr +
∫ s

0 Dsvrdr).

Before presenting the approximation property u ∈ L1,2, which will be employed in
the theory of the forward integral (Proposition 2), it is essential to introduce an important
inequality in Harmonic Analysis.

Lemma A8. (Hardy-Littlewood, Theorem 2.5, [51]) If f is locally integrable on Rn, we define
its Hardy–Littlewood maximal function M f by M f (x) := supr>0

1
m(Bx(r))

∫
Bx(r)
| f (y)|dy, x ∈

Rn, where Bx(r) is a Euclidean ball of radius r centered at x, and m is the Lebesgue measure on Rn.
Then for all p ∈ (1, ∞], we have

‖M f ‖Lp(Rn) ≤ Cp‖ f ‖Lp(Rn), (A3)
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where constant Cp depends only on p. Moreover, for a locally integrable function f , we have

lim
r→0+

1
m(Bx(r))

∫
Br(x)

f (y)dy = f (x) (A4)

for a.e. x. The above conclusions still hold when we take some types of cubes containing x instead of
Bx(r).

Lemma A9. If u ∈ L2(Ω× [0, T]), then limε→0+
∫ r
(r−ε)∨0

us
ε ds = ur in L2(Ω× [0, T]). Fur-

thermore, the convergence also holds in L1,2 whenever u ∈ L1,2.

Proof. For convenience, we only prove the convergence in L2(Ω× [0, T]). By Lemma A8,
we have

∫ r
(r−ε)∨0

us
ε ds→ ur for a.a. (ω, r) ∈ Ω× [0, T]. Since∣∣∣∣∫ r

(r−ε)∨0

us

ε
ds
∣∣∣∣ ≤ sup

0≤ε≤T

∫ r

(r−ε)∨0

|us|
ε

ds, (A5)

and

E

∥∥∥∥∥ sup
0≤ε≤T

∫ r

(r−ε)∨0

|us|
ε

ds

∥∥∥∥∥
2

L2([0,T])

≤ CE‖ur‖2
L2([0,T]) < ∞ (A6)

by Lemma A8, we have limε→0+
∫ r
(r−ε)∨0

us
ε ds = ur in L2(Ω × [0, T]) by the dominated

convergence theorem.

The following two lemmas give the Multiplication formulae of Dt and D−, which will
be utilized in the theory of the forward integral (Proposition 3).

Lemma A10. Let u, σ ∈ L1,2. Also, assume that σ and Dsσt are bounded. Then uσ ∈ L1,2 and
Ds(utσt) = σtDsut + utDsσt.

Proof. For each t ∈ [0, T], E|utσt|2 ≤ CE|ut|2, E
∫ T

0 |σtDsut|2ds ≤ CE
∫ T

0 |Dsut|2ds, and

E
∫ T

0 |utDsσt|2ds ≤ CE
∫ T

0 |ut|2ds. Thus utσt ∈ D1,2(Ω) and Ds(utσt) = σtDsut + utDsσt

by Lemma A1. Since all the above norms are controlled, we deduce that uσ ∈ L1,2.

Lemma A11. Let u, σ be processes in L1,2,2− which are L2-bounded and left-continuous in the
norm L2(Ω). Also, assume that σ and Dsσt are bounded. Then uσ ∈ L1,2,1− and (D−(uσ))s =
σs(D−u)s + us(D−σ)s.

Proof. First, we have uσ ∈ L1,2 by Lemma A10. By the definition of the operator D−, it
suffices to estimate E|σtDsut − σs(D−u)s| and E|utDsσt − us(D−σ)s|. For the first term,
we have
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∫ T

0
sup

(s−ε)∨0≤t<s
E|σtDsut − σs(D−u)s|ds

≤
∫ T

0
sup

(s−ε)∨0≤t<s
E|σtDsut − σt(D−u)s|ds

+
∫ T

0
sup

(s−ε)∨0≤t<s
E|σt(D−u)s − σs(D−u)s|ds

≤
(∫ T

0
sup

(s−ε)∨0≤t<s
E|σt|2ds

) 1
2
(∫ T

0
sup

(s−ε)∨0≤t<s
E|Dsut − (D−u)s|2ds

) 1
2

+

(∫ T

0
sup

(s−ε)∨0≤t<s
E|σt − σs|2ds

) 1
2(∫ T

0
E|(D−u)s|2ds

) 1
2

,

which converges to 0 when ε → 0+ due to the fact that u ∈ L1,2,2− and σ is L2-bounded
and left-continuous. The convergence of the second term is in a similar way.

Remark A1. Notice that if an Ft-adapted process v ∈ L1,2, then v ∈ L1,2,2− with (D−v)s = 0.
Thus, the condition ‘σ ∈ L1,2,2− and u is left-continuous in the norm L2(Ω)’ in Lemma A11 can
be replaced by ‘σ is Ft-adapted and belongs to L1,2’.

Appendix B. Proofs of Main Results

Proof of Proposition 2. By the multiplication formula (Lemma A2) and the Fubini theorem
(Exercise 3.2.7 in [19]), we have

lim
ε→0+

ε−1
∫ t

0
us(W(s+ε)∧T −Ws)ds

= lim
ε→0+

∫ t

0
us

∫ (s+ε)∧T

s

1
ε

dWrds

= lim
ε→0+

{∫ t

0

∫ (s+ε)∧T

s

us

ε
dWrds +

∫ t

0

∫ (s+ε)∧T

s

Drus

ε
drds

}
= lim

ε→0+

{∫ T

0

∫ r

(r−ε)∨0

us1[0,t](s)
ε

dsdWr +
∫ T

0

∫ r

(r−ε)∨0

Drus1[0,t](s)
ε

dsdr

}
.

(A7)

For the first term on the right side of (A7), we have

lim
ε→0+

∫ r

(r−ε)∨0

us1[0,t](s)
ε

ds = ur1[0,t](r) (A8)

in L1,2 by Lemma A9. Then the convergence of the first term in L2(Ω) follows from the
boundedness of δ (Lemma A3). For the second term, we have
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E

∣∣∣∣∣
∫ T

0

∫ r

(r−ε)∨0

Drus1[0,t](s)
ε

dsdr−
∫ t

0
(D−u)rdr

∣∣∣∣∣
≤E

∫ T

0

∫ r

r−ε

|Drus1[(r−ε)∨0,r](s)− (D−u)r|
ε

1[0,t](r)dsdr

+E
∫ T

0

∫ r

(r−ε)∨0

|Drus||1[0,t](r)− 1[0,t](s)|
ε

dsdr

≤
∫ t

0
sup

r−ε≤s<r
E|Drus1[(r−ε)∨0,r](s)− (D−u)r|dr

+
∫ T

0
sup

(r−ε)∨0≤s<r
E|Drus|

∫ r

(r−ε)∨0

|1[0,t](r)− 1[0,t](s)|
ε

dsdr

≤
∫ t

0
sup

(r−ε)∨0≤s<r
E|Drus − (D−u)r|dr +

∫ ε

0
E|(D−u)r|dr

+
∫ (t+ε)∧T

t
sup

(r−ε)∨0≤s<r
E|Drus|dr.

The above convergence in L1(Ω) follows from the definition of L1,2,1−.

Proof of Proposition 3. It is an immediate consequence of Proposition 2, Lemma A11 and
Remark A1.

Proof of Theorem 2. By means of localization we can assume that the processes f (Xt),
f ′(Xt), f ′′(Xt) and

∫ T
0 u2

t dt are uniformly bounded, X0 ∈ D1,2(Ω), u ∈ L f and v ∈ L1,2

(see [19,29]). By Proposition 2, the process Xt has the following decomposition

Xt = X0 +
∫ t

0
usdWs +

∫ t

0
vsds +

∫ t

0
(D−u)sds. (A9)

This process verifies the conditions in Theorem 1. Consequently, we can apply Itô formula
to X and deduce that

f (Xt) = f (X0) +
∫ t

0
f ′(Xs)usdWs +

∫ t

0
f ′(Xs)vsds +

∫ t

0
f ′(Xs)(D−u)sds

+
1
2

∫ t

0
f ′′(Xs)u2

s ds +
∫ t

0
f ′′(Xs)(D−X)susds.

(A10)

The process f ′(Xt) belongs to L1,2,1−. In fact, notice first that as in the proof of Lemma A10
the boundedness of f ′(Xt), f ′′(Xt) and

∫ T
0 u2

t dt and the fact that ut ∈ L2,2 ∩ L1,4, v, D−u ∈
L1,2 and X0 ∈ D1,2(Ω) imply that this process belongs to L1,2 and

Ds( f ′(Xt)ut) = f ′(Xt)Dsut + f ′′(Xt)DsXtut. (A11)

On the other hand, as in the proof of Lemma A11, using that u ∈ L1,2,1−, ut is left-
continuous in L2(Ω), u is L2-bounded, Xt is continuous and X ∈ L1,2,2 (by Theorem 1), we
deduce that f ′(Xt)ut ∈ L1,2,1− and that

(D−( f ′(X)u))s = f ′(Xs)(D−u)s + f ′′(Xs)(D−X)sus. (A12)
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Substituting it into (A10) and using Proposition 2, we obtain

f (Xt) = f (X0) +
∫ t

0
f ′(Xs)usdWs +

∫ t

0
(D−( f ′(X)u))sds +

∫ t

0
f ′(Xs)vsds

+
1
2

∫ t

0
f ′′(Xs)u2

s ds

= f (X0) +
∫ t

0
f ′(Xs)usd−Ws +

∫ t

0
f ′(Xs)vsds +

1
2

∫ t

0
f ′′(Xs)u2

s ds.
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