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Abstract: In this article, we investigate some qualitative properties of solutions to a class of functional
differential equations with multi-delay. Using a modified approach, we first derive a number of
optimized relations and inequalities that relate the solution x(s) to its corresponding function z(s) and
its derivatives. After classifying the positive solutions, we follow the Riccati approach and principle
of comparison, where fourth-order differential equations are compared with first-order differential
equations to obtain conditions that exclude the positive solutions. Then, we introduce new oscillation
conditions. With regard to previous relevant results, our results are an extension and complement to
them. This work has theoretical significance in that it uncovers some new relationships that aid in
developing the oscillation theory of higher-order equations in addition to the applied relevance of
neutral differential equations.
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1. Introduction

Diverse areas of pure and applied mathematics, physics, and engineering all involve
the study of differential equations (DEs); these disciplines are all interested in the charac-
teristics of various forms of DEs. Applied and pure mathematics emphasize the existence
and uniqueness of solutions, as well as the precise justification of the methods for approx-
imate solutions. Nearly every physical, technological, or biological process, including
celestial motion, bridge design, and neuron interactions, is modeled in large part using
DEs. DEs that are intended to address real-world issues may not always be directly solved;
for instance, they may lack closed-form solutions. Alternative methods to this include
approximating the results using numerical techniques [1].

Understanding these problems and events requires knowing how these equations
are solved. However, DEs used to address real-world issues may not always be directly
solvable, that is, they may not have closed-form solutions (see [2,3]). For this reason, the
study of the qualitative theory, which is concerned with differential equation behavior
through methods other than finding solutions, has been highly utilized. It evolved from
Henri Poincaré’s and Alexandre Lyapunov’s works. Although there are relatively few
DEs that can be solved directly, one can “solve” them in a qualitative sense by employing
techniques from analysis and topology to learn more about their characteristics [4].

Fourth-order delay DEs are used to numerically depict biological, chemical, and
physical phenomena. Problems of elasticity, the deformation of structures, or soil settlement
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are a few examples of these applications. A fourth-order oscillatory equation with delay
can be used to simulate the oscillatory traction of a muscle, which occurs when the muscle
is subjected to an inertial force [5].

In the theory of linear DEs, the oscillation theory has numerous significant applications.
It can be used, for instance, to examine the stability of solutions to linear DEs. The theorem
can be used, in particular, to demonstrate the lack of nontrivial solutions that converge
to zero as time reaches infinity. In order to analyze eigenvalue problems, the oscillation
theorem is very useful. The Schrodinger equation in quantum physics is one example of a
DE whose eigenvalues and eigenfunctions can be studied using the theorem. The oscillation
theorem can be used to estimate the number of eigenvalues present in a particular interval
and to learn more about how eigenfunctions behave [6,7].

The study of oscillation for ordinary and fractional DE solutions with delay, neutral,
mixed, or damping terms is currently included in the oscillation theory, which has recently
seen significant growth and development. For instance, you can find delay equations
in [8–11], mixed equations in [12–16], and neutral equations in [17–20].

The goal of this paper is to delve into the oscillation of the fourth-order neutral
delay DE

(r(s)(z′′′(s))γ)′ +
`

∑
j=1

qj(s)xγ
(
σj(s)

)
= 0, s ≥ s0, (1)

where ` is a positive integer and z(s) = x(s) + p(s)x(τ(s)), through which, under the
following assumptions:

(A1) γ > 0 is a quotient of odd positive integers;
(A2) r ∈ C([s0, ∞), (0, ∞)) and satisfies

π0(s) :=
∫ s

s0

r−1/γ(u)du→ ∞ as s→ ∞; (2)

(A3) τ, σj ∈ C([s0, ∞), (0, ∞)) satisfy τ(s) < s, σj(s) < s, lims→∞ τ(s) = ∞ and lims→∞ σj(s)
= ∞ for j = 1, 2, . . . , `;

(A4) p, qj ∈ C([s0, ∞), (0, ∞)), p(s) ≤ p0, where p0 is a constant and qj does not gradually
vanish .

As a solution to (1), we represent a real-valued function x that is four times differen-
tiable and satisfies (1) for all sufficiently large s. Our attention is restricted to those solutions
of (1) that satisfy the condition

sup{|x(s)| : s ≥ U} > 0,

for all U ≥ s0. A solution x to (1) is referred to as oscillatory or non-oscillatory depending
on whether it is essentially positive or negative. If all of the solutions to an equation
oscillate, the equation is said to be oscillatory.

In order to understand the asymptotic and oscillatory behavior of solutions to neutral
DEs, it is crucial to understand the relationship between the solution x and its associ-
ated function z. The authors were able to determine a number of additional criteria that
simplified and enhanced their previous research findings as a result of this relationship.

We now list some of the relationships that have been inferred in the literature.
For the second order, in the canonical case, the usual relationship

x(s) > (1− p(s))z(s) (3)

is typically employed, and in the noncanonical case, the relationship

x(s) > (1− p(s)π(τ(s))/π(s))z(s) (4)

is usually used (see [21,22]).
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Moaaz et al. [23] took into account the oscillatory behavior of

(
r(s)

(
z′(s)

)γ
)′

+
`

∑
j=1

qj(s)xβ
(
σj(s)

)
= 0, (5)

where β is a quotient of odd positive integers and ` ∈ Z+. As an improvement to (3), they
offered the following relationships:

x(s) > z(s)
n/2

∑
m=1

1
p2m−1

(
1− 1

p
π
(
τ−2m(s)

)
π
(
τ−(2m−1)(s)

)), for p > 1 and n ∈ Z+ is even,

and

x(s) > z(s)(1− p)
(n−1)/2

∑
m=0

p2m π
(
τ2m+1(s)

)
π(s)

, for p < 1, and n ∈ Z+ is odd,

where τ[h](s) = τ
(

τ[h−1](s)
)

, for h = 1, 2, . . . , 2m.
Hassan et al. [24] investigated the oscillatory properties of

(r(s)(z′(s))γ)′ + q(s)xγ(σ(s)) = 0,

and they offered

x(s) > z(s)
(n−1)/2

∑
κ=0

p2κ

1− p
π
(

τ[2κ+1](s)
)

π(τ2κ(s))

,

which is an improvement to (4), where n ∈ Z+ is odd.
In their study of the equation

(r(s)(z′(s))γ)′ + q(s)xγ(σ(s)) = 0,

Bohner et al. [25] created the new relation

x(s) > z(s)(1− p(s))(1 + Hk(s)),

where

Hk(s) =



0 for k = 0,

∑
k

i=1

2i−1
∏
j=0

p
(
τ j(s)

)
for τ(s) ≤ s and k ∈ N,

∑
k

i=1
π(τ2i(s))

π(s)

2i−1
∏
j=0

p
(
τ j(s)

)
for τ(s) ≥ s and k ∈ N,

where τ[0](s) = s and τ[j](s) = τ
(
τ j−1(s)

)
for all j ∈ N, which is an improvement of (4).

Also, they added additional oscillation criteria that, in essence, improve a number of
pertinent criteria from the literature.

In order to oscillate for the solutions to neutral nonlinear even-order DEs with variable
coefficients of the form

z(n)(s) + q(s) f (x(σ(s))) = 0, (6)

where f (x) is a continuous function, several sufficient conditions are found by Zhang
et al. [26].

Agarwal et al. [27] studied the oscillatory behavior of the equation

z(n)(s) + q(s)x(σ(s)) = 0, (7)

and created criteria that improve the results published in the literature.
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Moaaz et al. [28] tested the oscillation of

(r(s)(z′′(s))γ)′ + q(s)xγ(σ(s)) = 0.

Using an iterative method, they were able to develop a new criterion for the nonexistence of
the so-called Kneser solutions. Also, they employed a variety of techniques to find various
criteria. Using the relation

x(s) > z(s)(1− p)
(n−1)/2

∑
κ=0

p2κ

(
τ[2κ+1](s)− s1

s− s1

)2

,

they improved (3).
By using some inequalities and the Riccati transformation method, Muhib et al. [29]

established some improved criteria for the equation

(r(s)(z′′′(s))γ)′ +
`

∑
j=1

qj(s)xβ
(
σj(s)

)
= 0 (8)

without necessitating the existence of unknown functions; where β is a quotient of odd
positive integers.

Theorem 1 ([29]). Let σj ∈ C1([s0, ∞), (0, ∞)), σ′j > 0 and σj(s) < σ(s). Assume there exists a
λ, µ ∈ C1([s0, ∞), (0, ∞)) for all s1 ≥ s0, there is a s2 > s1 such that

lim sup
s→∞

∫ s

s0

(
`λ(v)

Q(v)
2β−1 Mβ−γ −

(
1 +

p0

τ0

)
(λ′+(v))

γ+1

(γ + 1)γ+1(λ(v)π1(v)σ′(v))
γ

)
dv = ∞ (9)

and

lim sup
s→∞

∫ s

s0

(
µ(v)

(
τ0

τ0 + p0

)
M(β/γ)−1

∫ ∞

v

(
1

r(u)
Φ(u)

)1/γ

du− (µ′+(v))
2

4µ(v)

)
dv = ∞, (10)

where

Φ =
∫ ∞

σ−1(u)

Q(v)
2β−1

`

∑
j=1

(
σj(v)

v

)β/ε

dv,

Q := min
{

qj(s) for j = 1, 2, . . . , `
}

,

λ′+(s) = max{0, λ′(s)}, µ′+(s) = max{0, µ′(s)} and ε ∈ (0, 1). Then, (8) is oscillatory.

Nabih et al. [30] focused on investigating the oscillation of

(r(s)(z′′′(s))γ)′ + q(s)xγ(σ(s)) = 0.

They found new properties that enable them to use more effective terms. To obtain criteria
that excluded the positive decreasing solutions, they used the general form of Riccati and
the comparison approach.

Lemma 1 ([31]). Assume that φ ∈ Cn([s0, ∞), (0, ∞)). If the derivative φ(n)(s) is eventually of
one sign for all large s, then there exists an sx such that sx ≥ s0 and an integer l, 0 ≤ l ≤ n, with
n + l even for φ(n)(s) ≥ 0, or n + l odd for φ(n)(s) ≤ 0 such that

l > 0 implies φ(κ)(s) > 0 for s ≥ sx, κ = 0, 1, . . . , l − 1,

and
l ≤ n− 1 implies (−1)l+κφκ(s) > 0 for s ≥ sx, κ = l, l + 1, . . . , n− 1.
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Lemma 2 ([32]). Let γ be a ratio of two odd positive integers. Then

Lv
(γ+1)/γ −Mv ≥ − γγ

(γ + 1)γ+1
Mγ+1

Lγ
, L > 0 (11)

and
A(γ+1)/γ − (A− B)(γ+1)/γ ≤ 1

γ
B1/γ[(1 + γ)A− B], γ ≥ 1, AB ≥ 0. (12)

For multi-delay functional DEs, we refer to some qualitative aspects of solutions. We
begin by deriving a set of optimized relations and inequalities that connect the solution
x(s) to its corresponding function z(s) and its derivatives using a modified methodology.
Once the positive solutions have been categorized, we use the Riccati technique and the
comparison, where fourth-order DEs are compared with first-order DEs to create criteria
that exclude the positive solutions. Then, we provide new oscillation conditions. The new
results add to and complete the previous relevant results. In addition to the practical value
of neutral DEs, this study has theoretical value in that it uncovers some novel relationships
that help advance the oscillation theory of higher-order equations.

2. Main Results

For clarity, let

πi(s) =
∫ s

s0

πi−1(v)dv for i = 1, 2,

p1(s, m) :=
κ

∑
i=0

(
2i

∏
h=0

p
(

τ[h](s)
))[ 1

p
(
τ[2i](s)

) − 1

]
π2

(
τ[2i](s)

)
π2(s)

,

p2(s, m) :=
κ

∑
i=1

(
2i−1

∏
h=0

1
p
(
τ[−h](s)

))
π2

(
τ[−2i+1](s)

)
π2
(
τ[−2i](s)

) − 1
p
(
τ[−2i](s)

)


and

p̂(s, m) :=


1 for p0 = 0;
p1(s, m) for p0 < 1;
p2(s, m) for p0 > π2(s)/π2(τ(s)),

for any integer m ≥ 0. We will require the following notations for presenting the results:

z[0](s) := s, z[h](s) := z
(
z[h−1](s)

)
and z[−h](s) := z−1

(
z[−h+1](s)

)
,

for h = 1, 2, . . . ,
σ(s) = min

{
σj(s) for j = 1, 2, . . . , `

}
and

q(s) = min
{

qj(s) for j = 1, 2, . . . , `
}

.

Lemma 3. Let x(s) be a positive solution of (1). Then, (r(s)(z′′′(s))γ)′ ≤ 0 and there are
ultimately two possible cases:

Case(1) z(s) > 0 z′(s) > 0 z′′(s) > 0 z′′′(s) > 0 z(4)(s) < 0;

Case(2) z(s) > 0 z′(s) > 0 z′′(s) < 0 z′′′(s) > 0.

Proof. Suppose x(s) is a positive solution of (1). We obtain (r(s)(z′′′(s))γ)′ ≤ 0 from (1).
In order to obtain the cases (1) and (2) for the function z(s) and its derivatives, we use
Lemma 2.2.1 in [33].
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Remark 1. By using the notation B1, we can identify the class of all eventually positive solutions
whose corresponding functions satisfy Case (1).

Lemma 4 ([34], Lemma 2.1). Assume that x(s) is an eventually positive solution of (1). Then,
eventually,

x(s) >
κ

∑
i=0

(
2i

∏
h=0

p
(

τ(h)(s)
)) z

(
τ(2i)(s)

)
p
(
τ(2i)(s)

) − z
(

τ(2i+1)(s)
), (13)

for any integer κ ≥ 0.

Lemma 5. Assume that x ∈ B1. Then, eventually,(
z′′(s)
π0(s)

)′
≤ 0 (14)

and (
z(s)

π2(s)

)′
≤ 0. (15)

Proof. Assume that x ∈ B1. We obtain

z′′(s) ≥
∫ s

s1

r−1/γ(v)r1/γ(v)z′′′(v)dv ≥ r1/γ(s)z′′′(s)π0(s); (16)

hence,
r1/γ(s)z′′′(s)π0(s)− z′′(s) ≤ 0.

This implies(
z′′(s)
π0(s)

)′
=

π0(s)r1/γ(s)z′′′(s)− z′′(s)
r1/γ(s)π2

0(s)

=
1

r1/γ(s)π2
0(s)

[
π0(s)r1/γ(s)z′′′(s)− z′′(s)

]
≤ 0.

Applying this information, we determine that

z′(s) ≥
∫ s

s1

π0(v)
z′′(v)
π0(v)

dv ≥ z′′(s)
π0(s)

π1(s) ≥ r1/γ(s)z′′′(s)π1(s) (17)

yields (
z′(s)
π1(s)

)′
=

π1(s)z′′(s)− π0(s)z′(s)
π2

1(s)

=
1

π2
1(s)

[
π1(s)z′′(s)− π0(s)z′(s)

]
≤ 0.

Hence,

z(s) ≥
∫ s

s1

π1(v)
z′(v)
π1(v)

dv ≥ z′(s)
π1(s)

π2(s) ≥ r1/γ(s)z′′′(s)π2(s) (18)
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yields (
z(s)

π2(s)

)′
=

π2(s)z′(s)− π1(s)z′(s)
π2

2(s)

=
1

π2
2(s)

[
π2(s)z′(s)− π1(s)z′(s)

]
≤ 0.

This completes the proof.

Lemma 6. Assume that x ∈ B1. Eventually,

(r(s)(z′′′(s))γ)′ +
`

∑
j=1

qj(s) p̂γ
(
σj(s), m

)
zγ
(
σj(s)

)
≤ 0 (19)

is reached by Equation (1), when
x(s) > p̂(s, m)z(s).

Proof. Assume that x ∈ B1 and that p0 < 1. We determine that

z
(

τ(2i)(s)
)
≥ z
(

τ(2i+1)(s)
)

and

z
(

τ(2i)(s)
)
≥

π2

(
τ(2i)(s)

)
π2(s)

z(s), i = 0, 1, . . .

based on the information that τ(2i+1)(s) ≤ τ(2i)(s) ≤ s, z′(s) > 0 and (z(s)/π2(s))
′ ≤ 0.

As a result, (13) becomes

x(s) > z(s)
κ

∑
i=0

(
2i

∏
h=0

p
(

τ(h)(s)
))[ 1

p
(
τ(2i)(s)

) − 1

]
π2

(
τ(2i)(s)

)
π2(s)

,

which, when combined with (1), yields (19). Conversely, suppose that p0 > 1. The definition
of z(s) implies that

p
(

τ−1(s)
)

x(s) = z
(

τ−1(s)
)
− x
(

τ−1(s)
)

= z
(

τ−1(s)
)
− 1

p(τ−2(s))

[
z
(

τ−2(s)
)
− x
(

τ−2(s)
)]

;

hence,

p
(

τ−1(s)
)

x(s) = z
(

τ−1(s)
)
− z
(

τ−2(s)
) 2

∏
i=2

1
p
(
τ[−i](s)

)
+
[
z
(

τ[−3](s)
)
− x
(

τ[−3](s)
)] 3

∏
i=2

1
p
(
τ[−i](s)

) ,

and so on. As a result, we arrive at

x(s) >
κ

∑
i=1

(
2i−1

∏
h=0

1
p
(
τ[−h](s)

))[z
(

τ[−2i+1](s)
)
− 1

p
(
τ[−2i](s)

) z
(

τ[−2i](s)
)]

. (20)

Thus,

z
(

τ[−2i+1](s)
)
≥

π2

(
τ[−2i+1](s)

)
π2
(
τ[−2i](s)

) z
(

τ[−2i](s)
)
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and
z
(

τ[−2i](s)
)
≥ z(s)

are the result of the fact that s ≤ τ[−2i+1](s), z′(s) > 0 and (z(s)/π2(s))
′ ≤ 0. Inequality (20)

then changes to

x(s) > z(s)
κ

∑
i=1

(
2i−1

∏
h=0

1
p
(
τ[−h](s)

))
π2

(
τ[−2i+1](s)

)
π2
(
τ[−2i](s)

) − 1
p
(
τ[−2i](s)

)
,

as a result, which, when combined with (1), yields (19). This completes the proof.

Now, using the Riccati approach, we obtain the following theorem:

Theorem 2. Assume that there is a λ ∈ C1([s0, ∞), (0, ∞)) such that

lim sup
s→∞

∫ s

s0

{
λ(v)q(v)

π
γ
2 (σ(v))
π

γ
2 (v)

`

∑
j=1

p̂γ
(
σj(v), m

)
− (λ′(v))γ+1

(γ + 1)γ+1(λ(v))γπ
γ
1 (v)

}
dv = ∞, (21)

then B1 = ∅.

Proof. Assume that x ∈ B1. Through Lemma 5, we guarantee (16)–(18). Define the function

Φ(s) = λ(s)
r(s)(z′′′(s))γ

zγ(s)
, (22)

where Φ(s) > 0. By differentiating (22) and using (17) and (19), we obtain

Φ′(s) =
λ′(s)
λ(s)

Φ(s) + λ(s)
(r(s)(z′′′(s))γ)′

zγ(s)
− γλ(s)r(s)

(z′′′(s))γzγ−1(s)z′(s)
z2γ(s)

≤ λ′(s)
λ(s)

Φ(s)− λ(s)q(s)
(

z(σ(s))
z(s)

)γ `

∑
j=1

p̂γ
(
σj(s), m

)
− γλ(s)r(s)

(z′′′(s))γz′(s)
zγ+1(s)

≤ λ′(s)
λ(s)

Φ(s)− λ(s)q(s)
(

z(σ(s))
z(s)

)γ `

∑
j=1

p̂γ
(
σj(s), m

)
−γλ(s)r1+1/γ(s)π1(s)

(
z′′′(s)
z(s)

)γ+1

,

which, when combined with the fact that (z(s)/π2(s))
′ ≤ 0, results in

Φ′(s) ≤ λ′(s)
λ(s)

Φ(s)− λ(s)q(s)
π

γ
2 (σ(s))
π

γ
2 (s)

`

∑
j=1

p̂γ
(
σj(s), m

)
− γ

π1(s)
λ1/γ(s)

Φ1+1/γ(s).

Using inequality (11) with M = λ′(s)/λ(s) and L = γπ1(s)/λ1/γ(s), we obtain

Φ′(s) ≤ −λ(s)
π

γ
2 (σ(s))
π

γ
2 (s)

`

∑
j=1

qj(s) p̂γ
(
σj(s), m

)
+

(λ′(s))γ+1

(γ + 1)γ+1(λ(s))γπ
γ
1 (s)

.

Integrating the aforementioned inequality from s0 to s, we obtain

Φ(s0) ≥
∫ s

s0

{
λ(v)q(v)

π
γ
2 (σ(v))
π

γ
2 (v)

`

∑
j=1

p̂γ
(
σj(v), m

)
− (λ′(v))γ+1

(γ + 1)γ+1(λ(v))γπ
γ
1 (v)

}
dv.

Using Equation (21), we encounter a contradiction. This completes the proof.



Mathematics 2023, 11, 4380 9 of 15

In the results that follow, the monotonic features of the solutions in class B1 are
enhanced, and better criteria are then reached to support the claim that B1 = ∅, for which
the following notations will be used:

δ0(s) = π0(s) +
1
γ

∫ s

s0

q(v)π0(v)π
γ
2 (σ(v))

`

∑
j=1

p̂γ
(
σj(v), m

)
dv,

δi(s) =
∫ s

s0

δi−1(v)dv for i = 1, 2,

ϑ0(s) = exp
(∫ s

s0

1
δ0(v)r1/γ(v)

dv
)

and
ϑi(s) =

∫ s

s0

ϑi−1(v)dv for i = 1, 2.

Lemma 7. Assume that x ∈ B1. Then, eventually,(
z′′(s)
ϑ0(s)

)′
≤ 0, (23)

(
z(s)

ϑ2(s)

)′
≤ 0 (24)

and

(r(s)(z′′′(s))γ)′ +
`

∑
j=1

qj(s) p̂γ
(
σj(s), m

)
zγ
(
σj(s)

)
≤ 0. (25)

Proof. Assume that x ∈ B1. From (19), we obtain[
z′′(s)− π0(s)ω(s)

]′
= −π0(s)ω′(s)

= −π0(s)
(
(ωγ(s))1/γ

)′
= − 1

γ
π0(s)ω1−γ(s)(ωγ(s))′

≥ 1
γ

q(s)π0(s)ω1−γ(s)zγ(σ(s))
`

∑
j=1

p̂γ
(
σj(s), m

)
,

where ω(s) = r1/γ(s)z′′′(s). By integrating the aforementioned inequality from s0 to s,
we obtain

z′′(s) ≥ π0(s)ω(s) +
1
γ

∫ s

s0

π0(v)ω1−γ(v)q(v)zγ(σ(v))
`

∑
j=1

p̂γ
(
σj(v), m

)
dv. (26)

From (18), we obtain

z(σ(s)) ≥ r1/γ(σ(s))z′′′(σ(s))π2(σ(s)) ≥ ω(σ(s))π2(σ(s)). (27)

Combining (26) and (27), we obtain
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z′′(s) ≥ π0(s)ω(s) +
1
γ

ω(s)
∫ s

s0

π0(v)π
γ
2 (σ(v))q(v)

`

∑
j=1

p̂γ
(
σj(v), m

)
dv

≥ ω(s)

[
π0(s) +

1
γ

∫ s

s0

π0(v)π
γ
2 (σ(v))q(v)

`

∑
j=1

p̂γ
(
σj(v), m

)
dv

]
= δ0(s)ω(s).

Multiplying this inequality by

exp
(∫ s

s0

1
δ0(v)r1/γ(v)

dv
)

,

we obtain (
z′′(s)
ϑ0(s)

)′
≤ 0.

Using this fact, we obtain

z′(s) ≥
∫ s

s0

z′′(v)
ϑ0(v)

ϑ0(v)dv ≥ z′′(s)
ϑ0(s)

ϑ1(s).

This implies (
z′(s)
ϑ1(s)

)′
=

ϑ1(s)z′′(s)− ϑ0(s)z′(s)
ϑ2

1(s)

=
1

ϑ2
1(s)

[
ϑ̂1(s)z′′(s)− ϑ0(s)z′(s)

]
≤ 0. (28)

Hence,

z(s) ≥
∫ s

s1

ϑ1(v)
z′(v)
ϑ1(v)

dv ≥ z′(s)
ϑ1(s)

ϑ2(s)

yields (
z(s)

ϑ2(s)

)′
=

ϑ2(s)z′(s)− ϑ1(s)z′(s)
ϑ2

2(s)

=
1

ϑ2
2(s)

[
ϑ2(s)z′(s)− ϑ1(s)z′(s)

]
≤ 0.

Now, the connection (13) becomes

x(s) > p̂(σ(s), m)z(s).

The proof is therefore complete.

By utilizing (23) and (24) instead of (14) and (15), we may quickly obtain the following the-
orem:

Theorem 3. Suppose that there is a λ ∈ C1([s0, ∞), (0, ∞)) such that

lim sup
s→∞

∫ s

s0

{
λ(v)q(v)

ϑ
γ
2 (σ(v))
ϑ

γ
2 (v)

`

∑
j=1

p̂γ
(
σj(v), m

)
− (λ′(v))γ+1

(γ + 1)γ+1(λ(v))γπ
γ
1 (v)

}
dv = ∞, (29)

for any `, m ≥ 0, then B1 = ∅.

Now, using a comparison principle, we obtain the following theorem:
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Theorem 4. Suppose that

lim inf
s→∞

s∫
σ(s)

q(v)δγ
2 (σ(s))

`

∑
j=1

p̂γ
(
σj(s), m

)
dv >

1
e

, (30)

for any m ≥ 0, then B1 = ∅.

Proof. Assume that x ∈ B1. From Lemma 7, we arrive at

z′′(s) ≥ δ0(s)r1/γ(s)z′′′(s), (31)

where ω(s) = r1/γ(s)z′′′(s), just as we had in the proof of Lemma 7. By integrating (31)
twice from s0 to s, we obtain

z(s) ≥ δ2(s)r1/γ(s)z′′′(s). (32)

By changing (32) into (25), we arrive to the conclusion that

(r(s)(z′′′(s))γ)′ ≤ −q(s)δγ
2 (σ(s))

(
r1/γ(σ(s))z′′′(σ(s))

)γ `

∑
j=1

p̂γ
(
σj(s), m

)
.

By setting Ω = r(s)(z′′′(s))γ, we can show that Ω is a positive solution to the inequality

Ω′ + q(s)δγ
2 (σ(s))Ω

(
σj(s)

) `

∑
j=1

p̂γ
(
σj(s), m

)
≤ 0. (33)

However, condition (30) confirms the oscillation of all solutions to (33), which is in
disagreement with [35] (Theorem 2.1.1). The proof is therefore complete.

Application in Oscillation Theory and Discussion

Finding conditions that individually rule out each case of the derivatives of the solution
is necessary to determine the oscillation criterion. In this theorem, the criterion for testing
oscillation for (1) will be formed by combining the conditions that are obtained to rule out
the existence of solutions that satisfy Case (1) with the conditions that are acquired in the
literature to rule out Case (2) of the derivatives of the solution.

Theorem 5. Assume that one of the conditions (21), (29) or (30) is satisfied. If (10) holds, then (1)
is oscillatory.

Proof. Assume that x(s) is to be an eventually positive solution to (1). Lemma 3 has a
solution that satisfies either of the possibilities of Case (1) or Case (2). B1 = ∅ is obtained
by applying Theorems 2–4. Case (2) is thus valid. We finally come to a contradiction with
(10) in the exact same way as [29] (Theorem 2). This completes the proof.

Example 1. Take into consideration the neutral delay DE

(x(s) + p0x(θs))′′′′ +
q0

s4 x(ρs) = 0, (34)

where s > 0, p0 ≥ 0, q0 > 0 and θ, ρ ∈ (0, 1). We immediately obtain

π0(s) = s, π1(s) = s2/2 and π2(s) = s3/6.



Mathematics 2023, 11, 4380 12 of 15

We define

p̂ := (1− p0)
κ

∑
i=0

p2i
0 θ6i for p0 < 1

and
v = 1 +

1
6

q0ρ3φ.

It is easy to confirm that p̂(σ(s), m) = φ. Also,

δ0(s) = π0(s) +
∫ s

s0

q(v) p̂(σ(v), m)π0(v)π
γ
2 (σ(v))dv

=

(
1 +

1
6

q0φρ3
)

s

= vs,

δ1(s) =
∫ s

s0

vvdv =
1
2

vs2,

δ2(s) =
1
2

v
∫ s

s0

v2dv =
1
6

vs3,

ϑ0(s) = exp

− ∫ s

s0

1(
1 + 1

6 q0φ(v)ρ3
)

v
dv


= s1/v,

ϑ1(s) =
∫ s

s0

v1/vdv

=
v(1/v)+1

(1/v) + 1

=
1

(1/v) + 1
s(1/v)+1

and

ϑ2(s) =
1

(1/v) + 1

∫ s

s0

v(1/v)+1dv

=
1

((1/v) + 1)((1/v) + 2)
s(1/v)+2.

Using Theorem 2 and choosing λ(s) = s4, we have

q0 >
8

φ`ρ3 . (35)

Then, B1 = ∅ if Equation (35) is satisfied. Once again, applying Theorem 3, we find that

q0 >
8

φ`(ρ)(1/v)+2
. (36)

Then, B1 = ∅ if Equation (36) is satisfied. In addition to Theorem 4, we find that B1 = ∅ if

q0 >
6

φ`vρ3 ln
(

1
ρ

)
e

. (37)



Mathematics 2023, 11, 4380 13 of 15

Finally, by applying condition (10) of Theorem 1, we find that

q0 >
6

ρ4
(

θ
θ+p0

) . (38)

Thus, if the conditions (35) and (38) are satisfied, then (34) is oscillatory.

Remark 2. For p0 = 0.5, θ = 0.5 and ρ = 0.5, conditions (35) and (36) are satisfied if q0 > 127.5
and q0 > 90.9, respectively. Thus, we notice that the criterion of Theorem 2 improves the criterion
of Theorem 3.

Remark 3. Consider the particular instance of the above example of the form

(x(s) + 0.9x(0.9s))′′′′ +
q0

s4 x(0.9s) = 0. (39)

Note that conditions (35) and (38) reduce to q0 > 62.5 and q0 > 18.28, respectively. Then, Equation (39)
is oscillatory if q0 > 62.5.

On the other hand, using Corollary 2.1 in [36], Equation (39) is oscillatory if q0 > 109.74.
Therefore, our results provide a better criterion for oscillation. With regard to previous relevant
results, our results are an improvement and a complement to them.

3. Conclusions

The classification of positive solutions according to the sign of their derivatives always
comes first when examining oscillations for neutral delay DEs. The constraints that disallow
each case of derivatives of the solution determine the oscillation criterion. In the oscillation
theory of neutral DEs, the relationships between the solution and the corresponding
function are crucial. By using the modified monotonic features of positive solutions, we
strengthen these relationships. We then developed criteria to demonstrate that Category B1
has no solutions based on these relationships. Then, to create a set of oscillation criteria, we
brought together results from previous studies that had been published in the literature
with new relationships and features. Finally, we provided an example and a comparison
with previous work to emphasize the importance of the results. This comparison showed
how our findings enhance and add to those in [36]. Recent scientific work has focused
heavily on the characteristics of the solution to fractional DEs. Applying our results to
fractional DEs might thus be interesting.
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