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Abstract: In the fields of finance, insurance, system reliability, etc., it is often of interest to measure
the dependence among variables by modeling a multivariate distribution using a copula. The copula
models with parametric assumptions are easy to estimate but can be highly biased when such
assumptions are false, while the empirical copulas are nonsmooth and often not genuine copulas,
making the inference about dependence challenging in practice. As a compromise, the empirical
Bernstein copula provides a smooth estimator, but the estimation of tuning parameters remains
elusive. The proposed empirical checkerboard copula within a hierarchical empirical Bayes model
alleviates the aforementioned issues and provides a smooth estimator based on multivariate Bernstein
polynomials that itself is shown to be a genuine copula. Additionally, the proposed copula estimator
is shown to provide a more accurate estimate of several multivariate dependence measures. Both
theoretical asymptotic properties and finite-sample performances of the proposed estimator based on
simulated data are presented and compared with some nonparametric estimators. An application to
portfolio risk management is included based on stock prices data.

Keywords: Bernstein copula; dependence measures; empirical checkerboard copula; financial data;
uncertainty quantification

MSC: 62G30; 62H10; 62E20

1. Introduction

Copula models are useful tools for the analysis of multivariate data, since by using
the well-known Sklar’s theorem, any multivariate joint distribution can be decomposed
into its univariate marginal distributions and a copula function, which allows capturing of
the arbitrary dependence structure between several random variables. As a result, copulas
have been widely used in the fields of finance, insurance, system reliability, etc., among
many other application areas. See, e.g., Jaworski et al. [1], Joe [2] and Nelsen [3] for more
details about copulas and their applications.

Given a random vector (X1, . . . , Xd) with joint cumulative distribution function (CDF)
F and continuous marginal CDFs Fj, j ∈ {1, . . . , d}, by Sklar’s theorem (Sklar [4]), the CDF F
can be expressed uniquely as F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), where C(·) denotes the
copula function. A copula is itself the joint CDF of a random vector (U1 = F1(X1), . . . , Ud =
Fd(Xd)) having its marginals as uniform distributions on [0, 1], henceforth denoted by
Uni f [0, 1]. It is to be noted that the original results in Sklar [4] are also applicable to
discrete-valued random variables; however, the focus of this paper is modeling continuous-
valued multivariate random vectors. Thus, for the rest of the paper, we assume that the
marginal CDFs Fj, j ∈ {1, . . . , d} are absolutely continuous.

As a copula plays an important role in capturing the general dependence structure
between multiple variables, it is critical to estimate copulas in an accurate way, especially
in higher dimensions where the dependence structure becomes much more complicated, is

Mathematics 2023, 11, 4383. https://doi.org/10.3390/math11204383 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11204383
https://doi.org/10.3390/math11204383
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8351-408X
https://doi.org/10.3390/math11204383
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11204383?type=check_update&version=2


Mathematics 2023, 11, 4383 2 of 22

often illusive, and may even be supported on a lower-dimensional manifold. One of the
primary goals of this paper is to estimate a smooth copula function C from a random sample

of n independent identically distributed (iid) observations (Xi1, . . . , Xid)
iid∼ F(x1, . . . , xd)

for i ∈ {1, . . . , n}.
Many parametric families have been proposed for modeling multivariate copulas,

and there has been previous work addressing the corresponding parametric estimation
methods. For detailed discussions, see, e.g., Joe [5], Joe [2], McNeil et al. [6], Nelsen [3],
Smith [7] and Žežula [8], etc. However, regardless of how sophisticated and flexible the
parametric models are that we may use, they might still lead to biased copula estimates
when the parametric model is misspecified and thus may not be able to capture complex
dependence structures required in practice. Compared to standard multivariate copulas,
vine copula models allow for more flexibility in capturing complex dependency structures
using appropriate vine tree structures by choosing bivariate copula families for each node
of pair copulas from a vast array of parametric bivariate copulas. But it is often challenging
to obtain estimates of multivariate dependence measures that involve high-dimensional
integrals which are often algebraically intractable by using vine copulas.

Thus, recognizing some of the abovementioned limitations of parametric copula mod-
els, a variety of nonparametric estimators have been proposed for multivariate copula
estimation. Most of the available nonparametric estimators rely on the empirical methods,
e.g., the empirical copula and its multilinear extension, the empirical multilinear copula
(Deheuvels [9]; Fermanian et al. [10]; Genest et al. [11]), or kernel-based methods such
as local linear estimator (Chen and Huang [12]), mirror reflection estimator (Gijbels and
Mielniczuk [13]), and improvements of these two estimators (Omelka et al. [14]). See
alsoRémillard and Scaillet [15] and Scaillet and Fermanian [16] for other nonparametric
copula estimators. However, except for the empirical multilinear copula, most of these esti-
mators are valid copulas only asymptotically, meaning that they are not necessarily genuine
copulas for finite samples. Moreover, multivariate dependent measures (e.g., Spearman’s
rho, Kendall’s tau, etc.) based on such estimated copulas could take values outside of their
natural range, thus making them unattractive in practice. On the other hand, there has been
recent work on Bayesian nonparametric methods for estimating general d-dimensional
copulas and, among many others, a noteworthy Bayesian nonparametric model is based
on an infinite mixture of multivariate Gaussian or the skew-normal copulas proposed by
Wu et al. [17]. The infinite mixture models provide a lot of flexibility in modeling various
dependence structures, but those typically lack simple (analytic) expressions of dependence
measures making them harder to compute in practice.

The primary focus of this paper is the nonparametric estimation of multivariate copu-
las for any arbitrary dimensions that are genuine copulas for any finite sample size and
are uniformly consistent as the sample size becomes large. We consider an extension of
the Bernstein copula (Sancetta and Satchell [18]), which is a family of copulas defined
in terms of multivariate Bernstein polynomials. One of the primary advantages of the
Bernstein copula is that it provides a class of nested models that are able to uniformly
approximate any multivariate copula with minimal regularity conditions. A simple case
of the Bernstein copula is the empirical Bernstein copula, which is a nonparametric cop-
ula estimator proposed by Sancetta and Satchell [18]. The asymptotic properties of the
empirical Bernstein copula are well studied in Janssen et al. [19], and its application in
testing independence is described in Belalia et al. [20]. The application of the Bernstein
copula to the modeling of dependence structures of non-life-insurance risks is provided
in Diers et al. [21], among many other applications.

However, the empirical Bernstein copula has two main drawbacks that could prevent
us from obtaining accurate copula estimation for small samples: (i) the empirical Bernstein
copula is not necessarily a valid copula itself, which is a common disadvantage for most
nonparametric copula estimators; and (ii) the degrees of Bernstein polynomials are often
set to be equal to an integer across different dimensions, which limits the flexibility of the
Bernstein copula and thus might not be appropriate for large dimensions.
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In order to address the above-described problem (i), Segers et al. [22] showed that the
empirical Bernstein copula is a genuine copula if and only if all the polynomial degrees
are divisors of the sample size, and further proposed a new copula estimator called the
empirical beta copula, which can be seen as a special case of the empirical Bernstein copula
when the degrees of Bernstein polynomials are all set equal to the sample size. The empirical
beta copula is a valid copula itself and has been shown to outperform some classical copula
estimators in terms of bias and variance, but it always has a larger variance compared
to the empirical Bernstein copula with smaller polynomial degrees. It is surprising that
much less attention has been given to the problem (ii), and even for equally set degrees,
there has been limited work on the data-dependent choice of degrees in the literature.
Janssen et al. [19] recommended an optimal choice of the equal degrees in the bivariate case
by minimizing the asymptotic mean squared error. Nevertheless, such a choice requires
the knowledge of the first- and second-order partial derivatives, which might not be easy
to estimate in practice. Burda and Prokhorov [23] put priors on the polynomial degrees;
however, their priors did not rely on data or sample size, and they used multivariate
Bernstein density instead of Bernstein copula density. The Dirichlet process assigned as the
prior for the copula does not guarantee the copula estimate to be a valid copula itself. In
addition, the number of weights grows exponentially as the dimension increases, leading
to computational inefficiency of MCMC methods for larger dimensions. To the best of our
knowledge, Lu and Ghosh [24] first developed a data-dependent grid search algorithm
for the selection of polynomial degrees, which has shown superior empirical estimation
properties for small- to moderate-sized samples, but the methodology is limited to bivariate
cases, and extension to larger dimensions remains challenging.

For the purpose of addressing the two problems described above, we introduce a
new nonparametric smooth estimator for multivariate copula that we call the empirical
checkerboard Bernstein copula (ECBC), which is constructed by extending the Bernstein
copula, allowing for varying degrees of the polynomials. It is shown to be a genuine smooth
copula for any number of degrees and any finite sample size. Furthermore, we develop
an empirical Bayesian method that takes the data into account to automatically choose the
degrees of the proposed estimator using its posterior distribution, thereby accounting for
the uncertainty of such tuning parameter selection. As shown in Segers et al. [22], larger
degrees of the Bernstein copula lead to a larger variance of the estimation, so a choice
of degrees that is relatively small compared to the sample size but sufficient for a good
copula estimation is desirable. The degrees are allowed to be dimension-varying within
the Bayesian model, which provides much more flexibility and accuracy, especially in
higher dimensions.

It is especially noteworthy that while the focus of the paper is to estimate the cop-
ula function, it is straightforward to obtain a closed-form estimate of the corresponding
copula density by taking derivatives of the ECBC. However, direct estimation of a closed-
form copula function has many advantages compared to first estimating a copula density,
e.g., it is often easier to differentiate than to integrate for higher dimensions. In addition,
for those copulas which are not absolutely continuous, such as Marshall–Olkin copulas
(Embrechts et al. [25]) having support on a possibly lower-dimensional manifold, the di-
rect estimation of the copula density could be difficult. Owing to the closed form of the
estimated copula function and its density, it can be shown that the proposed ECBC allows
for straightforward estimation of various dependence measures.

The rest of the paper is organized as follows: in Section 2, we present an empirical
Bayes nonparametric copula model. In Section 2.1, we derive the closed-form expression of
estimates of popular multivariate dependence measures based on the novel methodology
of multivariate copula estimation. We then illustrate the performance of the proposed
methodology in Section 3. Section 3.1 shows the finite-sample performance for bivariate
cases. The accuracy of the estimation of multivariate dependence measures is investigated
in Section 3.2. Section 3.3 illustrates the estimation of tuning parameters of the proposed
ECBC copula estimator, and the comparison with the empirical Bernstein copulas is pro-



Mathematics 2023, 11, 4383 4 of 22

vided in Section 3.4. Section 4 provides an application to portfolio risk management. Finally,
we make some general comments in Section 5.

2. An Empirical Bayes Nonparametric Copula Model

Suppose we have i.i.d. samples (Xi1, . . . , Xid) ∼ F(x1, . . . , xd), i ∈ {1, . . . , n}, where F is
a cumulative distribution function and Fj is the absolutely continuous marginal CDF of the
j-th component. By Sklar ’s theorem (Sklar [4]), there exists a unique copula C(·) such that

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), ∀ (x1, . . . , xd) ∈ Rd,

and
(F1(X1), . . . , Fd(Xd)) ∼ C.

The Bernstein copula is a family of copulas defined in terms of Bernstein polynomials,
and it was first introduced by Sancetta and Satchell [18]. It is a flexible model that can
be used to uniformly approximate any copula. The Bernstein polynomial with degrees
(m1, . . . , md) of a function C : [0, 1]d → R is defined as

Bm(C)(u) =
m1

∑
k1=0
· · ·

md

∑
kd=0

C
(

k1

m1
, . . . ,

kd
md

) d

∏
j=1

(
mj

k j

)
u

kj
j (1− uj)

mj−kj , (1)

and Bm(C) is called the Bernstein copula when C is a copula.
A general estimation for the Bernstein copula of an unknown copula hlC is the em-

pirical Bernstein copula (Sancetta and Satchell [18]) Bm(Cn), where Cn is the rank-based
empirical copula. We denote the empirical Bernstein copula as

Cm,n(u) =
m1

∑
k1=0
· · ·

md

∑
kd=0

θ̂k1,...,kd

d

∏
j=1

(
mj

k j

)
u

kj
j (1− uj)

mj−kj ,

where

θ̂k1,...,kd
= Cn

(
k1

m1
, . . . ,

kd
md

)
=

1
n

n

∑
i=1

d

∏
j=1

I
(

F∗nj(Xij) ≤
k j

mj

)
.

where I(·) denotes indicator function, and slightly modified empirical marginal distribution
functions are defined as

F∗nj(xj) =
1

n + 1

n

∑
i=1

I(Xij ≤ xj), for j ∈ {1, . . . , d},

where the modification 1/(n + 1) instead of 1/n modifies the standard empirical marginal
distribution to be away from 1 in order to reduce potential problems at boundaries.

However, the empirical Bernstein copula Cm,n is not guaranteed to be a valid cop-
ula for finite samples as the empirical copula Cn is not necessarily a genuine copula.
Segers et al. [22] showed that the empirical Bernstein copula Cm,n is a copula if and only if
all the degrees m1, ..., md are divisors of n. In order to obtain a valid copula estimation for
any degrees, we replace the empirical copula Cn with the empirical checkerboard copula
C#

n, which is a simple multilinear extension of the empirical copula defined as

C#
n(u) =

1
n

n

∑
i=1

d

∏
j=1

min(max((nuj − R(n)
i,j + 1), 0), 1),

where R(n)
i,j is the rank of Xij among X1j, . . . , Xnj; see, e.g., Carley and Taylor [26] and

Li et al. [27] for more details. Notice that the main difference between the empirical copula
Cn and the empirical checkerboard copula C#

n is that C#
n is a genuine copula, so we can

obtain a valid copula estimation C#
m,n taking the form
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C#
m,n(u) =

m1

∑
k1=0
· · ·

md

∑
kd=0

θ̃k1,...,kd

d

∏
j=1

(
mj

k j

)
u

kj
j (1− uj)

mj−kj , (2)

where

θ̃k1,...,kd
= C#

n

(
k1

m1
, . . . ,

kd
md

)
=

1
n

n

∑
i=1

d

∏
j=1

min(max

((
n

k j

mj
− R(n)

i,j + 1

)
, 0), 1

)
, (3)

and we call the proposed empirical checkerboard Bernstein copula (ECBC).
Unlike the empirical Bernstein copula, the ECBC is a genuine copula for any degrees

m1, m2, . . . , md ∈ Z+, and any fixed sample size n. It is known that Bernstein polynomi-
als with smaller values of degrees mjs may lead to biased estimates while unnecessary
larger degrees of Bernstein polynomials will necessarily lead to larger variances. Therefore,
it is critical to choose the proper degrees of the ECBC based on a given sample. In or-
der to do that, we develop an empirical Bayes method for choosing ‘optimal’ degrees
(m1, m2, . . . , md), where mjs are allowed to be different for different j ∈ {1, . . . , d} and also
depend on the random sample of observations.

As illustrated in Sancetta and Satchell [18], using partial derivatives of (2) with respect
to each uj and rearranging, we can obtain the density corresponding to ECBC as follows:

c#
m,n(u) =

m1−1

∑
k1=0
· · ·

md−1

∑
kd=0

w̃k1,...,kd

d

∏
j=1

mj

(
mj − 1

k j

)
u

kj
j (1− uj)

mj−kj−1

=
m1−1

∑
k1=0
· · ·

md−1

∑
kd=0

w̃k1,...,kd

d

∏
j=1

Beta(uj, k j + 1, mj − k j),

(4)

where

w̃k1,...,kd
=

1

∑
l1=0
· · ·

1

∑
ld=0

(−1)d+l1+...+ld C#
n

(
k1 + l1

m1
, . . . ,

kd + ld
md

)
.

(5)

Clearly, the Bernstein copula is a mixture of independent Beta distributions leading to
a tensor product form. For notational convenience, let us denote

Uij ≡ F∗nj(Xij) i ∈ {1, . . . , n}, j ∈ {1, . . . , d},

Following the work by Gijbels et al. [28], the pseudo-observations (Ui1, . . . Uid),
i ∈ {1, . . . , n} can be treated as samples from (F1(Ui1), . . . , Fd(Uid)) ∼ C. We then use
this approximation to build an empirical Bayesian hierarchical model:

Uij|Lij
ind∼ Beta(Lij + 1, mj − Lij), i ∈ {1, . . . , n}, j ∈ {1, . . . , d},

Lij = bmjVijc,

where bac is the ‘floor’ function denoting the largest integer not exceeding the value a, and

(Vi1, . . . , Vid)
i.i.d∼ C#

n(·), i ∈ {1, . . . , n},

i.e., (Vi1, . . . , Vid), i ∈ {1, . . . , n} are samples from the empirical checkerboard copula C#
n. It

then follows that

w̃k1,...,kd
= Pr(Li1 = k1, . . . , Lid = kd)

= Pr
(

k1

m1
≤ Vi1 <

k1 + 1
m1

, . . . ,
kd
md
≤ Vid <

kd + 1
md

)
.
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Based on the proposition 1 in Genest et al. [11], Vij can be drawn using the following
hierarchical scheme:

πi
i.i.d∼ DisUni f {1, . . . , n}, i ∈ {1, . . . , n},

Λij
i.i.d∼ Uni f (0, 1) i ∈ {1, . . . , n}, j ∈ {1, . . . , d}.

Vij = (1−Λij)Fn,j(Xπi j−) + ΛijFn,j(Xπi j),

where Fn,j(xj) = 1/n ∑n
i=1 I(Xij ≤ xj) and DisUni f denotes the discrete uniform distri-

bution, i.e., Pr[πi = j] = 1/n for j ∈ {1, . . . , d}. Assuming that there are no ties in the
pseudo samples U1j, . . . , Unj (owing to absolute continuity of marginal distributions or
breaking it by random assignment in practice), we can equivalently represent the Vij’s more
conveniently as

Vij = (1−Λij)
R(n)

πi ,j
− 1

n
+ Λij

R(n)
πi ,j

n

=
R(n)

πi ,j
− 1 + Λij

n
.

Next, to account for the uncertainty in the estimation of the degrees mjs, we propose to
introduce a sample-size-dependent empirical prior distribution on the degrees m1, . . . , md
and obtain posterior estimates by Markov chain Monte Carlo (MCMC) methods. This
would not only allow for the almost automatic adaptive estimation of the degrees (based
on the observed data) but would also allow for quantifying the uncertainty of this crucial
tuning parameter vector. Notice that the idea of putting priors on the polynomial degrees
was also adopted by Burda and Prokhorov [23]. However, their priors did not rely on data
or sample size and they used multivariate Bernstein density instead of Bernstein copula
density, i.e., the weights belonged to a simplex without any more constraints. A Dirichlet
process with a baseline of uniform distribution on [0, 1]d was assigned as the prior for the
copula C in (1), which did not guarantee C to be a valid copula. In order to avoid the
construction of priors under constraints, we use the empirical estimates for the coefficients
of the Bernstein copula instead of assigning priors to them.

Motivated by the asymptotic theory of the empirical Bernstein estimator, e.g., as in
Janssen et al. [29], we propose the hierarchical shifted Poisson distributions as the prior
distribution for m1, . . . md:

mj | αj
ind∼ Poisson(nαj) + 1, j ∈ {1, . . . , d}. (6)

and
αj

i.i.d∼ Uni f
(1

3
,

2
3

)
, j ∈ {1, . . . , d}. (7)

The following theorem provides the large-sample consistency of the ECBC using the
same set of assumptions as required for the large-sample consistency of the empirical
checkerboard copula.

Theorem 1. Given the empirical priors distribution of m1, . . . , md as in (6) and (7), and assuming
the regularity conditions for the consistency of the empirical checkerboard copula, the proposed
ECBC is consistent in the following sense:

E(||C#
m,n − C||) = E

[
sup

u∈[0,1]d

∣∣∣C#
m,n(u)− C(u)

∣∣∣] a.s.→ 0 as n→ ∞.

where the expectation is taken with respect to the empirical prior distribution.

Proof. We denote the ECBC as Bm(C#
n) for simplicity. Also, the empirical Bernstein

copula and the Bernstein copula are denoted as Bm(Cn) and Bm(C), respectively. Let
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||g|| = sup
u∈[0,1]d

g(u) denote the supremum norm of a function g(·) defined on d-dimensional

square [0, 1]d. Using the familiar triangle inequality, we have

||Bm(C#
n)− C|| ≤ ||Bm(C#

n)− Bm(Cn)||+ ||Bm(Cn)− Bm(C)||+ ||Bm(C)− C||

First, under the assumption that the marginal CDFs are continuous, it follows from
Remark 2 in Genest et al. [11] that

||C#
n − Cn|| ≤

d
n

.

Next, notice that

||Bm(C#
n)− Bm(Cn)||

= sup
u∈[0,1]d

∣∣∣∣∣ m1

∑
k1=0
· · ·

md

∑
kd=0

(
C#

n

(
k1

m1
, . . . ,

kd
md

)
− Cn

(
k1

m1
, . . . ,

kd
md

)) d

∏
j=1

(
mj

k j

)
u

kj
j (1− uj)

mj−kj

∣∣∣∣∣
≤ max

0≤k1≤m1,...0≤kd≤md

∣∣∣∣C#
n

(
k1

m1
, . . . ,

kd
md

)
− Cn

(
k1

m1
, . . . ,

kd
md

)∣∣∣∣
≤ ||C#

n − Cn|| ≤
d
n

In the above, the second inequality follows from the fact that since (
mj
kj
)u

kj
j (1− uj)

mj−kj ,

k j ∈ {0, . . . , mj} are binomial probabilities, ∑
mj
kj=0 (

mj
kj
)u

kj
j (1− uj)

mj−kj = 1 for any uj ∈ [0, 1]

and for any j ∈ {1, . . . , d}.
Next, by using Lemma 1 in Janssen et al. [19] and Equation (3) in Kiriliouk et al. [30],

we obtain

||Cn − C|| ≤ ||Cn − Fn(F−1
n1 (u1), . . . , F−1

nd (ud))||
+||Fn(F−1

n1 (u1), . . . , F−1
nd (ud))− F(F−1

1 (u1), . . . , F−1
d d(ud)||

≤ d
n
+ O(n−1/2(ln ln n)1/2) a.s.

= O(n−1/2(ln ln n)1/2) a.s..

Hence, it now follows that

||Bm(Cn)− Bm(C)|| ≤ ||Cn − C|| ≤ O(n−1/2(ln ln n)1/2), a.s.

Also, by using Lemma 3.2 in Segers et al. [22], we have

||Bm(C)− C|| ≤
d

∑
j=1

1
2√mj

Thus, combining the above inequalities that are satisfied almost surely (a.s.) for every fixed
mjs, we obtain

||Bm(C#
n)− C|| ≤ ||Bm(C#

n)− Bm(Cn)||+ ||Bm(Cn)− Bm(C)||+ ||Bm(C)− C||

≤ d
n
+

d

∑
j=1

1
2√mj

+ O(n−1/2(ln ln n)1/2) a.s.

Next, we consider the proposed empirical priors on the degrees m1, . . . , md to be

mj|αj
ind∼ Poisson(nαj) + 1 and αj

iid∼ Uni f
(1

3
,

2
3

)
for j ∈ {1, . . . , d}.
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We make use of the following simple lemma:

Lemma 1. Suppose M ∼ Poisson(λ), then E[ 1√
M+1

] ≤
√

1−e−λ

λ .

Proof of Lemma 1. By Jensen’s inequality for the square-root function, it follows that

E
(

1√
M + 1

)
≤

√
E
(

1
M + 1

)
=

√
1
λ

∞

∑
m=0

λm+1e−λ

(m + 1)!
=

√
1− e−λ

λ
.

Notice that as αj ∼ Uni f (1/3, 2/3), Pr(αj > 1/3) = 1 and conditioning on αj, we then

have, by the above lemma, E
(√

1/mj
∣∣αj

)
≤
√
(1− e−nαj

)/nαj → 0 as n → ∞. Thus,
taking expectation with respect to the prior distribution, it follows that

E||Bm(C#
n)− C|| ≤ E||Bm(C#

n)− Bm(Cn)||+ E||Bm(Cn)− Bm(C)||+ E||Bm(C)− C||

≤ d
n
+

d

∑
j=1

1
2

E

(
1
√mj

)
+ O(n−1/2(ln ln n)1/2)→ 0 as n→ ∞ a.s.

Notice that in the above result, the a.s. convergence is with respect to the empirical
marginal distribution of the data integrating out the conditional empirical distribution of data
(given the mjs) weighted by the empirical prior distribution of the tuning parameters mjs.
This is not the usual notion of posterior consistency, but, rather, the notion can be viewed
as using an integrated likelihood approach (Berger et al. [31]) with respect to the empirical
marginal distribution obtained by integrating the priors given by Equations (6) and (7).

It is to be noted that the joint posterior distribution of (m1, . . . md) may not necessarily
preserve an exchangeable structure as the above prior. Using the empirical Bayes hierarchi-
cal structure of the above-proposed model, it can be shown that efficient MCMC methods
can be utilized to draw approximate samples from the path of a geometrically ergodic
Markov Chain with posterior distribution as its stationary distribution. By generating
a sufficiently large number of MCMC samples, we can estimate the marginal posterior
mode of the discrete-valued parameter mjs as final estimates. Let mj1, . . . , mjK denote K
MCMC samples of mj, j ∈ {1, . . . , d} and for each j, let m̃j1 < m̃j2 < · · · < m̃jDj denote the
distinct values among these MCMC samples. Then, the (marginal) posterior mode of mj is
estimated by

m̂j = argmax
mjb ,b=1,...,Dj

K

∑
a=1

I(mja = m̃jb), j ∈ {1, . . . , d}.

The final estimate of the smooth copula based on the proposed ECBC is then given by

C#
m̂,n(u) =

m̂1

∑
k1=0
· · ·

m̂d

∑
kd=0

θ̃k1,...,kd

d

∏
j=1

(
m̂j

k j

)
u

kj
j (1− uj)

m̂j−kj

where

θ̃k1,...,kd
= C#

n

(
k1

m̂1
, . . . ,

kd
m̂d

)
.

It is to be noted that other posterior estimates (e.g., posterior mean when it exists or
coordinate-wise posterior median or some version of multivariate posterior median) can
also be used, but for simplicity (and the requirement that these posterior estimates of mjs be
necessarily integer-valued) we chose to use posterior mode based on the marginal posterior
distributions of mjs. Through many numerical illustrations, we show the easy applicability
of this choice in various examples.
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2.1. Multivariate Dependence Estimation

In higher dimensions, it is often of interest to evaluate the strength of dependence
among variables. This is often performed using copulas since most dependence measures
can be expressed as a function of copulas. Spearman’s rank correlation coefficient (Spear-
man’s rho) is one of the most widely used dependence measures. For a bivariate copula C,
Spearman’s rho can be written as

ρ = 12
∫ 1

0

∫ 1

0
C(u, v)dudv− 3 = 12

∫ 1

0

∫ 1

0
(C(u, v)− uv)dudv.

A multivariate extension of Spearman’s rho given in Nelsen [32] takes the form

ρd =

∫
Id C(u)du−

∫
Id Π(u)du∫

Id M(u)du−
∫

Id Π(u)du
=

d + 1
2d − (d + 1)

(
2d
∫

Id
C(u)du− 1

)
. (8)

Compared to vine copulas that rely on pair copulas and complex tree structures, one
of the advantages of our copula estimator is that it is straightforward to obtain an estimate
of multivariate Spearman’s rho as

ρ̂d =
d + 1

2d − (d + 1)

(
2d

m̂1

∑
k1=0
· · ·

m̂d

∑
kd=0

θ̃k1,...,kd

d

∏
j=1

(
m̂j

k j

)
B(k j + 1, m̂j − k j + 1)− 1

)
. (9)

where B is the beta function.
It can be shown that the multivariate Spearman’s rho is bounded by

2d − (d + 1)!
d!(2d − d− 1)

≤ ρd ≤ 1,

where the lower bound approaches to zero as dimension increases. Since our copula
estimator is a genuine copula, the estimate of multivariate d-dimensional Spearman’s
rho ρ̂d can avoid taking values out of the parameter space, which might be an issue for
estimates built on other nonparametric copula estimators, e.g., the empirical copula (see
Pérez and Prieto-Alaiz [33]).

Similar to Spearman’s rho, Kendall’s tau is another common dependence measure and
has its multivariate version as well, which is given by Nelsen [32] as

τd =
1

2d−1 − 1

(
2d
∫

Id
C(u)dC(u)− 1

)
. (10)

By applying (4) and (5), it is also easy to obtain an estimate of multivariate Kendall’s
tau based on our copula estimator as

τ̂d =
1

2d−1 − 1

(
2d

m̂1−1

∑
k1=0
· · ·

m̂d−1

∑
kd=0

m̂1

∑
l1=0
· · ·

m̂d

∑
ld=0

w̃k1,...,kd
θ̃l1,...,ld

d

∏
j=1

m̂j

(
m̂j − 1

k j

)(
m̂j

lj

)
B(k j + lj + 1, 2m̂j − k j − lj)− 1

)
.

Thus, using our proposed ECBC copula, not only are we able to obtain a fully non-
parametric estimate of any copula function in closed form (once the tuning parameters
mj, j ∈ {1, . . . , d} are estimated by their posterior modes), but we are also able to derive the
closed-form expression of estimates of the popular multivariate measures of dependence
for any arbitrary dimension d ≥ 2.

Moreover, although we only illustrate the use of multivariate extensions of Kendall’s
tau and Spearman’s rho as possible measures of multivariate dependence, any other
multivariate notion of dependence measures that are suitable functionals of the underlying
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copula can also be computed using our closed-form expression of the ECBC estimator.
This is particularly advantageous compared to even some of the flexible yet complicated
parametric copula family (e.g., Archimedian, multivariate Gaussian, t, etc.) for which it
may require high-dimensional numerical integration to compute multivariate versions of
Spearman’s rho as given in (8) and/or Kendall’s tau given in (10). For vine copulas, it is
particularly challenging to obtain estimates of these multivariate measures of dependence
as such high-dimensional integrals are often algebraically and even numerically intractable,
say for dimension d ≥ 5, whereas for ECBC, even when a new measure of dependence
is created as a functional of the copula that may be more complicated than those defined
in Equations (8) and (10), we can easily obtain a large number of Monte Carlo (MC)
samples from the ECBC and use MC-based approximation to estimate such new measures
of multivariate dependence (we illustrate such a case in our real case study involving
portfolio risk optimization in Section 4).

3. Numerical Illustrations Using Simulated Data
3.1. Finite-Sample Performance for Bivariate Cases

We investigate the finite-sample performance of the ECBC through a Monte Carlo
simulation study. Samples from the true copula are generated using the package copula in
R (Hofert et al. [34]). In order to visualize the results using contour plots, we first restrict
our illustration to bivariate copulas. Three copula families with various parameters and an
asymmetric copula are considered. The first four examples are the bivariate Frank copulas:

CF(u, v) = −1
θ

ln
(

1 +
(exp(−θu)− 1)(exp(−θv)− 1)

exp(−θ)− 1)

)
,

with parameter θ equal to −2,−1, 1, and 2, which reflects a wide range of dependence from
negative to positive. The next two examples are the Clayton copula with parameter 1:

CC(u, v) = (max{u−1 + v−1 − 1, 0})−1,

and the Gumbel copula with parameter 2:

CG(u, v) = exp(−((− ln(u))2 + (− ln(v))2)1/2).

The value of Kendall’s tau is 0.33 for Clayton copula with parameter 1 and 0.5 for
Gumbel copula with parameter 2. Both cases have a moderate positive dependence.

The next example is the independence copula C(u, v) = uv. Finally, we consider an
asymmetric copula

Ca(u, v) = uv− 0.12(1− v2)sin(8.3v)u(1− u).

In the simulation study, n = 100 samples are drawn from the true copula for each
replicate (of size n = 100) and there are N = 100 replicates. Degrees of the ECBC are
estimated by posterior modes by obtaining 5000 MCMC samples following 2000 burn-in
samples of two chains for each of the N replicated datasets generated from a chosen true
copula model. It is to be noted that it takes about 2, 11, and 60 min to run 7000 iterations for
two chains by using MacOS with 16 GB of RAM for d = 2, d = 10, and d = 50, respectively,
when data are drawn from multivariate Frank copula. Convergence of MCMC runs was
monitored based on preliminary runs using standard diagnostics available in R packages
rjags and coda. We show the results for eight copulas in Figures 1 and 2. The contour
plot of the true underlying copula and the empirical MC average of N copula estimates
are given for comparison, and (m̄1, m̄2) represents the MC mean of the posterior modes of
degree parameters.

We can see from the contour plots that the average of the estimated copula is extremely
close to the underlying true copulas across all different dependence structures irrespective
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of the assumed parametric models. This illustrates that the proposed ECBC has a robust
performance in estimating various true copulas.

(a) (b)

(c) (d)

Figure 1. Estimation of Frank copulas using the ECBC with empirical Bayesian method for choosing
proper degrees when sample size n = 100. (a) (m̄1, m̄2) = (22.52, 24.01), (b) (m̄1, m̄2) = (22.46, 23.17),
(c) (m̄1, m̄2) = (23.29, 24.83), (d) (m̄1, m̄2) = (22.82, 22.17).

3.2. Accuracy of Multivariate Dependence Measures (d = 3)

To assess the finite sample performance of the estimate of multivariate Spearman’s rho
ρ̂d, we conduct Monte Carlo simulations for d = 3 copulas. We consider the independence
copula and Clayton copulas with parameter value {0.5, 1, 2}, respectively. For each copula
model, N = 100 Monte Carlo replicates are generated with size n = 100. For each replicate,
we compute the proposed estimator ρ̂d in (9) and the estimator based on empirical copula ρ̃d

ρ̃d =
d + 1

2d − (d + 1)

(
2d
∫

Id
Cn(u)du− 1

)
=

d + 1
2d − (d + 1)

(2d

n

n

∑
i=1

d

∏
j=1

(1−Uij)− 1
)

.
(11)

Finally, for each estimator we compute the mean, bias, variance, and mean square
error (MSE) over all replicates.
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(a) (b)

(c) (d)

Figure 2. Estimation of various copulas using the ECBC with empirical Bayesian method for choosing
proper degrees when sample size n = 100. (a) (m̄1, m̄2) = (23.94, 21.69), (b) (m̄1, m̄2) = (22.58, 22.16),
(c) (m̄1, m̄2) = (22.34, 20.87), (d) (m̄1, m̄2) = (21.08, 22.92).

Table 1 shows the results of the estimation of multivariate Spearman’s rho for four
different copulas. An approximated value of the true multivariate Spearman’s rho ρd
can be obtained by numerical integration since there is no analytical expression as a
function of the parameter (see Pérez and Prieto-Alaiz [33]), which is also given in Table 1.
The corresponding boxplots for the two estimates based on N = 100 replicates along with
a horizontal line for true multivariate Spearman’s rho ρd are shown in Figure 3.

From the results, we can see our estimator ρ̂d outperforms ρ̃d with respect to variance
and MSE. In terms of bias, ρ̂d tends to underestimate and have a larger bias as strength
of dependence increases, but there is not a clear superiority of one estimator over the other.
As shown in Figure 3c,d, where there is a moderate or strong dependence in trivariate cases, ρ̃d
can take values out of parameter space [−2/3, 1] (3% and 12% of ρ̃d are taking values greater
than 1 in (c) and (d), respectively), which can be problematic in measuring dependence.
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Table 1. Comparison of two estimates of multivariate Spearman’s rho based on N = 100 replica-
tions of size n = 100 generated from the independence copula and Clayton copulas with different
parameter values when dimension d = 3.

Copula ρd Estimator Mean Bias Variance MSE

Independence 0 ρ̂d 0.007 0.007 0.008 0.009
ρ̃d − 0.015 − 0.015 0.014 0.015

Clayton 0.308 ρ̂d 0.294 − 0.014 0.007 0.008
θ = 0.5 ρ̃d 0.287 − 0.021 0.028 0.029

Clayton 0.504 ρ̂d 0.477 −0.027 0.007 0.008
θ = 1 ρ̃d 0.519 0.015 0.039 0.040

Clayton 0.717 ρ̂d 0.680 −0.037 0.004 0.006
θ = 2 ρ̃d 0.732 0.015 0.050 0.051

(a) (b)

(c) (d)

Figure 3. Boxplots of the two estimators based on N = 100 replicates and a horizontal line of true
multivariate Spearman’s rho ρd for each of four trivariate copulas.

3.3. Estimation of Tuning Parameters of ECBC

We now illustrate one of the primary advantages of our proposed empirical Bayes
estimate of the ECBC that allows for data-dependent automatic selection of dimension-
varying degree parameters mjs. We further explore the special case of choosing equal
degrees m1 = . . . = md = m by using the following prior distribution:

m | α ∼ Poisson(nα) + 1, (12)

and α ∼ Uni f
(1

3
,

2
3

)
(13)
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For our empirical illustration, we consider three true bivariate copulas and one trivari-
ate copula to explore the comparative performance of choosing dimension-varying degrees
compared to setting them equal across all dimensions. The first example is the Farlie–
Gumbel–Morgenstern (FGM) copula Ca(u, v) = uv(1− a(1− u)(1− v)) with parameter
a = −1. The next two choices are the independence copula (e.g., FGM with a = 0) and the
Gaussian copula with positive dependence (correlation ρ = 0.5). The last one is the trivari-
ate t-copula with four degrees of freedom and pairwise dependence ρ12 = −0.2, ρ13 = 0.5,
and ρ23 = 0.4. Again, samples of size n = 100 are obtained for each four cases and repeated
N = 100 times for MC evaluation. For each sample, we chose the degrees of the ECBC by
computing the posterior modes using our proposed empirical Bayesian method.

Figure 4 presents the scatterplot of estimated values of (m1, m2) or (m1, m2, m3) for
each chosen true copula model. From the plots, we can observe that for bivariate copulas,
posterior estimates of m1 and m2 are significantly different in most cases without any prior
restrictions of equality. In fact, posterior probability of choosing equal m1 = m2 is only
about 0.08, 0.08, and 0.13 for FGM copula, for independence copula, and for Gaussian
copula, respectively, indicating against forcing m1 = m2, as is popularly performed in the
literature. For the trivariate t-copula case, the posterior probability of m1 = m2 = m3 is 0,
decisively suggesting that equality assumption is suboptimal in general and particularly as
the dimension increases. We conducted further studies with dimensions (not shown here
for limitation of space) and the conclusions remain very similar.

(a) (b)

(c) (d)

Figure 4. Choice of dimension-varying degrees obtained by applying the proposed empirical Bayesian
method based on N = 100 replications when sample size n = 100.

In order to further compare the performances of copula estimators with flexible degrees
vs. equal degrees, we fit our Bayesian models with two different settings of priors: (i)
(flexible) the original priors given in (6) and (7), where degrees are allowed to vary in
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different dimensions; (ii) (equal) modified priors given in (12) and (13), where degrees
are set to be equal; using the same dataset generated from the three bivariate copulas.
Following Segers et al. [22], we consider three global performance measures: the integrated
squared bias, the integrated variance, and the integrated mean squared error. Given a
copula estimator Ĉn, the performance measures are defined as

integrated squared bias: ISB =
∫
[0,1]d

[
E[Ĉn(u)− C(u)]

]2du,

integrated variance: IV =
∫
[0,1]d

E
[
[Ĉn(u)− E(Ĉn(u))]2

]
du,

integrated mean squared error: IMSE =
∫
[0,1]d

E
[
[Ĉn(u)− C(u)]2

]
du.

We compute the performance measures by applying the computation method de-
scribed in Segers et al. [22], which relies on Monte Carlo simulation to obtain a Monte
Carlo estimate of each performance measure. Table 2 presents the results for the four cases,
where the first three are bivariate (d = 2) and the last one is trivariate (d = 3). The standard
errors of the Monte Carlo estimates are not reported in the table as they are negligibly
small. We can see that the copula estimators with flexible degrees perform better than
those with equal degrees in terms of IV and IMSE in all cases. As the difference in IMSE
is dominated by the IV term, the choice of flexible degrees leads to smaller uncertainty,
and hence smaller IMSE, while the biases remain relatively unaffected. It is also interesting
to observe that estimated degrees are far smaller than sample sizes, indicating that the
empirical beta copula may not have optimal performance, which we explore next.

Table 2. Comparison of copula estimators with flexible degrees vs. equal degrees using three
performance measures computed by Monte Carlo simulation based on N = 100 replications when
sample size n = 100.

Copula Choice of Degrees ISB (×10−4) IV (×10−4) IMSE (×10−4)

FGM Flexible 0.10 1.28 1.38
θ = −1 Equal 0.09 1.37 1.46

Independence Flexible 0.13 1.89 2.02
Equal 0.20 2.16 2.36

Gaussian Flexible 0.36 0.71 1.07
ρ = 0.5 Equal 0.30 0.83 1.13

t Flexible 0.11 2.67 2.78
d = 3 Equal 0.19 2.79 2.98

3.4. Comparison with the Empirical Bernstein Copulas

In this section, we compare the finite-sample performance of the ECBC with other
nonparametric copula estimators only, as it has been already demonstrated that parametric-
model-based methods lead to biased estimates under model misspecification. First, we
consider the empirical beta copula introduced by Segers et al. [22], which is a special case
of the empirical Bernstein copula where the degrees of the polynomials are set equal to
the sample size. The empirical beta copula is a genuine copula and has been shown to
outperform the classical empirical copula and the empirical checkerboard copula in terms
of bias and variance. For bivariate cases, we also include the empirical Bernstein copula
with degrees, as suggested in Janssen et al. [19], into the comparison. By setting degrees
m1 = m2 = m and minimizing the asymptotic pointwise mean squared error with respect
to m, Janssen et al. [19] suggested the choice of m in the bivariate case as

m0(u1, u2) =
(4b2(u1, u2)

V(u1, u2)

)2/3
n2/3 (14)
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where

b2(u1, u2) =
1
2

2

∑
j=1

uj(1− uj)Cujuj(u1, u2)

and V(u1, u2) =
2

∑
j=1

Cuj(u1, u2)(1− Cuj(u1, u2))
(uj(1− uj)

π

)1/2

and Cuj and Cujuj are the first-order and second-order partial derivatives of C, respectively,
with respect to uj, j = 1, 2. Note that even we use the integer part bm0(u1, u2)c in practice;
it is not necessarily a divisor of n, meaning that the empirical Bernstein copula with
m = bm0(u1, u2)c is not guaranteed to be a genuine copula.

We consider the same copula models as in Section 3.3. The choice of degrees m0(u1, u2),
suggested by Janssen et al. [19], is not defined for the independence copula as Cujuj = 0
and it is restricted to bivariate cases, so we only take the empirical Bernstein copula into
consideration for the bivariate FGM and Gaussian copulas. All results in Table 3 are
based on N = 100 MC replications each of sample sizes n = 25, 50, 100. We compare the
performance of the ECBC with flexible degrees (referred to as flexible ECBC), the empirical
beta copula (referred to as Beta), and the empirical Bernstein copula with m = m0(u1, u2)
(referred to as Bernstein) using the same performance measures as in Section 3.3.

Table 3 indicates that the ECBC with flexible degrees outperforms the empirical beta
copula in terms of variance and mean square error in all cases. Compared to the empirical
Bernstein copula with m = m0(u1, u2), the ECBC with flexible degrees has a smaller bias
but the ordering with respect to mean square error is not clear between these two copula
estimators. For small samples, the empirical beta copula seems to have the largest variance
while the bias of the empirical Bernstein copula with m = m0(u1, u2) is shown to be the
largest, even though it uses optimal “true” degree given in (14).

Table 3. Comparison of the ECBC with flexible degrees (referred to as flexible ECBC), the empirical
beta copula (referred to as Beta), and the empirical Bernstein copula with m = m0(u1, u2) (referred
to as Bernstein) using three performance measures computed by Monte Carlo simulation based on
N = 100 replications for sample size n = 25, 50, 100.

ISB (×10−4) IV (×10−4) IMSE (×10−4)
Copula Estimator n = n = n =

25 50 100 25 50 100 25 50 100

FGM flexible ECBC 0.29 0.07 0.10 3.46 2.72 1.28 3.75 2.79 1.38
θ = −1 Beta 0.30 0.09 0.02 5.24 3.27 2.17 5.54 3.36 2.19

Bernstein 0.83 0.51 0.07 1.52 1.33 1.08 2.35 1.84 1.15

Independence flexible ECBC 0.68 0.31 0.13 2.37 2.33 1.89 3.05 2.64 2.02
Beta 0.02 0.03 0.01 5.11 4.02 2.25 5.13 4.05 2.26

Bernstein NA NA NA NA NA NA NA NA NA

Gaussian flexible ECBC 1.72 0.79 0.36 2.51 1.67 0.71 4.23 2.46 1.07
ρ = 0.5 Beta 0.26 0.16 0.20 4.78 3.03 1.81 5.04 3.19 2.01

Bernstein 6.82 3.09 1.27 2.28 1.42 1.06 9.10 4.51 2.33

t flexible ECBC 0.41 0.30 0.11 6.76 4.26 2.67 7.17 4.56 2.78
d = 3 Beta 0.27 0.15 0.04 7.55 5.05 3.07 7.82 5.20 3.11

Bernstein NA NA NA NA NA NA NA NA NA

4. Application to Portfolio Risk Management

Copulas have been widely used in portfolio optimization and risk measurement as
they are powerful tools to model the dependence among different assets in a portfolio.
The proposed ECBC is capable of estimating multivariate copula and it is straightforward
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to sample from the estimated copula, so it can be applied to find optimal weights and
estimate risk measures for a portfolio with a variety of assets.

We now illustrate the use of ECBC for portfolio risk allocation using real data consisting
of a d asset values. Value at risk (VaR) and conditional value at risk (CVaR) (also called
expected shortfall (ES)) are common measures of risk in the field of risk management (see,
e.g., Jorion [35] and Uryasev [36]). Assume that X is the return of a portfolio or asset (daily
log-return of a portfolio of stocks or individual stocks, with positive indicating profit and
negative values representing loss) with distribution function FX(·) = Pr[X ≤ x]. The VaR
of X at the level of α ∈ (0, 1) is defined as

VaRα(X) = − inf{x ∈ R : FX(x) > α},

while the CVaR (ES) of X is defined as

CVaRα(X) = E(−X|X ≤ −VaRα(X)).

Notice that, if we consider the corresponding loss of the same portfolio represented by
Y = −X, then we have VaRα(X) = VaRα(Y) = F−1

Y (1− α) and CVaRα(X) = CVaRα(Y) =
E(Y|Y ≥ VaRα(Y)).

Mean-CVaR portfolio optimization is a popular portfolio optimization technique
introduced by Rockafellar et al. [37]. The advantage of mean-CVaR portfolio optimization
is that it calculates VaR and minimizes CVaR simultaneously, where the optimization can
be formulated as a linear programming problem.

Let x ∈ Rd denote a realized return value of d assets in a portfolio, and v ∈ Sd = {v ∈
Rd : vj ≥ 0, ∀j, ∑d

j=1 vj = 1} denote the portfolio weights to be determined within the
d-dimensional simplex Sd. The key to the approach in Rockafellar et al. [37] is the auxiliary
function for CVaR taking the form of

Hα(v, γ) = γ +
1
α

∫
l(v,x)≥γ

(l(v, x)− γ)dF(x), (15)

where l(v, x) = −vTx is a linear loss function and F(x) is the joint distribution function of
daily (random) return vector X, which we will estimate using our proposed ECBC-based
empirical Bayes method. It was shown in Theorem 1 of Rockafellar et al. [37] that for any
weights v, Hα(v, γ) is convex as a function of γ and is equal to CVaRα(v) at the minimum
point. Moreover, VaRα(v) would be the left endpoint of arg min

γ
Hα(v, γ). Moreover,

minimizing CVaRα(v) with respect to v is equivalent to minimizing Hα(v, γ) with respect to
(v, γ) (e.g., see Theorem 2 of Rockafellar et al. [37] for details). To numerically approximate
the integral in (15), it is often good enough to generate M samples from F(·) or its estimate,
which can be performed by using the proposed empirical Bayes method based on the ECBC.
However, a relatively less-answered question in finance is how large we should choose M
for accurate estimation, as the integral in (15) depends on sampling the tail part of F(·) or

its estimate. The empirical estimate of Hα(v, γ) based on generating xk
iid∼ F or F̂ can be

written as

Fα(v, γ) = γ +
1

αM

M

∑
k=1

(−vTxk − γ)+ (16)

where (·)+ = max(·, 0).

Proposition 1. In order to achieve an accuracy of ε > 0 for the MC approximation, it is sufficient
to generate M MC samples such that√

2 ln ln M
M

λmax ≤ ε, i.e.,
M

ln ln M
≥ 2λmax

ε2
(17)
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where Σ = VarF(X) and λmax is the largest eigenvalue of Σ.

Proof. By the law of the iterated logarithm (see, e.g., Balsubramani [38]), the deviation of
MC approximation from the mean is almost surely bounded by√

2 ln ln M
M

√
Var((−vTxk − γ)+)

Let Σ = VarF(X) and λmax be the largest eigenvalue of Σ, then we have

Var((−vTX− γ)+) ≤ Var(vTX) = vTΣv ≤ λmaxvTv ≤ λmax,

for any v ∈ Sd, because vTv ≤ vT1 = 1. Thus, for an accuracy of ε > 0 for the MC
approximation, it is sufficient to generate M MC samples such that√

2 ln ln M
M

λmax ≤ ε, i.e.,
M

ln ln M
≥ 2λmax

ε2

Notice that Σ, and hence λmax, can be easily estimated from the observed return values
without any modeling assumption as long as n > d; however, sparse methods are necessary
for large-sized portfolios when n ≤ d. Next, it is shown that minimizing (16) is equivalent
to minimizing

Fα(v, γ) = γ +
1

αM

M

∑
k=1

zk s.t. zk ≥ 0, zk + vTxk + γ ≥ 0 (18)

Thus, along with the linear constraints on the weights v, it can be formulated as a
linear programming problem and can be solved using standard convex optimization meth-
ods. Conveniently, R function BDportfolio_optim within the package PortfolioOptim

can be used for this purpose. Following the algorithm in Semenov and Smagulov [39],
simulated return values can be obtained using estimated ECBC for portfolio optimization.
The complete algorithm is summarized below:

Step 1. Transform assets’ historical data Xtj to pseudo-observations Utj and estimate
copula using our proposed method.

Utj = F∗Tj(Xtj), t = 1, . . . , T, j ∈ {1, . . . , d},

F∗Tj(xj) =
1

T + 1

T

∑
t=1

I(Xtj ≤ xj), j ∈ {1, . . . , d}.

Step 2. Generate a sample of pseudo-observations (U∗k1, . . . , U∗kd), k = 1, . . . , M from
the estimated ECBC using empirical Bayes method and transform simulated pseudo-
observations to univariate quantiles.

X∗kj = F∗−1
Tj (U∗kj), k = 1, . . . , M, j ∈ {1, . . . , d}.

Step 3. Calculate optimal weights vj, j ∈ {1, . . . , d} using simulated data (X∗k1, . . . , X∗kd),
k = 1, . . . , M, and the corresponding VaR and CVaR, which are byproducts of the portfolio
optimization, by solving the linear programming problem given in (18).

Our copula estimator is useful to find optimal weights and estimate risk measures as
sampling from the estimated copula is straightforward. Considering the Bernstein copula
density given in (4) and (5), we can obtain samples (U1, . . . Ud) ∼ Cm as follows:

(k1, . . . , kd) ∼ w̃k1,...,kd
, k j ∈ {0, . . . , mj − 1}, j ∈ {1, . . . , d}

Uj ∼ Beta(k j + 1, mj − k j), j ∈ {1, . . . , d}
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As an example with moderately large dimension, we investigate the time series of
daily closing stock prices of the 10 top Nasdaq companies: AMZN, FB, GOOGL, AAPL,
MSFT, INTC, CSCO, NFLX, CMCSA, and ADBE for the time period from 1 January 2018 to
31 December 2019. This dataset consists of 502 observations and can be obtained using R

package quantmod.
Suppose we want to find an optimal portfolio of stocks above that minimizes the

expected shortfall of the portfolio. First, we convert the price series Ptj to log-returns Xtj

Xtj = ln
Ptj

P(t−1)j
, t = 1, . . . , T, j ∈ {1, . . . , d},

resulting in T = 501 log-return values for d = 10 assets. Then we follow Steps 1–3
as above to obtain the optimal portfolio weights and the corresponding VaR and CVaR.
Similar to Semenov and Smagulov [39], we set the minimum weight to be limited by
vj ≥ 0.01, j ∈ {1, . . . , d} to avoid corner portfolio cases.

In Step 1, the posterior mode estimators of the degrees of the proposed ECBC are
(209, 206, 208, 206, 208, 209, 211, 210, 209, 208). The largest eigenvalue of the covariance
matrix is λmax ≈ 2× 10−3, so we are able to find the value of M that is sufficient for a given
accuracy ε from the relationship in (17).

We set M = 10, 000 (adequate for an accuracy ε ≈ 9× 10−4) and repeat Steps 2–3
N = 100 times to quantify estimation uncertainty. For each replicate we conduct portfolio
optimization at the level of α ∈ {0.10, 0.05, 0.01} as popularly used. As a result, we are able
to obtain the distribution of optimal weights (Figure 5) and risk measures (Figure 6) using
simulated data from the estimated copula.

From the boxplots of optimal weights in Figure 5 we can see that CMCSA has a much
higher weight than the other stocks in the mean-CVaR optimal portfolio across different
levels. Also, by applying mean-CVaR portfolio optimization to the historical log-return
data Xtj, we can obtain estimates of optimal weights and risk measures as well. In Figure 6,
the dashed lines indicate empirical estimates of risk measures using historical data.

(a) Level: 0.10

(b) Level: 0.05

Figure 5. Cont.
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(c) Level: 0.01

Figure 5. Distribution of optimal weights obtained from simulated data using the estimated copula
at the level of 0.10, 0.05, and 0.01, for a portfolio of d = 10 stocks.

(a) VaR (b) CVaR
Figure 6. Distribution of VaR and CVaR obtained from simulated data using the estimated copula
at the level of 0.10, 0.05, and 0.01 for a portfolio of d = 10 stocks. Dashed lines indicate empirical
estimates using historical data.

We can see from the plots in Figure 6 that the estimated risk measures from two
different methods seem to be fairly close. However, we are able to quantify the uncertainty
for all the estimates by repeatedly sampling from the estimated copula. Semenov and
Smagulov [39] conducted a similar stability study to report the means and SDs of VaR and
CVaR, but they used predetermined weights based on historical data and did not report
the distribution of optimal weights obtained from simulated data. Our copula estimator
shows good performance for relatively small samples, and operationally, we can generate
as many samples as we want from the estimated copula; thus, the copula-based method
would be more reliable when there are not sufficient historical data. In addition, compared
to the empirical estimates, it is possible to estimate VaR and CVaR for much smaller values
of levels using the copula-based method.

5. Concluding Remarks

In this paper, we proposed the empirical checkerboard Bernstein copula, which is a
nonparametric multivariate copula estimator. It can be considered as an advancement of
the empirical Bernstein copula since it is a valid copula with any polynomial degrees for
any sample size. For automatic data-dependent dimension-varying degree selections, we
further developed an empirical Bayesian method that was shown to be practically useful.
While the proposed copula estimator was shown to be large-sample consistent, it also
had a good finite-sample performance. Moreover, it had a beneficial effect on measuring
the strength of dependence for large dimensions because the estimates derived from the
proposed copula were always within the proper range.
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As sampling from the estimated copula is quite straightforward, it is applicable to
portfolio optimization and risk measurement where estimation is often performed with
simulations generated from copulas. We investigated the number of simulations that were
good enough to achieve any given accuracy, which was apparently out of reach in the
literature. Furthermore, we were able to provide uncertainty quantification for all the
estimates in portfolio risk management.

Under the hierarchical structure of the proposed empirical Bayes model, MCMC
methods have been shown to work reasonably fast for relatively large dimensions (d ≤ 50)
with a moderate sample size (n = 100). To speed up the MCMC methods for very large
sample sizes, it would be of interest to explore some scalable MCMC methods such as
divide-and-conquer approaches and subsampling approaches (see, e.g., Quiroz et al. [40],
Robert et al. [41], etc.). The code (written using R software) to implement the procedure
is available upon request from the first author and could be made available on a GitHub
page following the publication of this paper.
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