A Functional Data Approach for Continuous-Time Analysis Subject to Modeling Discrepancy under Infill Asymptotics
Abstract
:1. Introduction
2. Methods
2.1. Fitting and Forecasting
2.2. Large-Sample Properties
- (a)
- The sample path is observed on a set of evenly spaced time points.
- (b)
- The observational error is uncorrelated across , with for and for all and some constant c.
- (c)
- and with and .
- (a)
- The noise is independent across all .
- (b)
- and with and , such that and .
3. Simulation
3.1. The Data-Generating Process
3.2. Fitting and Forecasting with FDA
- (a)
- Provide a candidate pool for the vector of the tuning parameter and the Taylor expansion order. For each of the 1000 replications, take the length rolling windows (except for the one-month daily sample, where we take the length rolling windows) from the first J observed data points and estimate the underlying processes and as in Equations (4) and (5) using the B-spline basis of order and the number of basis functions . We then obtain and , respectively, for each rolling window with each pair of candidates.
- (b)
- For the first J observed data points from each of the 1000 replicates, compute the forecasting values and for each of the length rolling windows with each pair of candidates using Equation (6). The pair that minimizes the RMSFE over the ten rolling windows across all 1000 replications is selected and denoted by to be used for later fitting and forecasting.
- (c)
- For each of the 1000 replications, perform the fitting and forecasting on the length J rolling windows (either one-month or eight-month) with the given observation frequency using the selected parameters , the basis order of , and the number of basis functions , yielding the rolling-window forecasting values and . It is worth noting that the forecasting step of this method can be flexible, as is technically a continuous quantity. In this simulation study, we only consider the forecasting step that is the same as the sampling time window, which we later refer to as the “one-step-ahead forecast”, while in general, for example, one can make a one-hour-ahead forecast with daily data or a one-day-ahead forecast with hourly data.
- (d)
- Implement the Kolmogorov-Smirnov () test on the pairs “ and ”, “ and ”, “ and ”, and “ and ” for all time points t to check whether the FDA-based predictors can correctly distinguish the true underlying processes in terms of distributions.
- (e)
3.3. Comparison with Parametric Methods
3.4. Results
4. Empirical Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
f.d. | frequency-dependent |
GARCH | generalized autoregressive conditional heteroskedasticity |
MLE | maximum likelihood estimation |
FDA | functional data analysis |
SV | stochastic volatility |
DV | deterministic volatility |
MSFE | mean squared forecast error |
RMSFEs | relative MSFEs |
Appendix A
- (a)
- For any and , as .
- (b)
- For every there exists a such that is asymptotically stochastically equicontinuous on in that .
- (c)
- For any , , and , for any .
- (d)
- For every there exists a such that for all ,, and.
- (a)
- and.
- (b)
- as .
- (c)
- and as .
Appendix A.1. Proof of Theorem 1
Appendix A.2. Proof of Theorem 2
Appendix A.3. Proof of Lemma 1
Appendix A.4. Proof of Lemma A1
Appendix A.5. Proof of Lemma A2
Appendix A.6. Proof of Lemma A3
Appendix B
Appendix B.1. FDA Results
Appendix B.2. MLE Results
References
- Buccheri, G.; Corsi, F.; Flandoli, F.; Livieri, G. The continuous-time limit of score-driven volatility models. J. Econom. 2021, 221, 655–675. [Google Scholar] [CrossRef]
- Merton, R.C. On estimating the expected return on the market: An exploratory investigation. J. Financ. Econ. 1980, 8, 323–361. [Google Scholar] [CrossRef]
- Merton, R.C.; Samuelson, P.A. Continuous-Time Finance; Blackwell: Boston, MA, USA, 1992. [Google Scholar]
- Stentoft, L. American option pricing with discrete and continuous time models: An empirical comparison. J. Empir. Financ. 2011, 18, 880–902. [Google Scholar] [CrossRef]
- Badescu, A.; Cui, Z.; Ortega, J.-P. Non-affine GARCH option pricing models, variance-dependent kernels, and diffusion limits. J. Financ. Econom. 2017, 15, 602–648. [Google Scholar] [CrossRef]
- Corradi, V. Reconsidering the continuous time limit of the GARCH (1, 1) process. J. Econom. 2000, 96, 145–153. [Google Scholar] [CrossRef]
- Corradi, V.; Distaso, W. Deterministic versus Stochastic Volatility; Manuscript; University of Warwick: Coventry, UK, 2010. [Google Scholar]
- Das, S.R. The surprise element: Jumps in interest rates. J. Econom. 2002, 106, 27–65. [Google Scholar] [CrossRef]
- Duan, J.-C.; Ritchken, P.; Sun, Z. Approximating GARCH-JUMP models, jump-diffusion processes, and option pricing. Math. Financ. Int. J. Math. Stat. Financ. Econ. 2006, 16, 21–52. [Google Scholar] [CrossRef]
- Giraitis, L.; Leipus, R.; Surgailis, D. Recent advances in ARCH modelling. In Long Memory in Economics; Springer: Berlin/Heidelberg, Germany, 2007; pp. 3–38. [Google Scholar]
- Hafner, C.M.; Laurent, S.; Violante, F. Weak diffusion limits of dynamic conditional correlation models. Econom. Theory 2017, 33, 691–716. [Google Scholar] [CrossRef]
- Trifi, A. Issues of aggregation over time of conditional heteroscedastic volatility models: What kind of diffusion do we recover? Stud. Nonlinear Dyn. Econom. 2006, 10, 4. [Google Scholar] [CrossRef]
- Nelson, D.B. ARCH models as diffusion approximations. J. Econom. 1990, 45, 7–38. [Google Scholar] [CrossRef]
- Alexander, C.; Lazar, E. The continuous limit of weak GARCH. Econom. Rev. 2021, 40, 197–216. [Google Scholar] [CrossRef]
- Singleton, K.J. Empirical Dynamic Asset Pricing; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Sundaresan, S.M. Continuous-time methods in finance: A review and an assessment. J. Financ. 2000, 55, 1569–1622. [Google Scholar] [CrossRef]
- Aydin, D.; Yilmaz, E. Censored nonparametric time-series analysis with autoregressive error models. Comput. Econ. 2021, 58, 169–202. [Google Scholar] [CrossRef]
- Bosq, D. Nonparametric Statistics for Stochastic Processes: Estimation and Prediction; Springer Science & Business Media: New York, NY, USA, 2012; Volume 110. [Google Scholar]
- Fan, J.; Yao, Q. Nonlinear Time Series: Nonparametric and Parametric Methods; Springer: New York, NY, USA, 2003; Volume 20. [Google Scholar]
- Härdle, W.; Lütkepohl, H.; Chen, R. A review of nonparametric time series analysis. Int. Stat. Rev. 1997, 65, 49–72. [Google Scholar] [CrossRef]
- Heiler, S. A Survey on Nonparametric Time Series Analysis; Technical Report, CoFE Discussion Paper; ZBW—Leibniz-Informationszentrum Wirtschaft: Kiel, Germany, 1999. [Google Scholar]
- Kleppe, T.S.; Yu, J.; Skaug, H.J. Maximum likelihood estimation of partially observed diffusion models. J. Econom. 2014, 180, 73–80. [Google Scholar] [CrossRef]
- Kutoyants, Y.A. Identification of Dynamical Systems with Small Noise; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 300. [Google Scholar]
- Pena, D.; Tiao, G.C.; Tsay, R.S. A Course in Time Series Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Ryabko, D. Asymptotic Nonparametric Statistical Analysis of Stationary Time Series; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Zhu, B.; Song, P.X.-K.; Taylor, J.M. Stochastic functional data analysis: A diffusion model-based approach. Biometrics 2011, 67, 1295–1304. [Google Scholar] [CrossRef]
- Aït-Sahalia, Y.; Kimmel, R. Maximum likelihood estimation of stochastic volatility models. J. Financ. Econ. 2007, 83, 413–452. [Google Scholar] [CrossRef]
- Durham, G.B.; Gallant, A.R. Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. J. Bus. Econ. Stat. 2002, 20, 297–338. [Google Scholar] [CrossRef]
- Berry, T.; Giannakis, D.; Harlim, J. Nonparametric forecasting of low-dimensional dynamical systems. Phys. Rev. E 2015, 91, 032915. [Google Scholar] [CrossRef]
- Matzner-Løfber, E.; Gannoun, A.; Gooijer, J.G.D. Nonparametric forecasting: A comparison of three kernel-based methods. Commun. Stat.-Theory Methods 1998, 27, 1593–1617. [Google Scholar] [CrossRef]
- Lahiri, S.N. On inconsistency of estimators based on spatial data under infill asymptotics. Sankhyā Indian J. Stat. Ser. A 1996, 58, 403–417. [Google Scholar]
- Cressie, N.A. Statistics for Spatial Data; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Kurisu, D. On nonparametric inference for spatial regression models under domain expanding and infill asymptotics. Stat. Probab. Lett. 2019, 154, 108543. [Google Scholar] [CrossRef]
- Chen, X. Large sample sieve estimation of semi-nonparametric models. Handb. Econom. 2007, 6, 5549–5632. [Google Scholar]
- Chen, X.; Liao, Z. Sieve semiparametric two-step GMM under weak dependence. J. Econom. 2015, 189, 163–186. [Google Scholar] [CrossRef]
- Grenander, U. Abstract Inference; Wiley: New York, NY, USA; Toronto, ON, Canada, 1981. [Google Scholar]
- Chen, T.; DeJuan, J.; Tian, R. Distributions of GDP across versions of the Penn World Tables: A functional data analysis approach. Econ. Lett. 2018, 170, 179–184. [Google Scholar] [CrossRef]
- Ramsay, J. Functional Data Analysis; Wiley Online Library: Hoboken, NJ, USA, 2005. [Google Scholar]
- Adebayo, F.A.; Sivasamy, R.; Shangodoyin, D.K. Forecasting stock market series with ARIMA model. J. Stat. Econom. Methods 2014, 3, 65–77. [Google Scholar]
- Khan, S.; Alghulaiakh, H. ARIMA model for accurate time series stocks forecasting. Int. J. Adv. Comput. Sci. Appl. 2015, 11, 7. [Google Scholar] [CrossRef]
- Mondal, P.; Shit, L.; Goswami, S. Study of effectiveness of time series modeling (ARIMA) in forecasting stock prices. Int. J. Comput. Sci. Eng. Appl. 2014, 4, 13. [Google Scholar] [CrossRef]
- Huang, M.; Rojas, R.; Convery, P. Forecasting stock market movements using Google Trend searches. Empir. Econ. 2022, 59, 2821–2839. [Google Scholar] [CrossRef]
- Kumar, M.; Thenmozhi, M. Forecasting stock index returns using ARIMA-SVM, ARIMA-ANN, and ARIMA-random forest hybrid models. Int. J. Banking Account. Financ. 2014, 5, 284–308. [Google Scholar] [CrossRef]
- Dai, Z.; Dong, X.; Kang, J.; Hong, L. Forecasting stock market returns: New technical indicators and two-step economic constraint method. N. Am. J. Econ. Financ. 2020, 53, 101216. [Google Scholar] [CrossRef]
- Li, A.; Bastos, G.S. Stock market forecasting using deep learning and technical analysis: A systematic review. IEEE Access 2020, 8, 185232–185242. [Google Scholar] [CrossRef]
- Lo, A.W.; Mamaysky, H.; Wang, J. Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation. J. Financ. 2000, 55, 1705–1765. [Google Scholar] [CrossRef]
- Agrawal, J.G.; Chourasia, V.; Mittra, A. State-of-the-art in stock prediction techniques. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2013, 2, 1360–1366. [Google Scholar]
- Chen, Y.J.; Chen, Y.M.; Lu, C.L. Enhancement of stock market forecasting using an improved fundamental analysis-based approach. Soft Comput. 2017, 21, 3735–3757. [Google Scholar] [CrossRef]
- Seng, D.; Hancock, D.R. Fundamental analysis and the prediction of earnings. Int. J. Bus. Manag. 2012, 7, 32. [Google Scholar] [CrossRef]
- Jouzdani, N.M.; Panaretos, V.M. Functional data analysis with rough sampled paths? arXiv 2021, arXiv:2105.12035. [Google Scholar]
- Kadison, R.V.; Liu, Z. The Heisenberg relation-mathematical formulations. SIGMA Symmetry Integr. Geom. Methods Appl. 2014, 10, 009. [Google Scholar] [CrossRef]
- Davidson, K.R.; Donsig, A.P. Real Analysis and Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Claeskens, G.; Krivobokova, T.; Opsomer, J.D. Asymptotic properties of penalized spline estimators. Biometrika 2009, 96, 529–544. [Google Scholar] [CrossRef]
- Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econom. 1986, 31, 307–327. [Google Scholar] [CrossRef]
- Engle, R.F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econom. J. Econom. Soc. 1982, 50, 987–1007. [Google Scholar] [CrossRef]
- Meddahi, N. An Eigenfunction Approach for Volatility Modeling; Cahier de Recherche; University of Montreal: Montreal, QC, Canada, 2001. [Google Scholar]
- Christoffersen, P.; Elkamhi, R.; Feunou, B.; Jacobs, K. Option valuation with conditional heteroskedasticity and nonnormality. Rev. Financ. Stud. 2010, 23, 2139–2183. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, H.; Wang, S. Estimation of market prices of risks in the GARCH diffusion model. Econ. Res.—Ekon. Istraživanja 2018, 31, 15–36. [Google Scholar] [CrossRef]
- Wang, Y. Asymptotic nonequivalence of GARCH models and diffusions. Ann. Stat. 2002, 30, 754–783. [Google Scholar] [CrossRef]
- Ledoit, O.; Santa-Clara, P. Relative Pricing of Options with Stochastic Volatility; Los Angeles Finance Working Paper; University of California: Los Angeles, CA, USA, 1998; pp. 9–98. [Google Scholar]
- Hansen, P.R.; Lunde, A. A forecast comparison of volatility models: Does anything beat a GARCH (1, 1)? J. Appl. Econom. 2005, 20, 873–889. [Google Scholar] [CrossRef]
- Leitch, G.; Tanner, J.E. Economic forecast evaluation: Profits versus the conventional error measures. Am. Econ. Rev. 1991, 81, 580–590. [Google Scholar]
- Aït-Sahalia, Y. Maximum likelihood estimation of discretely sampled diffusions: A closed-form approximation approach. Econometrica 2002, 70, 223–262. [Google Scholar] [CrossRef]
- Chui, C.K. Concerning rates of convergence of Riemann sums. J. Approx. Theory 1971, 4, 279–287. [Google Scholar] [CrossRef]
- Davidson, J. Stochastic Limit Theory: An Introduction for Econometricians; OUP Oxford: Oxford, UK, 1994. [Google Scholar]
Parameter | a | ||||
---|---|---|---|---|---|
True value | 0.1 | 0.2 | −8.5 | 2.7 | −0.8 |
SV process fitted by an SV model (correct specification) | |||||
Estimate | 0.004 | 0.289 | −9.546 | 2.699 | −0.800 |
Bias | −0.096 | 0.089 | −1.046 | −0.001 | 0.000 |
Rejection rate | 0.066 | 0.080 | 0.047 | 0.056 | 0.062 |
SV process fitted by a DV model (misspecification) | |||||
Estimate | 0.101 | 232.294 | −259.989 | – | – |
Bias | 0.001 | 232.094 | −251.489 | – | – |
Rejection rate | 0.060 | 0.789 | 0.902 | – | – |
Parameter | a | ||||
---|---|---|---|---|---|
True value | 0.1 | 0.2 | −8.5 | 0 | 0 |
DV process fitted by a DV model (correct specification) | |||||
Estimate | 0.107 | 0.200 | −8.531 | – | – |
Bias | 0.007 | 0.000 | −0.031 | – | – |
Rejection rate | 0.048 | 0.051 | 0.053 | – | – |
DV process fitted by an SV model (misspecification) | |||||
Estimate | 1.033 | 0.200 | −8.500 | 0.000 | 0.154 |
Bias | 0.933 | 0.000 | 0.000 | 0.000 | 0.154 |
Rejection rate | 0.346 | 1.000 | 1.000 | 1.000 | 0.877 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Li, Y.; Tian, R. A Functional Data Approach for Continuous-Time Analysis Subject to Modeling Discrepancy under Infill Asymptotics. Mathematics 2023, 11, 4386. https://doi.org/10.3390/math11204386
Chen T, Li Y, Tian R. A Functional Data Approach for Continuous-Time Analysis Subject to Modeling Discrepancy under Infill Asymptotics. Mathematics. 2023; 11(20):4386. https://doi.org/10.3390/math11204386
Chicago/Turabian StyleChen, Tao, Yixuan Li, and Renfang Tian. 2023. "A Functional Data Approach for Continuous-Time Analysis Subject to Modeling Discrepancy under Infill Asymptotics" Mathematics 11, no. 20: 4386. https://doi.org/10.3390/math11204386
APA StyleChen, T., Li, Y., & Tian, R. (2023). A Functional Data Approach for Continuous-Time Analysis Subject to Modeling Discrepancy under Infill Asymptotics. Mathematics, 11(20), 4386. https://doi.org/10.3390/math11204386