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Abstract: As a new abstract computational model in evolutionary transfer optimization (ETO),
single-objective to multi-objective optimization (SMO) is conducted at the macroscopic level rather
than the intermediate level for specific algorithms or the microscopic level for specific operators;
this method aims to develop systems with a profound grasp of evolutionary dynamic and learn-
ing mechanism similar to human intelligence via a “decomposition” style (in the abstract of the
well-known “Transformer” article “Attention is All You Need”, they use “attention” instead). To
the best of our knowledge, it is the first work of SMO for discrete cases because we extend our
conference paper and inherit its originality status. In this paper, by implementing the abstract SMO
in specialized memetic algorithms, key knowledge from single-objective problems/tasks to the multi-
objective core problem/task can be transferred or “gathered” for permutation flow shop scheduling
problems, which will reduce the notorious complexity in combinatorial spaces for multi-objective
settings in a straight method; this is because single-objective tasks are easier to complete than their
multi-objective versions. Extensive experimental studies and theoretical results on benchmarks
(1) emphasize our decomposition root in mathematical programming, such as Lagrangian relaxation
and column generation; (2) provide two “where to go” strategies for both SMO and ETO; and (3) con-
tribute to the mission of building safe and beneficial artificial general intelligence for manufacturing

via evolutionary computation.

Keywords: evolutionary transfer optimization; green scheduling; transfer learning; artificial general
intelligence; mathematical programming; system optimization; carbon neutrality

MSC: 68T01

1. Introduction

Artificial general intelligence [1-20] (AGI) for language and vision includes the well-
known Chat GPT and ViT, respectively. Both Chat GPT and ViT are empowered by
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Transformers. In a Transformer, one of its main features is attention design (a Transformer
is Attentive, Residual, and Hierarchical, which has deep connections with the three “A-
R-H” ideas in our visual AGI framework of WARSHIP [9]). In addition to the attention
design in the structural/architectural aspect, the transferring mechanism in the functional
aspect is also common and important in Transformers, spanning several facets of cognition,
learning, and decision making.

Insisting on or preserving the transferring mechanism in the functional aspect is
necessary when we choose potential tools of AGI [1-3] to solve evolutionary tasks. We
believe that evolutionary transfer optimization (ETO) is quite promising. Inspired by the
decomposition styles in applied mathematics and computational intelligence (CI), we
develop a new transferring system or computational model of ETO: the single-objective to
multi-objective optimization (SMO) model, which belongs to the third kind of “complex
optimization” in the ETO survey [20]. In the tradition of CI, the abbreviations of single-
objective optimization and multi-objective optimization are SOO and MOO, respectively.
Both SOO and MOO are not new, whereas both ETO and SMO are new.

The works on SMO by our groups can be “gathered” together in a Chinese lantern
diagram (Figure 1) as follows: the conference paper of “Meets”, future works named as
“xMeets” and journal papers of “iMeets” [7], “rMeets” [8], and “eMeets”. Actually, eMeets
is this paper here and is an extension of Meets [6], thus inheriting the originality status
of Meets.

xMeets
o) |
iMeets < - rMeets
T -
eMeets
Meets

Figure 1. In the background of industrial intelligence [1,2], the lantern is derived from the tree, and
the tree is rooted in the “Tai ji” [2] (the same as [7]). As Chinese lanterns symbolize red ornaments for
a festive atmosphere, the lantern above is dedicated to the establishment of our lab at the Frontier
Science Center for Industrial Intelligence and System Optimization, Ministry of Education, established
since 2021, which is a national-level center.

Our main contributions are as follows:

1. To the best of our knowledge, this is the first work of SMO in discrete cases. And, it is
also the first work of ETO for the permutation flow shop scheduling problem (PFSP).

2. Two “where to go” strategies of SMO provide the rough strokes of SMO, endowing
the great significance of eMeets.

3. An extensive study of different combinations of operators shows the functional parts
of our SMO framework towards AGI.

The related works are as follows. The most related work to our paper here is [5].
To the best of their knowledge, their paper was the first paper (they did not use the
concept of SMO) to boost the task of evolutionary multi-objective optimization via key
knowledge transferred or learned from the corresponding problems of single-objective
cases. In our paper here, we choose to roughly follow the same abstract framework of [5],
such as transferring or learning experience or knowledge via the direct injection of external
solution populations from the source evolutionary task of all single objective evolutionary
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tasks to a corresponding multi-objective target evolutionary task “every G generation,
where G is the gap” [6]. In the following section, another four important and representative
related works are given. The first one is an ETO for multitasking optimization (MTO) in
discrete cases. A method of the multifactorial evolutionary algorithm was deployed to
explore the optimization power for cases in evolutionary multitasking, which can serve
as the key engine for simultaneous optimizations in the case of multiple permutation-
based problems for applications of supply chain networks [10]. The second case is an
ETO for MTO in the discrete case of routing. In the work [11], a framework of memetic
computing was deployed, which can learn and transfer knowledge memes that traverse
two different but related optimization domains to enhance the search work. The third case
is “machine learning based intelligent optimization for PFSP” [12]. In [12], the machine
learning based memetic algorithm was used for the case of PFSP under a multi-objective
setting. The method is named ML-MOMA, and one of its main developments is the setting
of a local search via ideas of machine learning. In addition to the algorithms mentioned
above, another method in intelligent optimization that is like simulated annealing can also
solve PFSP optimization as follows. The last case is “residual learning based intelligent
optimization simulated annealing for PFSP” [13]. In order to solve PFSP, ref. [13] uses
an improved algorithm of simulated annealing, which is deployed with the setting of
residual learning. The neighborhood is well defined in the optimization of PFSP.

2. Materials and Methods
2.1. Test Problem: PFSP

In the test problem of PFSP, all jobs in the shop must undergo a series of machine
operations. Usually, these operations must be performed on every job in the same order,
implying that every job must follow the same route. “The machines are then assumed to be
in a series” [6]. Often, each queue to be processed is assumed to be under the discipline of
the first in first out (FIFO) rule, that is, each job cannot pass another while in an arranged
queue. As for the objectives, we choose makespan (Cmax) and total flow time (TFT) as the
optimization goals towards optimality.

To tackle the test problem of PFSP, we need the 3 tools of transferred knowledge,
science clustering, and building block hypothesis (BBH, fundamental genetic algorithms,
and memetic algorithms theory). For transferred knowledge, we find that positional BB
dominates other BBs. From [6], it could be summarized that positional BBs help improve the
optimization of Cmax and also improve the optimization of other objectives in an inherent
way; this highlights the significance of positional BBs. In science clustering, we focus
on mining the positional BB via unsupervised learning. For PFSP here, we implemented
“science clustering” (we named it this way because it is published in the literature of
Science journal) via the hamming distance metric. To our surprise, the hamming distance
also focuses on the work of mining positional BBs. For BB hypothesis, we are mainly
concerned with Goldberg’s decomposition theory (7 steps). The building block hypothesis
is mainly based on Goldberg’s decomposition theory, which contains 7 steps as follows:
(1) “know what genetic algorithms process” [14]—BBs; (2) solve optimization problems at
hand that have the difficulty of bounded BBs; (3) ensure that the supply state of raw BBs is
indeed adequate; (4) ensure that the “market share” [14] of superior building blocks can
increase; (5) know the “BB takeover” [14] and the computational models that characterize
convergence times; (6) ensure that genetic algorithms usually make the decisions of BBs
well; and (7) ensure that good mixing in BBs is achieved.

2.2. The Framework across Tasks: SMO
2.2.1. Typical 3 Tasks: 2 Subtasks Boost the Core Task

We firstly propose the definition of SMO via the case study of ETO_PFSP, that is,
an ETO for PFSP. Two subtasks boost the core task when solving PFSP.
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2.2.2. 5 Bags, 5*2 Groups, 5*2*4 Tasks for SMO: e.g., Bag 1: Group 1, t1_wc (t_wc 1.0, t_wc
1.1), £2_wc, and t2e_wc; Group 2, t1_nc (t_nc 1.0, t_nc 1.1), t2_nc, and t2e_nc

The overview is in Figure 2. In ETO_PFSP, for each bag, we set two task groups.

Bag 0 is full of Group 1 and Group 2. “Group 1 owns 4 tasks, namely, t1_wc including
two sub tasks (t_wc 1.0, t_wc 1.1), t2_wc and t2e_wc, where “wc” means with clustering and
“e” is external transferring from t1_wc, sharing the same toolkit of W-X-L (only probabilities
vary in X, more is in Figures 3 and 4). All above is the same for group 2 of t1_nc (t_nc 1.0,
t_nc 1.1), t2_nc and t2e_nc, except that no clustering (named “nc”) is in W” [6]. In Bag 0,
each case calculates the measure of the hamming distance in the job permutation from the
15th one to the last job (just test the special distribution of the positional BB).

. i-1
size:N, P offspring

Notes: &g 100

S.: sorted by Cmax

S, : sorted by total flow time

S,: sorted by NSGAI

In group 1, size: N,

i
perform t2_wc, t1_wc(t_wc 1.0,1.1), P e.g. 100
then t2e_wc
In group 2,
perform t2_nc, t1_nc(t_nc 1.0,1.1),
then t2e_nc

sizer N 7 Pixswze' N, eg. 100
e.g. 200 size” N, in t_we/nc 1.0,1.1,
e.g. 100

i —- i S, =5;,5:
P o= P_oﬁ'spring{i_wcin: 1.0) . respectively
i f
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. 1 o
i every G generation,
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size: N (go dotted line,
e.g. 100 Gis a gap),
i other times,
P offspring @0 S.. 8, = §;
size: N,
eg. 100

Figure 2. Overview of an abstract SMO framework implemented in memetic algorithms [8].
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Figure 3. The details of W and C are as listed above. Here, we choose the parents P;. DPBC is in
C. You can see a typical p-5(rho-delta) graph in the simulation, where p denotes the local density
and & denotes “the minimum distance between one sample point and any other one with higher
density” [8]. Each star is an individual or a solution to solve PFSP in SMO, and 3 red lines characterize
3 areas in the solution space.
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Figure 4. Details of X and SS. “*” in the figure is a multiplication sign in the abstract SMO. M may
help us to overcome premature convergence [8].

Bag 1 stores Group 3 and Group 4. Furthermore, the MWT modifications are set
(3 modifications of “MWT” are added: (1) just remove M(M) in X; (2) study the whole (W)
chromosome, calculate the hamming distance from the first job to last job instead of the
15th job to the last job in Bag 0; and (3) task 1.0 choose TFT(T) as the objective for local
search, while all tasks in Bag 0 are set with Cmax for the local search). Then, just remove
L from Group 1 and Group 2 in Bag 0 to achieve Group 3 and Group 4 for Bag 1. Then,
Bag 2 stores Group 5 and Group 6. Furthermore, the MWT modifications are set. Then, just
remove L from Group 1 and Group 2 in Bag 0 to achieve Group 5 and Group 6 for Bag 2.
Bag 3 is occupied by Group 7 and Group 8. Furthermore, the MWT modifications are set.
Just remove X from Group 1 and Group 2. Finally, Bag 4 is occupied by Group 9 and Group
10. Moreover, the MWT modifications are set. Just remove S from group 1 and group 2.

W-X-L deploys a special operator to choose the parents (W), a crossover (X) operator,
and a local search (L) operator. It is worth mentioning that the family of tasks above shares
the same initial (I) population (random) for a fair comparison. The phase of selection
(S) differs. For S, we use NSGAII, some sorting methods using the Cmax objective or
TFT objective, and so on. Therefore, many shared parts above from both problem and
algorithm sides are elaborately constituted towards a harmony test bed for a well-defined
SMO (Figures 2-4).

3. Results
3.1. Experimental Setup

We choose well-studied open PFSP benchmarks, that is, tai01 (20 x 5), tai42 (50 x 10),
and VFR100_20_1 (100 x 20), e.g., the symbol of 20 x 5 denotes 20 jobs and 5 machines.

The following parameters of ETO_PFSP are set: “N is the size of population, set 100,
and number of generations is 100. In t1_wc/nc 1.0 and 1.1, [px1, Px2/m] (seen in operator X
in Figure 4) are [0.3, 0.7] and [0.1, 0.9], respectively. For t{2_wc/nc and t2e_wc/nc, it’s [0.2,
0.8]. For reference points, tai0l takes range (2500, 1000) to normalize Cmax, and (25,000,
10,000) to normalize TFT; tai42 uses (4200, 2500) and (120,000, 80,000); and instance 3 picks
(10,000, 5000) and (550,000, 350,000). The gap G is 2. The base-line size of P;; is 50, modified
by a factor K1 (e.g., K1 = 0.6, 50*K1 = 50*0.6 = 30). For Pj;, the base-line size is 20 + H.
And 20 is also adapted by K2 (e.g., K2 = 0.6, 20*K2 = 20%0.6 = 12), H may be 0, 1, 2 or 3,
depending on the solutions with equal distance at cutting distance” [6]. By varying (1*3)
the setup of [K1, K2] from vectors of [1, 0.6], [0.6, 0.6] to [1, 1] in each instance (*3), we
obtain 9 (1*3*3) cases (in Figures 5-7, we only show 2/3 representative cases, and all 9 cases
are presented in Table 1), and each case owns 20 total independent runs. In each run, we
perform a simulation of eight tasks, that is, the two task groups in Section 2.2.
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Figure 5. Cases 1 and 4 in Bag 0 are shown above, respectively. We choose representative data of

Cases 1 and 4 to save space. “e or M” means eMeets or Meets. Notes: (1) “stat” means statistics of
hypervolume. (2) Actually, t2_nc is the baseline NSGAII without both clustering and transferring.
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Figure 6. Cases 1, 4, and 7 in Bags 1 and 2 are shown above, respectively. We choose representative

data of Cases 1, 4, and 7 to save space.
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Figure 7. Cases 1, 4, and 7 for Bags 3 and 4 are shown above, respectively.

Table 1. Comparisons of bags.

<2 (1) PopSize & GenNum are 100_& 100 (2) DAO_PFSP_100x20 (3) Oct-08-2021h2m24:

Operators T12 T34
Bag 0 WXLS, XLS, no MWT e(5ee,de) ie(6ie,3=)
Bag 1 WXLS, XLS, +MWT ee(8ee,le) e(4ee,5e)
Bag 2 WXS, XS, +tMWT ee(Yee) ie(4e,5ie)
Bag 3 WLS, LS, +tMWT ee(%ee) ee(9ee)
Bag 4 WXL, XL, +MWT ec

3.2. Simulations and Comparisons

In every case, overall, we evolve 5 (Bags) *100 (generations per task) *4 (4 tasks in
each group) *2 (wc/nc, that is wc or nc) *20 (independent runs) = 80,000 generations!
Furthermore, the whole size of the solution space or search space is a factorial (for example,
20 x 5, means 20! solutions), imposing a tremendous computational challenge for obtaining
the 5 (Bags) *9 results or cases (for Cases 7, 8, and 9 in Bag 0, each case takes a long time of
30+ hours, even on a server).

For Bag 0 [6], between the t2_wc and t2e_wc pair, there is always positive transferring
occurring in Figure 5, which tends to validate the successful part of effectiveness (e) in
the SMO. Meanwhile, ineffectiveness exists in the comparison between t2_nc and t2e_nc.
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These observations can be seen in the details of Table 1 below (in the table, “T12” means the
comparison between t2_wc and t2e_wc and “T34” means the comparison between t2_nc
and t2e_nc. e means effectiveness, ee is great effectiveness, ie stands for ineffectiveness,
and ec tells us the effectiveness of the clustering).

Then, we provide a more systematic study of each operator in Bag 1, 2, 3, and 4.

For Bag 1, between the t2_wc and t2e_wc pair, there is almost always an obvious
positive transferring effectiveness in Figure 6, which tends to validate that there is a great
effectiveness (ee) part in our ETO_PFSP or SMO framework. However, as for t2_nc and
t2e_nc, both great effectiveness and normal effectiveness (e) exist. These results can be
summed up in Table 1 below.

Then, in Bag 2 below, we focus on the systems based on Bag 1 but without a local
search or memes. Here are another nine cases as follows (we choose the representative
data of Cases 1, 4, and 7 to save paper space). As for Bag 2, between the pair of t2_wc
and t2e_wc, there is definitely an obvious positive transferring effectiveness in Figure 6,
which tends to validate a great effectiveness (ee) part in our framework. However, for
t2_nc and t2e_nc, both normal effectiveness (e) and ineffectiveness (ie) can be seen. These
observations are summed up below in the Table 1.

Moving forward to Bag 3, we study just the local search tools/sub-systems (we choose
representative Cases 1, 4, and 7 to help save space). In Bag 3, regardless of whether it is
between the tasks of t2_wc and t2e_wc or between the pair of t2_nc and t2e_nc, obvious
positive transferring effectiveness exist in Figure 7, which tends to strongly validate great
effectiveness (ee) in the SMO. These results are again summed up via Table 1.

Lastly, in Bag 4, we explore the W operator (we choose the three representative cases
of Cases 1, 4, and 7 to save space). Bag 4 tells us that between t2_wc and t2e_wc and the
pair of t2_nc and t2e_nc, you can see only some rules in the SMO. The ec is quite obvious.
The report is again summed up by Table 1.

4. Discussion
4.1. Simple Case Study of SMO: 4 Additional Findings

From Section 3 above, the findings we gather are as follows:

(1) We conclude that the transfer effectiveness of the SMO framework is always quite
obvious (Bag 4 is aimed to just test selection, not test transferring), especially under
clustering conditions (t2e_wc VS t2_wc).

(2) By comparing Bags 1, 2, and 3, we believe that collaboration between X (genetic
algorithms) and L are necessary.

(3) The comparison of two green lines in Bag 3 tells us that clustering or W helps speed
up the convergence.

(4) W or clustering can serve as the selection, whose potentials are obvious in Bag 4 when
comparing the group with the clustering/selection and when comparing the group
without clustering/selection. In paper [15], clustering-based subset selection has also
been proven as an effective selection method.

4.2. “Where to Go” Strategy about Decomposition: Decomposition Styles

Decomposition is all you need when we solve many tasks in applied mathematics and
computational intelligence. Two well-known approaches of mathematical programming for
combinatorial problems including PFSP are Lagrangian relaxation and column generation,
which have been investigated by our groups for production and logistics systems in the
steel and iron [2] industry. When used to tackle combinatorial problems like vehicle routing
problems with time windows, both are deployed in decomposition styles. Lagrangian
relaxation splits the original problem into independent subproblems and column gener-
ation turns the targeted problem into a master problem and a subproblem, which again
is decomposed into several independent problems. Stepping into evolutionary or meta-
heuristics methods, co-evolutionary algorithms are well known for their decomposition
power. As for SMO, it roughly divides the pipeline into three components, task 2, task 1.0,
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and task 1.1. For example, t2e_wc = t2_wc + t_wc 1.0 + t_wc 1.1, which is firstly proposed
here. The subproblems and decomposition also are developed here. As fruitful results are
already achieved by Lagrangian relaxation and column generation and as co-evolutionary
algorithms may help the newborn ETO, attention to inspiration from these methods for
transfer optimization should not be abandoned.

4.3. “Where to Go” Strategy about Transferring: Transfer Family

Both transfer learning and transfer optimization belong to the transfer family. The
former includes four classes [16]: transfer learning for classification, transfer learning for
regression, transfer learning for clustering, and transfer learning for reinforcement learning.
Transfer optimization contains transfer Bayesian optimization (also, it is the type of transfer
learning for regression) and evolutionary-based optimization of ETOs (including our SMO,
MTO, etc.). In transfer learning, there are [16] transductive transfer learning, unsupervised
transfer learning, and inductive transfer learning methods. For inductive transfer learning,
the source and target domains are the same. And those two domains are also the same for
our SMO framework, that is, our framework shares common properties and settings with
inductive transfer learning; however, things are more complex in evolutionary scenarios as
domains are not enough. What matters more are the landscapes that are built by domains
and operators (“parameter-transfer approach” in transfer learning may relate to the guided
crossover probability within the MTO setting). That is, we have already seen some deep
connections between transfer learning and ETO. As transfer learning may inspire ETO, we
should learn the lessons from transfer learning.

5. Conclusions

What we should highlight here are two of the many advantages of SMO: it is simple
and general. Firstly, “simple yet effective” is usually a nice philosophy /rule for sciences,
technologies, and engineering (residual learning is an outstanding case of a “simple” skip-
connection). Keeping the simple rule firmly in our minds, our SMO aims to reduce the
horrible complexity in multi-objective (even many objective) discrete spaces in a simple
way via decomposition because single-objective tasks are easier than their multi-objective
counterparts. Secondly, in contrast to narrow /limited artificial intelligence (AI) “which is
created to excel in specific tasks or domains” [1], AGI systems in SMO frameworks “mimic
humans’ general-purpose problem-solving abilities” [1].

We believe that a well-designed SMO with specific cases can reach state-of-the-art
(SOTA) performance; in this paper, we only provide a rough idea of the abstract and
macroscopic framework of SMO and a simple case study. The key problem of SOTA [8] is
discussed further there for the abstract and macroscopic SMO.

The study of SMO here will not only push the boundaries of SMO by itself but also
inspire multitasking optimization (the mainstream type in ETO now) and even other ETO
members for the transferring mechanism. One of many most important reasons is that
in the ETO survey [20], the authors provide the idea that for the third type of “complex
optimization”, simpler artificial tasks sound interesting and encouraging. Following the
idea above, we believe that single-objective tasks/versions are simpler and are easier
starting points and important types for the entire ETO family.

In the future, many directions seem attractive and inspiring. It is quite impor-
tant to decompose the knowledge learned/transferred, which to some extent is like the
decomposition of different features in deep learning for the interpretability of AGI and
AI[1-3,21,22].
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