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Abstract: In this paper, by establishing a Bernstein inequality for m-asymptotically almost negatively
associated random variables, some results on consistency for the nearest neighbor estimator of the
density function are further established. The results generalize some existing ones in the literature.
Some numerical simulations are also provided to support the results.
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1. Introduction

Nearest neighbor estimators can be used for many flexible questions and data types.
Let X be a random variable whose density function f (x) is unknown and needs to be
estimated. Let X1, X2, · · · , Xn be the sample drawn from population X. To estimate f (x),
Loftsgarden and Quesenberry [1] raised the nearest neighbour estimator fn(x) as follows:

fn(x) =
kn

2nan(x)
, (1)

where 1 ≤ kn ≤ n and

an(x) = min{α : the number of Xi ∈ [x− α, x + α] is no less than kn}.

Since Loftsgarden and Quesenberry [1] put forward the method of estimating the den-
sity function, many scholars showed their interest in this field. For some recent examples,
Liu and Wu [2] established the Bernstein inequality to deal with the consistency results
under negatively dependent samples; Lu et al. [3] investigated some results on consistency
and convergence rate for this estimator based on ϕ-mixing samples; Liu and Zhang [4]
established the consistency and asymptotic normality of the estimator based on α-mixing
samples; Yang [5] established various results on the consistency of the estimator based on
negatively associated (NA, in short) samples; Wang and Hu [6] obtained the corresponding
results for widely orthant dependent (WOD, in short) samples, which extend and improve
those of Yang [5] for NA samples and further proved the rates of strong consistency and
uniformly strong consistency; Lan and Wu [7] investigated the rate of uniform strong con-
sistency for the estimator under extended negatively dependent (END, in short) samples;
and Wang and Wu [8] extended and improved the results of Lan and Wu [7] from END
samles to m-extended negatively dependent (m-END, in short) samples and obtained the
same rates as that of END samples.

This paper will further study this topic and extend those aforementioned results to
a more general setting. Now, we are at a position to recall some concepts of dependent
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random variables, of which the first one is that of asymptotically almost negatively associ-
ated (AANA, in short) random variables, which was first raised by Chandra and Ghosal [9]
as follows.

Definition 1. We call a sequence {Zn, n ≥ 1} of random variables to be AANA if there is a non-
negative sequence satisfying limn→∞ q(n) = 0 such that for all n, l ≥ 1 and for all coordinatewise
nondecreasing functions f1 and f2,

Cov( f1(Zn), f2(Zn+1, Zn+2, · · · , Zn+l)) ≤ q(n)[Var( f1(Zn))Var( f2(Zn+1, Zn+2, · · · , Zn+l))]
1/2

whenever the variances above exist.

Since the concept of AANA random variables was put forward by Chandra and
Ghosal [9], plenty of results have been established concerning this dependence structure.
For instance, Kim and Ko [10] developed the Hajeck–Renyi inequality for these dependent
random variables; Yuan and An [11] established some moment inequalities for maximum
sums; Chandra and Ghosal [12] as well as Shen and Wu [13] proved the strong law of large
numbers for weighted sums; Yuan and An [14] investigated the laws of large numbers for
this dependent random variables satisfying the Cesàro alpha-integrability condition; and
Wu and Wang [15] studied some results on the nearest neighbor estimator of the density
function under AANA samples.

As an extension of AANA random variables, the concept of m-AANA random vari-
ables was raised by Nam et al. [16] as follows.

Definition 2. Let m be a positive integer. We say that a sequence {Zn, n ≥ 1} of random variables
is m-AANA if there exists a nonnegative sequence q(n)→ 0 as n→ ∞ such that for all n, l ≥ m
and for all coordinatewise nondecreasing functions f1 and f2,

Cov( f1(Zn), f2(Zn+m, · · · , Zn+l)) ≤ q(n)[Var( f1(Zn))Var( f2(Zn+m, · · · , Zn+l))]
1/2

whenever the variances exist.

It is known that many multivariate distributions satisfy the NA property. The concept
of AANA random variables will degenerate to that of NA random variables by taking
q(n) = 0. It is easy to see that the m-AANA sequence is equivalent to AANA with
m = 1. Therefore, the structure of m-AANA random variables includes AANA random
variables, m-NA random variables, NA random variables, moving average processes, and
independent random variables as special cases, and thus it is a more plausible assumption
in realistic applications. Now, we present an example of m-AANA random variables that
are not necessarily AANA.

Example 1. Let {Yn, n ≥ 1} be independent and identically distributed N(0, 1) random variables
and define Xn = (1 + a2

n)
−1/2(Yn + anYn+1), where an > 0 and an → 0. It follows from Chandra

and Ghosal [9] that {Xn, n ≥ 1} is a sequence of AANA random variables that is not NA. Now,
we define for each n ≥ 1 that Zm(n−1)+1 = · · · = Zmn = Xn with m ≥ 2. Then, it is easy to
check that the sequence {Zn, n ≥ 1} is m-AANA. However, it is not AANA since the condition
limn→∞ q(n) = 0 is not satisfied if we take l = 1, for example.

In this paper, motivated by the literature above, we first establish a Bernstein inequality
for m-asymptotically almost negatively associated (m-AANA, in short) random variables,
which is of interest itself. By using this inequality, we further investigate some results on
the consistency of the nearest neighbor estimator under m-AANA samples. These results
are generalizations of the corresponding ones of Wu and Wang [15] from AANA samples
to m-AANA samples.

The layout of this paper is as follows. Some preliminary lemmas are stated in Section 2.
Section 3 includes the main results, while the numerical simulations are given in Section 4
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to support the theoretical results. The proofs of our main results are postponed in Section 5.
The paper is concluded in Section 6. Throughout this paper, bxc stands for the integer part
of x. Let log x = max{1, ln x}. Indicator function I(A) = 1 if the set A occurs or I(A) = 0
otherwise. C( f ) = {x : f is continuous at x}. C and c0 stand for positive constants whose
values are not necessarily the same in each appearance. All limits are taken as n → ∞
unless specified otherwise.

2. Preliminary Lemmas

To prove the main results, we first provide several important lemmas in this section.

Lemma 1 (cf. [14]). Suppose that {Xn, n ≥ 1} is a sequence of AANA random variables with
mixing coefficients {q(n), n ≥ 1}. If fn(·), n ≥ 1 are all nondecreasing or all nonincreasing, then
{ fn(Xn), n ≥ 1} is still a sequence of AANA random variables with the same mixing coefficients.

A combination of Lemma 1 and Definition 2 yields the following lemma, which is
obvious, and thus the proof is omitted.

Lemma 2. Suppose that {Xn, n ≥ 1} is a sequence of m-AANA random variables with mixing
coefficients {q(n), n ≥ 1}. If fn(·), n ≥ 1 are all nondecreasing or all nonincreasing; then,
{ fn(Xn), n ≥ 1} is still a sequence of m-AANA random variables with the same mixing coefficients.

Lemma 3 (cf. [15]). Let {Xn, n ≥ 1} be a sequence of AANA random variables with zero means
and mixing coefficients {q(n), n ≥ 1}. Assume that |Xn| is bounded by a positive number b for
each n ≥ 1. Then, a positive constant C exists such that for all n ≥ 1 and ε > 0,

P

(∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣ ≥ ε

)
≤ C

[
n−1

∑
k=1

q(k) + 1

]
· exp

{
− ε2

2 ∑n
i=1 EX2

i +
2
3 bε

}
. (2)

By virtue of Lemma 3, we can further prove the Bernstein inequality for m-AANA
random variables. The lemma will play a significant role in the proof of the main results.

Lemma 4. Let {Xn, n ≥ 1} be a sequence of m-AANA random variables with zero means and
mixing coefficients {q(n), n ≥ 1}. Assume that |Xn| is bounded by a positive number b for each
n ≥ 1. Then, a positive constant C exists such that for all n ≥ 1 and ε > 0,

P

(∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣ ≥ ε

)
≤ Cm

[
n−1

∑
k=1

q(k) + 1

]
· exp

−
ε2

m2

2 ∑n
i=1 Xi +

2
3m bε

.

Proof. For all sufficiently large n, positive integers j ≥ 0 and 1 ≤ l ≤ m always exist
satisfying n = mj + l. Without a loss of generality, we may define that Xi = 0 for all
n < i ≤ m(j + 1). Thus, ∑n

i=1 Xi can be decomposed as

n

∑
i=1

Xi =
m

∑
l=1

j

∑
i=0

Xmi+l

where {Xmi+l , 0 ≤ i ≤ j} are AANA for each given l = 1, 2, · · · , m. Thus, we can obtain
from Lemma 3 that
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P(|Sn| ≥ ε) = P

(∣∣∣∣∣ m

∑
l=1

j

∑
i=0

Xmi+l

∣∣∣∣∣ ≥ ε

)

≤ P

(
m⋃

l=1

∣∣∣∣∣ j

∑
i=0

Xmi+l

∣∣∣∣∣ ≥ ε

m

)

≤
m

∑
l=1

P

(∣∣∣∣∣ j

∑
i=0

Xmi+l

∣∣∣∣∣ ≥ ε

m

)

≤ C
m

∑
l=1

[
j−1

∑
k=1

q(k) + 1

]
· exp

−
ε2

m2

2×∑
j
i=0 E(Xmi+l)2 + 2

3m bε


≤ Cm

[
n−1

∑
k=1

q(k) + 1

]
· exp

−
ε2

m2

2B2
n +

2
3m bε


This completes the proof of the lemma.

Lemma 5 (cf. [5]). Let Z1, Z2, · · · , Zn follow a common distribution F(z), which is continuous.
For n ≥ 3, assume that zni satisfies F(zni) = i/n for each 1 ≤ i ≤ n− 1. Then,

sup
−∞<z<∞

|Fn(z)− F(z)| ≤ max
1≤i≤n−1

|Fn(zni)− F(zni)|+ 2/n,

where Fn(z) = n−1 ∑n
j=1 I(Zj < z) is the empirical distribution function.

Lemma 6. Let {Zn, n ≥ 1} be a sequence of m-AANA random variables, with F(z) and f (z)
being the distribution function and density function, respectively. Let {κn, n ≥ 1} be a sequence
of positive numbers satisfying κn → 0 such that lim infn→∞ nκ2

n/ log n ≥ c0 > 0. Then, for any
D0 > 0 large enough,

∞

∑
n=1

P
(

sup
z
|Fn(z)− F(z)| > D0κn

)
< ∞.

In particular,

∞

∑
n=1

P
(

sup
z
|Fn(z)− F(z)| > D0(log n/n)1/2

)
< ∞.

Proof. Observing that nκn → ∞, we have that 2/n < D0κn/2 for all sufficiently large n
and any positive constant D0, the value of which will be specified later. It follows from
Lemma 5 that

P
(

sup
x
|Fn(x)− F(x)| > D0κn

)
≤ P

(
max

1≤i≤n−1
|Fn(xni)− F(xni)| > D0κn/2

)
≤

n−1

∑
i=1

P(|Fn(zni)− F(zni)| > D0κn/2). (3)

Let Zj(zni) = I(Zj < zni)− EI(Zj < zni). By Lemma 2, we know that {Zj(zni), j ≥ 1}
is still a sequence of m-AANA random variables with EZj(zni) = 0, |Zj(zni)| ≤ 1 and
E(Zj(zni))

2 ≤ 1. Thus, by Lemma 4 we have that for all n adequately large,
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P(|Fn(zni)− F(zni)| > D0κn/2) = P

(∣∣∣∣∣ n

∑
j=1

Zj(zni)

∣∣∣∣∣ > D0nκn/2

)

≤ Cm

[
n−1

∑
k=1

q(k) + 1

]
· exp

 −D2
0n2κ2

n
m2

8B2
n +

4
3m D0nκn


≤ Cn exp

{
−

D2
0

9m2 nκ2
n

}

≤ Cn exp

{
−

c0D2
0

18m2 log n

}

≤ Cn1− c0D2
0

18m2 . (4)

Taking D0 sufficiently large such that 1− c0D2
0

18m2 < −2, by (3) and (4) we have

∞

∑
n=1

P
(

sup
z
|Fn(z)− F(z)| > D0κn

)
≤ C

∞

∑
n=1

n−1

∑
j=1

n1− c0D2
0

18m2 < ∞.

This completes the proof of the lemma.

3. Main Results

Now, we state our results one by one as follows. Denote χn = ∑n−1
k=1 q(k) + 1. The first

one concerns the weak consistency of the nearest neighbor density estimator.

Theorem 1. Suppose that {Xn, n ≥ 1} is a sequence of m-AANA samples and kn/n → 0,
k2

n/n→ ∞. If

lim
n→∞

χn · exp
{
−γk2

n
n

}
= 0 (5)

for all γ > 0, then for all x ∈ c( f ),

fn(x) P→ f (x).

Remark 1. We point out that (5) is easy to verify. For example, if ∑∞
n=1 q(n) < ∞, which is

frequently adopted in the literature, we have χn ≤ 1 + ∑∞
n=1 q(n) < ∞ and thus (5) follows.

Moreover, if k2
n/(n log n)→ ∞, (5) also holds without any restriction on the mixing coefficients.

We give it in the following corollary.

Corollary 1. Let {Xn, n ≥ 1} be a sequence of m-AANA samples and kn/n→ 0, k2
n/(n log n)→

∞. Then, for all x ∈ c( f ),

fn(x) P→ f (x).

Under some slightly stronger conditions, one can obtain the following results on
complete consistency.

Theorem 2. Let {Xn, n ≥ 1} be a sequence of m-AANA samples and kn/n→ 0, k2
n/n→ ∞. If

∞

∑
n=1

χn exp
{
−γk2

n
n

}
< ∞ (6)
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for all γ > 0, then for all x ∈ c( f ),

∞

∑
n=1

P(| fn(x)− f (x)| > ε) < ∞

for all ε > 0, and hence

fn(x)→ f (x) a.s.

By some analogous argument to that of Corollary 1, the following conclusion can also
be obtained.

Corollary 2. Let {Xn, n ≥ 1} be a sequence of m-AANA samples and kn/n→ 0, k2
n/(n log n)→

∞. Then, for all x ∈ c( f ),

∞

∑
n=1

P(| fn(x)− f (x)| > ε) < ∞

for all ε > 0, and hence

fn(x)→ f (x) a.s.

Moreover, we can further obtain the rate of complete consistency for the nearest
neighbor density estimator as follows.

Theorem 3. Let {Xn, n ≥ 1} be a sequence of m-AANA samples and f (x) satisfy the local
Lipschitz condition at x and f (x) > 0. If kn = O(n3/4 log1/4 n) and τn =:

√
n log n/kn → 0;

then, for all sufficiently large D > 0,

∞

∑
n=1

P(| fn(x)− f (x)| > Dτn) < ∞,

and hence

| fn(x)− f (x)| ≤ Dτn a.s.

By choosing kn = bn3/4 log1/4 nc in Theorem 3, the following result follows immediately.

Corollary 3. Let {Xn, n ≥ 1} be a sequence of m-AANA samples, and let f (x) satisfy the local
Lipschitz condition at x and f (x) > 0. If kn = bn3/4 log1/4 nc, then for all sufficiently large
D > 0,

∞

∑
n=1

P
(
| fn(x)− f (x)| > Dn−1/4 log1/4 n

)
< ∞,

and hence

| fn(x)− f (x)| ≤ Dn−1/4 log1/4 n a.s.

At last, we also obtain some achievements concerning uniform consistency and the
corresponding convergence rate for the estimator as follows.
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Theorem 4. Let {Xn, n ≥ 1} be a sequence of m-AANA samples and f (x) be uniformly continu-
ous. If kn/n→ 0, k2

n/(n log n)→ ∞, then for all ε > 0,

∞

∑
n=1

P
(

sup
x
| fn(x)− f (x)| > ε

)
< ∞,

and hence

sup
x
| fn(x)− f (x)| → 0 a.s.

Theorem 5. Let {Xn, n ≥ 1} be a sequence of m-AANA samples and let f (x) satisfy the Lipschitz
condition on R. If kn = O(n2/3 log1/3 n) and τn =:

√
n log n/kn → 0; then, for any sufficiently

large D > 0,

∞

∑
n=1

P
(

sup
x
| fn(x)− f (x)| > Dτn

)
< ∞,

and hence

sup
x
| fn(x)− f (x)| ≤ Dτn a.s.

By choosing kn = bn2/3 log1/3 nc in Theorem 5, one can further obtain the corollary
as follows.

Corollary 4. Let {Xn, n ≥ 1} be a sequence of m-AANA samples, and let f (x) satisfy the Lipschitz
condition on R. If kn = bn2/3 log1/3 nc, then for any sufficiently large D > 0,

∞

∑
n=1

P
(

sup
x
| fn(x)− f (x)| > Dn−1/6 log1/6 n

)
< ∞,

and hence

sup
x
| fn(x)− f (x)| ≤ Dn−1/6 log1/6 n a.s.

Remark 2. Yang [5], as well as Wang and Hu [6], obtained the rates o(n−1/4 log1/4 n log log n)
a.s. of strong consistency and o(n−1/6 log1/6 n log log n) a.s. of uniformly strong consistency for
NA samples and WOD samples, respectively. Wu and Wang [15] extended their results to AANA
samples with the same rates presented in Theorems 3 and 5. Noting that the rates are sharper
than those of Yang [5] and Wang and Hu [6], and AANA implies m-AANA, our results extend or
improve the corresponding ones in Yang [5], Wang and Hu [6], and Wu and Wang [15].

4. Numerical Simulation

In this section, some simple numerical simulations are carried out to verify the per-
formance of fn(x) with a finite sample. First, we generate the AANA and m-dependent
data, both of which are special cases of m-AANA, according to the following two cases,
respectively.

Case 1. Let {Yn, n ≥ 1} be independent and identically distributed with a standard normal
variable, and let Xn = (1 + a2

n)
−1/2(Yn + anYn+1) for each n ≥ 1, where an > 0 and an → 0.

It is easy to check that X1, X2, · · · , Xn are AANA random variables with Xi ∼ N(0, 1) for each
i = 1, 2, · · · , n.
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Case 2. For m ≥ 2, let Yn, n ≥ 1 be independent and identically distributed with a common χ2
(1)

variable. Let Xn = ∑m
i=1 Yn+i−1 for each n ≥ 1. Obviously, X1, X2, · · · , Xn are m-dependent and

thus m-AANA random variables with Xn ∼ χ2
(m).

Case 3. For m ≥ 2, let {Yn, n ≥ 1} be independent and identically distributed N(0, 1) random
variables and define Zn = (1 + a2

n)
−1/2(Yn + anYn+1), where an > 0 and an → 0. Now, let

Xm(n−1)+1 = · · · = Xmn = Zn for each n ≥ 1. From Example 1, one knows that {Xn, n ≥ 1} is
m-AANA rather than AANA.

In this section, we will compare the frequency polygon estimator, Epanechnikov kernel
estimator (that is, the kernel K(u) = 0.75(1− u2)I(|u| ≤ 1)), and histogram estimation
with the nearest neighbor estimator. In the sequel, we take m = 3, kn = n3/4(log n)1/4

for the nearest neighbor estimator, the bin-width bn = (log(n)/n)0.25 for the frequency
polygon estimator and the histogram estimator, and the bandwidth by cross validation
(CV, in short) method for the Epanechnikov kernel estimator. It is deserved to mention
that kn and bn are chosen to achieve the optimal convergence rates. According to the above
three cases, we take n = 100, 200, 500, 1000 and different x-values such as the peak and tail,
respectively. For different x and n, we adopt the R software to calculate the four estimators
for 1000 times to obtain the the absolute bias (ABias, in short) and the root mean squared
error (RMSE, in short) of the four estimators. The conclusions obtained are exhibited in
Tables 1–3 and Figures 1–3.

Table 1. Absolute bias and RMSE of the estimators for different x and n under Case 1.

Estimators
n = 100 n = 200 n = 500 n = 1000

ABias RMSE ABias RMSE ABias RMSE ABias RMSE

x = −3

nearest neighbor 0.07513 0.07521 0.06881 0.06884 0.06062 0.06064 0.05455 0.05456
frequency 0.00996 0.05338 0.00073 0.00681 0.00049 0.00421 0.00021 0.00345

kernel 0.00102 0.00827 0.00062 0.00597 0.00055 0.00435 0.00023 0.00306
histogram 0.00048 0.01018 0.00026 0.00720 0.00170 0.00436 0.00028 0.00377

x = −2

nearest neighbor 0.06779 0.06823 0.06132 0.06162 0.05254 0.05268 0.04602 0.04612
frequency 0.00362 0.02606 0.00361 0.01935 0.00326 0.01296 0.00232 0.01059

kernel 0.00303 0.02625 0.00232 0.02022 0.00177 0.01357 0.00160 0.01109
histogram 0.07034 0.03137 0.01985 0.02798 −0.01545 0.02166 0.01523 0.01837

x = −1

nearest neighbor 0.00113 0.02717 0.00081 0.02108 0.00053 0.01543 0.00053 0.01263
frequency 0.00252 0.04723 0.00081 0.04873 0.00067 0.02424 0.00032 0.02708

kernel 0.00119 0.05112 0.00238 0.03798 0.00161 0.02682 0.00136 0.02187
histogram 0.03560 0.07545 0.00353 0.053270 0.04199 0.05295 0.00349 0.02816

x = 0

nearest neighbor 0.02042 0.05259 0.01371 0.04031 0.00963 0.02860 0.00854 0.02147
frequency 0.01325 0.05293 0.01086 0.04271 0.00658 0.03040 0.00584 0.02284

kernel 0.00741 0.06047 0.00504 0.04741 0.00359 0.03413 0.00336 0.02526
histogram 0.01467 0.08489 0.01040 0.06492 0.00689 0.04507 0.00633 0.03474

x = 1

nearest neighbor 0.00106 0.02738 0.00042 0.02209 0.00015 0.01542 0.00011 0.01206
frequency 0.00055 0.04615 0.00045 0.04985 0.00040 0.02470 0.00041 0.02743

kernel 0.00147 0.05031 0.00066 0.03776 0.00044 0.02680 0.00035 0.02131
histogram 0.07177 0.10530 0.08878 0.10489 0.03915 0.05692 0.06573 0.07274

x = 2

nearest neighbor 0.06767 0.06812 0.06132 0.06158 0.05256 0.05270 0.04601 0.04610
frequency 0.00413 0.02620 0.00444 0.01990 0.00340 0.01307 0.00181 0.01024

kernel 0.00377 0.02602 0.00269 0.02079 0.00214 0.01401 0.00105 0.010646
histogram 0.05344 0.07064 0.02396 0.03920 0.02081 0.02901 0.01517 0.02162

x = 3

nearest neighbor 0.07521 0.07528 0.06886 0.06891 0.06056 0.06058 0.05463 0.05464
frequency 0.00031 0.00954 0.00037 0.00685 0.00073 0.00400 0.00010 0.00338

kernel 0.00055 0.00775 0.00052 0.00582 0.00050 0.00418 0.00018 0.00306
histogram 0.01169 0.02231 0.00880 0.01486 0.00289 0.00709 0.00482 0.00742
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In view of Tables 1–3 and Figures 1–3, we can see the same conclusion under the
three cases. Firstly, as the sample size increases, the error of all estimators decreases.
The nearest neighbour estimator performs a little better than the kernel estimator and
histogram estimation at most points, while at the points distributed on the tail, the nearest
neighbour estimator performs worse than the later ones. In summary, the nearest neighbour
estimator performs better than others near the peak but worse near the tail. These results
show that the estimator considered in this paper also has some superiority to other classical
estimators under dependent settings.
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Figure 1. Comparison of different estimators for n = 100, 200, 500, 1000 under case 1.
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Table 2. Absolute bias and RMSE of the estimators for different x and n under Case 2.

Estimators
n = 100 n = 200 n = 500 n = 1000

ABias RMSE ABias RMSE ABias RMSE ABias RMSE

x = 0.5

nearest neighbor 0.07937 0.08512 0.07047 0.07557 0.06200 0.06529 0.05413 0.05700
frequency 0.05327 0.06563 0.04324 0.05447 0.03510 0.04427 0.02271 0.02801

kernel 0.05503 0.06888 0.04300 0.05439 0.02891 0.03614 0.02245 0.02760
histogram 0.08357 0.09896 0.07807 0.09017 0.07992 0.08971 0.02819 0.03487

x = 1.5

nearest neighbor 0.03234 0.04047 0.02504 0.03128 0.01759 0.02166 0.01335 0.01664
frequency 0.04927 0.06188 0.04007 0.05044 0.03334 0.04124 0.01986 0.02491

kernel 0.04893 0.06156 0.03944 0.04890 0.02663 0.03332 0.02040 0.02552
histogram 0.06777 0.08469 0.04864 0.06130 0.03455 0.04433 0.02638 0.03333

x = 3.5

nearest neighbor 0.01586 0.01996 0.01234 0.01603 0.00910 0.01165 0.00705 0.00898
frequency 0.04376 0.05452 0.03050 0.03800 0.02394 0.02996 0.01349 0.01714

kernel 0.03614 0.04503 0.02806 0.03482 0.01943 0.02416 0.01475 0.01833
histogram 0.04599 0.05764 0.03562 0.04456 0.02888 0.03656 0.02029 0.02558

x = 5.5

nearest neighbor 0.01592 0.01860 0.01238 0.01427 0.00930 0.01061 0.00733 0.00832
frequency 0.02479 0.03077 0.02090 0.02603 0.01604 0.020318 0.00909 0.01148

kernel 0.02559 0.03209 0.01918 0.02377 0.01320 0.01662 0.00985 0.01238
histogram 0.03294 0.04127 0.02325 0.02916 0.01824 0.02381 0.01302 0.01638

x = 7.5

nearest neighbor 0.02162 0.02211 0.01833 0.01864 0.01465 0.01483 0.01221 0.01235
frequency 0.01690 0.02115 0.01460 0.01878 0.01023 0.01286 0.00621 0.00784

kernel 0.01717 0.02170 0.01262 0.01621 0.00861 0.01073 0.00669 0.00840
histogram 0.02260 0.02991 0.01564 0.02034 0.01209 0.01539 0.00849 0.01072

x = 9.5

nearest neighbor 0.02283 0.02293 0.02012 0.02019 0.01680 0.01684 0.01441 0.01444
frequency 0.01327 0.01601 0.00923 0.01197 0.00666 0.00838 0.00386 0.00495

kernel 0.01026 0.01298 0.00823 0.01044 0.00562 0.00708 0.00416 0.00534
histogram 0.01335 0.01611 0.00962 0.01247 0.00720 0.00915 0.00518 0.00666
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Figure 2. Comparison of different estimators for n = 100, 200, 500, 1000 under case 2.

Table 3. Absolute bias and RMSE of the estimators for different x and n under Case 3.

Estimators
n = 100 n = 200 n = 500 n = 1000

ABias RMSE ABias RMSE ABias RMSE ABias RMSE

x = −3

nearest neighbor 0.07610 0.07633 0.06950 0.06971 0.06052 0.06056 0.05461 0.05464
frequency 0.00930 0.01622 0.00652 0.01128 0.00645 0.00749 0.00496 0.00588

kernel 0.00832 0.01284 0.00710 0.01021 0.00684 0.00807 0.00444 0.00536
histogram 0.00815 0.01663 0.00757 0.01188 0.00703 0.00814 0.00563 0.00635

x = −2

nearest neighbor 0.06923 0.07070 0.06118 0.06196 0.05715 0.05762 0.04669 0.04682
frequency 0.03861 0.04881 0.02607 0.03371 0.01926 0.02511 0.01853 0.02361

kernel 0.03808 0.04823 0.02820 0.03432 0.02276 0.03059 0.01802 0.02188
histogram 0.04937 0.05914 0.03343 0.03839 0.02003 0.02545 0.01756 0.02350

x = −1

nearest neighbor 0.03631 0.04775 0.03392 0.04506 0.01997 0.02303 0.00912 0.00912
frequency 0.06229 0.07671 0.07247 0.08903 0.02984 0.03644 0.03866 0.03866

kernel 0.06957 0.08409 0.05274 0.06531 0.02978 0.03729 0.01678 0.01678
histogram 0.09321 0.08409 0.07434 0.09125 0.05200 0.05696 0.03899 0.03899

x = 0

nearest neighbor 0.07075 0.08889 0.04916 0.06248 0.04165 0.04875 0.03089 0.03813
frequency 0.07385 0.09206 0.05638 0.06542 0.05210 0.06610 0.03407 0.04322

kernel 0.08064 0.10095 0.06331 0.07623 0.06388 0.08090 0.03431 0.04535
histogram 0.11434 0.14591 0.08077 0.09885 0.06366 0.07957 0.04986 0.06241

x = 1

nearest neighbor 0.03835 0.05063 0.03149 0.04136 0.02109 0.02732 0.01697 0.02093
frequency 0.06490 0.08186 0.07414 0.08815 0.03691 0.04265 0.03429 0.04344

kernel 0.07212 0.09097 0.05512 0.06931 0.03643 0.04574 0.02777 0.03529
histogram 0.11180 0.14016 0.10962 0.13703 0.06845 0.08603 0.06755 0.08356

x = 2

nearest neighbor 0.06930 0.07076 0.06486 0.06573 0.05061 0.05079 0.04127 0.04130
frequency 0.03604 0.04665 0.02133 0.02786 0.01916 0.02315 0.01822 0.01687

kernel 0.03724 0.04655 0.02060 0.02754 0.01864 0.02148 0.01502 0.01845
histogram 0.08088 0.10331 0.04690 0.06046 0.02693 0.02977 0.02277 0.02503

x = 3

nearest neighbor 0.07593 0.07617 0.06940 0.06952 0.06054 0.06056 0.05479 0.05480
frequency 0.00771 0.01406 0.00754 0.01303 0.00444 0.00444 0.00354 0.00390

kernel 0.00831 0.01153 0.00781 0.01102 0.00511 0.00576 0.00350 0.00388
histogram 0.02136 0.03534 0.01559 0.02350 0.00573 0.00655 0.01239 0.01605
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Figure 3. Comparison of different estimators for n = 100, 200, 500, 1000 under case 3.

5. Proof of the Main Results

The proofs are similar to those of Wu and Wang [15]. Therefore, we only present the
differences in the sequel.

Proof of Theorem 1. Similar to the proof of Wu and Wang [15], we have

{| fn(x)− f (x)| > ε} ⊂ A11x
⋃

A12x
⋃

A21x
⋃

A22x, (7)

where

A11x =

{
|Fn(x + bn(x))− F(x + bn(x))| ≥ kn

n
δ(x)

}
,

A12x =

{
|Fn(x− bn(x))− F(x− bn(x))| ≥ kn

n
δ(x)

}
,
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A21x =

{
|Fn(x + cn(x))− F(x + cn(x))| ≥ kn

n
δ(x)

}
,

and

A22x =

{
|Fn(x− cn(x))− F(x− cn(x))| ≥ kn

n
δ(x)

}
with δ(x) = ε

8( f (x)+ε)
.

For given x, define for each 1 ≤ i ≤ n, n ≥ 1 that

ξni = I(Xi < x + bn(x))− EI(Xi < x + bn(x)).

From Lemma 2, it is easy to see that ξn1, ξn2, . . . , ξnn are still m-AANA random variables
with Eξni = 0 and |ξni| ≤ 1. Observe that kn ≤ n and δ(x) ≤ 1

8 . Using Lemma 4, we have
that

P(A11x) = P
(
|Fn(x + bn(x))− F(x + bn(x))| ≥ kn

n
δ(x)

)
= P

(∣∣∣∣∣ n

∑
k=1

ξni

∣∣∣∣∣ > knδ(x)

)

≤ Cχn · exp

{
− k2

nδ2(x)/m2

2B2
n +

2
3 knδ(x)/m

}

≤ Cχn · exp

{
− k2

nδ2(x)/m2

2n + 1
12 n/m

}

= Cχn · exp
{
−12δ2(x)/m

24m + 1
k2

n
n

}
. (8)

Analogously, we can also obtain the same upper bounds as in (8) for the probability of
events A12x, A21x, and A22x, respectively. Therefore, we further obtain by (5) and (7) that

P(| fn(x)− f (x)| > ε) ≤ P(A11x) + P(A12x) + P(A21x) + P(A22x)

≤ 4Cχn · exp
{
−12δ2(x)/m

24m + 1
k2

n
n

}
→ 0.

The proof is finished.

Proof of Corollary 1. In view of Theorem 1, we only need to verify that (5) holds. By
k2

n/(n log n)→ ∞, one can obtain that

exp
{
−γk2

n
n

}
≤ exp{−3 log n} = n−3 (9)

for any γ > 0 and any sufficiently large n. Moreover, noticing that q(n)→ 0, n0 > 0 exists
such that q(n) ≤ 1 for all n > n0, and thus

χn =
n−1

∑
k=1

q(k) + 1 = O(n).

Therefore, we have by (9) that

χn exp
{
−γk2

n
n

}
≤ Cn−2 → 0, (10)

which finishes the proof.
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Proof of Theorem 2. The proof is analogous to that of Theorem 1. In view of (6), one has
that

∞

∑
n=1

P(| fn(x)− f (x)| > ε) ≤ 4C
∞

∑
n=1

χn · exp
{
−12δ2(x)/m

24m + 1
k2

n
n

}
< ∞.

Hence, the desired result follows from the Borel–Cantelli lemma and the formula above
immediately.

Proof of Corollary 2. Similar to the proof of Corollary 1, we have by (10) that

∞

∑
n=1

[
n−1

∑
k=1

q(k) + 1

]
· exp

{
−γk2

n
n

}
≤ C

∞

∑
n=1

n−2 < ∞.

The proof is thus finished.

Proof of Theorem 3. Analogous to the proof of Theorem 2.6 in Wu and Wang [15], we also
have that

{| fn(x)− f (x)| > Dτn} ⊂ B11x
⋃

B12x
⋃

B21x
⋃

B22x, (11)

where

B11x =

{
|Fn(x + µn(x))− F(x + µn(x))| ≥ knτn

n
· D

8T

}
,

B12x =

{
|Fn(x− µn(x))− F(x− µn(x))| ≥ knτn

n
· D

8T

}
,

B21x =

{
|Fn(x + νn(x))− F(x + νn(x))| ≥ knτn

n
· D

8T

}
,

and

B22x =

{
|Fn(x− νn(x))− F(x− νn(x))| ≥ knτn

n
· D

8T

}

with T =: supx f (x) < ∞, D >
c2

1L(x)
f (x) and L(x) > 0 depending only on x.

For each given x and 1 ≤ i ≤ n, n ≥ 1, we define

ηni = I(Xi < x + µn(x))− EI(Xi < x + µn(x)).

From Lemma 2, it is easy to see that ηn1, ηn2, . . . , ηnn are still m-AANA random variables
with Eηni = 0 and |ηni| ≤ 1. Applying Lemma 4 and noticing that kn ≤ n, τn → 0, we
obtain that for all sufficiently large n,
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P(B11x) = P
(
|Fn(x + µn(x))− F(x + µn(x))| ≥ knτn

n
· D

8T

)
= P

(∣∣∣∣∣ n

∑
i=1

ηni

∣∣∣∣∣ > knτn ·
D
8T

)

≤ Cχn · exp

{
− k2

nτ2
n D2/(64T2m2)

2B2
n +

D
12Tm knτn

}

≤ Cn exp

{
− k2

nτ2
n

n
· D2

128m2T2 + 16
3 DmT

}

= Cn exp

{
− D2

128m2T2 + 16
3 DmT

log n

}

≤ Cn
1− D2

128m2T2+ 16
3 DmT . (12)

Analogously, the probabilities of B12x, B21x, and B22x also have the same upper bounds as

in (12). Therefore, taking D >
c2

0L(x)
f (x) such that 1− D2

128m2T2+ 16
3 DmT

< −1, one can obtain

by (11) that

∞

∑
n=1

P(| fn(x)− f (x)| > Dτn) ≤
∞

∑
n=1

(P(B11x) + P(B12x) + P(B21x) + P(B22x))

≤ 4C
∞

∑
n=1

n
1− D2

128m2T2+ 16
3 DmT < ∞.

This completes the proof of the theorem.

Proof of Theorem 4. It follows from the proof of Theorem 2.9 in Wu and Wang [15] that(
sup

x
| fn(x)− f (x)| > ε

)
⊂
(

sup
x
|Fn(x)− F(x)| ≥ ε

8(T + ε)

kn

n

)
, (13)

where T = supx f (x) < ∞.
On the other hand, by k2

n/(n log n) → ∞ we have that for all sufficiently large n,
ε

8(T+ε)
kn
n ≥ D0(log n/n)1/2. Hence, taking κn = (log n/n)1/2 in Lemma 6, one has by (13)

that

∞

∑
n=1

P
(

sup
x
| fn(x)− f (x)| > ε

)
≤

∞

∑
n=1

P
(

sup
x
|Fn(x)− F(x)| ≥ ε

8(T + ε)

kn

n

)
≤

∞

∑
n=1

P
(

sup
x
|Fn(x)− F(x)| ≥ D0(log n/n)1/2

)
< ∞.

The proof is hence finished.

Proof of Theorem 5. It follows from the proof of Theorem 2.10 in Wu and Wang [15] that(
sup

x
| fn(x)− f (x)| > Dτn

)
⊂
(

sup
x
|Fn(x)− F(x)| ≥ knτn

n
· D

8T

)
, (14)

where D > max{
√

4c3
2L, 8TD0}, T = supx f (x) < ∞, and L > 0 is independent of x.
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Consequently, on can apply Lemma 6 with κn = knτn
n = (log n/n)1/2 to obtain that

∞

∑
n=1

P
(

sup
x
| fn(x)− f (x)| > Dτn

)
≤

∞

∑
n=1

P
(

sup
x
|Fn(x)− F(x)| ≥ knτn

n
· D

8T

)
≤

∞

∑
n=1

P
(

sup
x
|Fn(x)− F(x)| ≥ D0(log n/n)1/2

)
< ∞.

This completes the proof of the theorem.

6. Conclusions

In this paper, a Bernstein inequality for m-asymptotically almost negatively associated
random variables is established based on that of asymptotically almost negatively asso-
ciated random variables. By virtue of this inequality, some results on consistency for the
nearest neighbor estimator of the density function are further obtained. The results are
further extensions of existing ones in the literature. From the simulation study, we find that
the nearest neighbour estimator performs better than others on the peak but worse on the
tail, which encourages us to consider whether we can combine the superiorities of these
estimators to construct a better method.
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